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Pseudospinodal curves and scaling of the shear viscosity
of binary mixtures in the critical region
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The shear viscosity of binary liquid mixtures shows a weak anomaly in the critical region. Its empirical
formula q = q,de,~ is used first to determine T,„and found to provide reasonable representations of the
experimental results. The relevance of this equation to some current theoretical predictions and the general
validity are discussed. In addition, it is shown that the shear viscosity satisfies scaling law relations similar to
those previously established for equilibrium properties.

I. INTRODUCTION

The shear viscosity of binary liquid mixtures
shows a weak anomaly in the critical region. The
anomaly is attributed to the cooperation of the two
effects: (i) the anomalous increase in certain
large scale fluctuations of macroscopic variables
obtained in' the flux, and (ii) the anomalous in-
crease in the life times associated with these fluc-
tuations.

Attempts have been made to clarify the mathe-
matical character of the weak anomaly. ' In 1S63,
Debye and co-workers first noted that the viscos-
ity anomaly could be represented by an empirical
formula'

b '0/7) =A Inq~ (, (2)

where 4g = q —q;„, ( = (,e " is the correlation
length, q~ is a Debye cutoff, and A is a constant
(8/15m' =0.054). The theory"' in its current state
cannot discriminate between bq/7I;„and &q/7I.
This point should be noted especially in analyzing
the critical viscosity with Eq. (2), as did Sengers. '
It is easily shown that Eq. (2) can be closely re-
lated to Eq. (1);hence, it is concluded that the cri-
tical exponent Q corresponds to that of the corre-

where P is the critical exponent, q is the full vis-
cosity, and p;„ is an ideal shear viscosity in the ab-
sence of any'critical anomaly. p;„was estimated
in the original form of Debye and co-workers by
the Arrehnius-type equation. It is noted that the
form of Eq. (1) satisfies the prediction of scaling
laws. 'This fact suggests that this equation seems
to be general. Some current theoretical bases of
the empirical equation have recently been given by
several authors. ' '

According to Kawasaki' and Perl and Ferrell, '
the viscosity anomaly has been established to fol-
low the temperature dependence as the temperature
T approaches T„

lation length except a constant factor, i.e., Q =

(8/15m')v. In an interesting extention of the mode-
coupling equations, Oxtoby and Gelbart'~ have cal-
culated the shear viscosity numerically, with no
adjustable parameters, by including background
term in the self. -consistent equations. ' They have
shown that qD in Eq. (2), an adjustable parameter
in the original theory, can be approximately
identified with

q~ = Ck~T/8@q;~D;~)O2,

where C is a constant of order of unity, k~ is the
Boltzmann constant, and D,.„ is the background dif-
fusion constant, for example, for a binary mixture.
Starting with the self-consistent scheme of
Kawasaki, ' which means a direct approach to the
three-dimensional case, Ohta" made an approxi-
mate estimate of the exponent Q and the validity
of the relation has been confirmed. On the other
hand, Halperin et al .' discussed the viscosity
anomaly on the basis of the renormalization-group
method using an e expansion and arrived at the
following equation:

(lo 2/6$')P

It is clear that Eq. (3) provides a direct and theo-
retica. l basis for Eq. (1) and also (1.2/6m) v as the
exponent Q.

Now empirical equation (1) is satisfied not only
with the prediction of the mode-coupling (or de-
coupled) theory but also with that of the renormal-
ization-group method. As a result, in the present
paper, it is of no interest to discuss whether the
mathematical character of the weak anomaly is
logarithmic (or power-law) divergence or not, al-
though several investigators have hitherto dis-
cussed this point. Bather it should be noted that
the viscosity is expressed as a product of the
background component q,„and the critical com-
ponent &, i.e., as a form of the multiplicative
renormalization, ' which enables us to separate
an anomalous viscosity in a polymer solution
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near the critical point from the apparent normal
concentration dependence, '" and to study the crit-
ical anomaly in polymer solutions on the same ba-
sis as critical anomaly in binary-l. iquid mixture.

Thus, almost all of the efforts have been expen-
ded in analyzing the temperature dependence, and
the concentration dependence has not been ana-
lyzed in terms of scaling-law relations. In order
to describe the behavior of the thermal diffusivity
with the density and the temperature for SF„
Benedek' introduced the so-called "spinodal
curve, "which is generally supposed to present
the limits of stability of the metastable uniform
one-component phase. This concept has been ex-
tended to the two-component system of isobutyric-
acid-mater, in an attempt to describe both
the linewidth and the intensity measurements in

the critical region. " Further extension to the

polymer solution in the critical region" has also
been done. 'The extended version of the correla-
tion length proposed in this work is simply written

a,~ =T/T, ~
—1

where T,~ is the pseudospinodal temperature, and

hence the extension of Eq. (1),

Equation (1') means that, along each of the non-
critical isochores, the viscosity has the same
temperature dependence as that of the critical
isochore except that the viscosity diverges at a
certain temperature (T,~) which lies inside the
coexistence curve. At this point, it would be re-
minded that a theoretical consideration of Chu et
al." on such a postulated form was made with-

out taking account of the convergence of their ex-
pansion. Accordingly, we have no reason to ac-
cept their consideration that such a postulated
form may imply stringent and unrealistic restric-
tion on the equation of state.

