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Nonlinear penetration of an inhomogeneous laser beam in an overdense plasma
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This paper presents an analysis of the penetration of an intense electromagnetic beam in an inhomogeneous
plasma. It is seen that on account of the electron density gradient created by an intense transversely

inhomogeneous beam a region is created in the overdense plasma where the beam can propagate. Typically a
CO, laser beam of width ro = 100 p,m, power P = 15 GW, and co = 1.7X 10'" sec ' can penetrate to a
region where co'/co' = 20 in a 500-eV inhomogeneous plasma characterized by cop/co (o)pp/co ) (1+Bz).

I. INTRODUCTION

In the presence of a Gaussian electromagnetic
beam, a. plasma experiences a ponderomotive
force and is consequently redistributed. For
beams of high power this mechanism should pro-
vide a transparent duct around the axis of the beam
through which the beam can propagate in an other-
wise overdense (&os» to) plasma. The inhomoge-
neous duct thus formed causes the beam to con-
verge (i.e., raises the axial intensity). Thus the
phenomenon of self-focusing aids in the penetra-
tion of an overdense plasma by an intense beam.
However, the earlier analyses' ' of the phenom-
enon of self-focusing are not applicable around
and beyond critical electron density (ht ~ &o ) be-
cause of the underlying assumption 4(EE*)«&, ;
here e, (= l —hPs/&o') is the linear part of the dielectric
constant and 4 is the change in the dielectric con-
stant due to nonlinearity. The limitation 4 «&, is
common to all the theoretical investigations of
self-focusing in dielectrics also. ' '

In the present paper we investigate the penetra-
tion of a high-power Gaussian laser beam in an
overdense inhomogeneous plasma in the paraxial
ray approximation, taking self-focusing into ac-
count.

II. NONLINEAR DIELECTRIC CONSTANT

We consider the propagation of a Gaussian beam
in a plasma along the z axis, the direction of den-
sity gradient. At z =0 the intensity distribution of
the beam is given by

EE*j,~ =E',exp(- r'/r, ')

Because of nonuniformity in the intensity distribu-
tion along the wave front of the beam, the elec-
trons experience a ponderomotive force and are
redistributed in the transverse direction in a time

scale v-ro/c„where r, and c, are the radius of
the beam and ion sound speed, respectively. The
modified electron density may be written'

n = n, (z ) exp(- nEE *), (2}

e = l —(o» / hP )

&os» = &o', exp(-csEE *), &os = 4ttn, e'/rn.
(3)

III. SOLUTION TO WAVE EQUATION

The wave equation governing the propagation of
the beam may be written

BE 1 BE 8
+——+ E —V(V 'E)+—eE =0.

Bz 1' Bt Bt --c

Using Maxwell's equation V &K=0, taking

8 8 8 1
Bg BY Bl fp

(4)

and using Eq. (3), the fourth term in Eq. (4) may
be neglected in comparison to the third term when

8 E 8 E (d
~«—or ~otEE*«1—

8'V & 8'V fo 4P

For largevaluesof uEE* this implies that a-1 «1.
Under this approximation