However, it should be noted that a spinodal curve
determined with Eq. (1') is obtained by an extra-
polation from stable homogeneous equilibrium
states (so-called "pseudospinodal" curve) and then
a true spinodal curve can only be obsexved by
measurements on metastable states.

The purpose of the present paper is to show that
Eq. (1') can be used to determine T,~

and provides
reasonable representations of the experimental re-
sults, and to demonstrate that the shear viscosity
satisfies scaling-law relations similar to those
previously established for equilibrium proper-

12&13

II. TREATMENT OF DATA
J

In order to examine the validity of the assump-
tion, the viscosity should be investigated over a
wide range of temperature-concentration diagram
in the critical region; to establish a firm general
statement on this, it is necessary to perform a
series of such measurements on various samples.
Along this line of thought, the most careful works
on binary ra. ixtures have been done with the isobut-
yric-acid-water, " the 3-methylpentane-nitro-
etane, "and the 2, 6-lutidine-water systems. "
In the present paper, data on the isobutyric-acid-
water system have been chiefly used for: the deter-
mination of T,~, because the detailed data of the
viscosity near the phase-separation temperatures
are available, '" the study of light scattering had
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FIG. 1, Plot of ln(q/q«)
vs ln&» for the system of
isobutyric acid and vrater.
x2 is mole fraction of iso-
butyric acid.
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FIG. 2. Coexistence and pseudospinodal curves for the
system of isobutyric acid and water. x2 is mole frac-
tion of isobutyric acid.

Iog„(rl;, /q;', ) = [A(T —T,) +B(T—T )'j/(C+ T),

where q;'„ is the viscosity at an arbitrary re-
ference temperature T„and A. , 8, and C are con-
stants, because it is not reasonable to apply the
Arrehnius equation to this system, that is, this
system has a lower critical point at a low temp-

also been performed in the critical region, "and
the comparison between these results is possible.
Three systems mentioned above a, re also analyzed
a,s a test of scaling-law relations.

In interpreting these data, a systematic proce-
dure should be developed for the evaluation of the
ideal viscosity, that is, the ideal viscosities for
the isobutyric-acid —water and the 3-methylpentane-
nitroetane mixtures have been estimated from the
Arrehnius equation log»q;~ =B/T+C and compared
with the results obta. ined by applying the tracer
diffusion method. "b'"' On the other hand, q;„of
the 2, 6-lutidine-water"" has been estimated from
the rational equation

1

-2
log(1-T, /T, j or log(1-T,~/T, )

FIG. 3. Plot of log&0{x2- x2') vs log&p{1 —T/T ), The
solid line represents the coexistence curve of Bef. 14a
and has the form of x2 —x2'= 0.78{1—T, /Tc) '36 Dashed
line is the pseudospinodal curve of the form of x 2-x2'
= 0.54{1—T,„/T )0'37

erature and the principal component is almost
water, i.e., 94 mol/g. As a result, these three
systems have almost the same values of the crit-
ical exponent (Q = 0.038 —0.040), whose values are
consistent with the theoretical predictions men-
tioned above, i.e. , 0.036 (Refs. 3 —5) or 0.04 (Ref.
6). It is remarkable that the difference between
systems with an upper critical point and systems
with a lower critical point has been found mainly
in the background viscosity.

Since it can be shown that the exponent &f& re-
ma, ins constant relatively with changing concen-
tration, Eq. (I') suggests straight lines of slopes
—P in plots of log„(g/g;~) vs log„&,~, as shown in
Fig. 1. Pseudospinodal temperatures determined
from the da. ta analysis are shown in Fig. 2 with
the coexistence curve of Ref. 14a and listed in
Table I including the value of Q. In order to char-
acterize the shape of the pseudospinodal curve in
the neighborhood of the critical mixing point we

TABLE I. Characteristics of the isobutyric-acid —water (IBW) mixture and values of T& and
the exponent Q.

Sample
IBM

Mole fraction
IB acid" T ('C) Tsp {'C) Ts Tsp @ theoretical

3

5
6
7
8
9

10
11

0,0667
0.0830
0.0930
0.1044
0.1117
0.1151
0.1280
0.1418
0,1681

24.78
25.88
26.17
26.28
26.30
26.30
26.26
26.15
25.59

20.60
24.34
25.70
26.23
26.26
26.26
26.20
25.86
24.34

4.18
1.54
0.47
0.05
0.04
0.04
0.06
0.29
1.25

0.0384
0.038'
0.038)
0.0384
0.0383
0.0386
0.0383
0.0387
0.0382

0.036

" Taken from the experimental data of D. Woerman and W. Sarholz, Ref. 14a. Ts is the
phase separation temperature.

b IB is isobutyric.
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FIG. 4. Plot of {gqz) vs x2. {a) The system of isobutyric acid and water (Bef. 14a): T -T»,„=0.01'(0), 0.05'(0),
0.20'p'), 0.50 (G), 1.00'(4), 5.00 (x), -0.01 ( ),—0.05 (2), —0.20'(T), -0.50'(0); —1.00'(4), —5.00'( ). &~ m,.„isthemax-
imum spinodal temperature. (b) The system of 3-methylpentane-nitroethane: T —T, =0.044 g ), 0.544'(x), 3.555 (0),
8.555'(Q), 13.465'(0) (Ref. 15a); 0.083'(0), 0.478 (0), 3.164 PT), 7.215'(0) (Ref. 15e).
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FIG. 5. Scaling plots of
the shear viscosity as a
function of X: the isobuty-
ric acid and water (0); the
3-methylpentane and nit-
roethane (9', Ref. 15a),
(k, Ref. 15c); the 2, 6-luti-
dine and water (, Ref. 16a).
The broken line and the
solid line represent the
corresponding scaling plots
with e,&/~ Dx2(sp)*~ ~s and

e/( mf )' s as X, respec-
tively, and g(X) = (x2/
x„)' '"G(X). Here Ax, (sp)*
is 4g2 for the pseudospino-
dal curve.

employed a logarithmic plot of the concentration
differences (x,' —x,") versus temperature differ-
ences (1 —T,~/T, ) as shown in Fig. 3. A relation
of the form

x,'-x," ~(1 —T„/T,)', (5)

III. RESULTS AND DISCUSSION

It is worthwhile to attempt a more-general test
of the homogeneity and scaling laws with the vis-
cosity data. According to the initial approach of
Green and co-workers, " the scaling relation
takes a form

(6)

where M,*=(x, x„)/x„and x„ is the mole frac-
tion at the critical concentration. A factor (x,/

could be fitted by a least-squares calculation with
the exponent of the pseudospinodal curve P'= 0.37+
0.02, where x, represents the mole fractiori of the
second component (isobutyric acid) of the binary
system. The values of P' is in excellent agree-
ment with the value reported by Chu et al. ' for
the same system, and also with the exponent of
the coexistence curve (p =0.3610.02). Conse-
quently, the results show that the homogeneity
hypothesis (or scaling assumption) and pseudo-
spinodal generalization ai e equally demons trated
by the viscosity data as well as the light-scatter-
ing data. " The viscosity analysis may be recom-
mended because of the facility of the measurement
and its applicability even to the system in which
the effect of multiple scattering plays an importarit
role.

x„)~ "has been introduced in Eq. (6) in order to
account for a small assymmetry in the plots of
In(t)/t);„) vs x, as shown in Fig. 4. To investigate
the assumption of Eq. (6), we calculated the di-
mensionless quantities g(X) and plotted them as a
function of X. In the limit X-~, g(X) „should ap-
proach its asymptotic limit for the critical iso-
chore Ing(~ ) =-0.039. For X-O, g(x) should
approach the value for the critical isochore
lng(0) = 0. The results obtained from systems of the
isobutyric-acid-water, the 3-methylpentane-
nitroethane, and the 2, 6-lutidine-water are pre-
sented in Fig. 5. The data adapted in Figs. 4(b)
and 5 seem to be scattered a little. This is be-
cause the samples used for measurements were
prepared in quite different ways and were of vari-
ous concentration. Then it can hardly be expected
that these data would be explained precisely in
terms of the same critical temperature and the
same critical concentration. Thus it may be said
that these data seem to lie within the allowed pre-
cision of the present analysis. It should be noted
that the analysis presented here is applicable to
all temperatures above and below the critical tem-
perature (the isobutyric-acid —water system) and
also to a lower critical point as well as an upper
critical point. Figure 5 demonstrates that the re-
duced shear viscosity data can be represented by
a single-valued function g(X) of the scaling para-
meter X.

Finally, it is remarkable that a simple scaled
plot can be obtained when e,~/ ~

hx, (sp)*
~

'~s is
used instead of e/~ bx,*

~

'~s as X, as shown by the
broken line in Fig. 5. The plot may be considered
as a natural result from the proposed pseudo-
spinodal generalization. In fact, Fig. 1 suggests
that such a scaled plot will be already obtained
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by changing only the shift factors on the vertical
or horizontal axis. Further extension to the shear
viscosity of a polymer solution in the critical re-
gion seems to indicate again the validity of the
pseudospinodal gerieralization. ' For the general
validity on the pseudospinodal generalization, how-
ever, it would be more desirable to determine the
true spinodal curve by measurements on ~eta-
stable states and to confirm whether the pseudo-

spinodal curve agrees with the true spinodal one
or not. As far as we know such studies have not
been made.
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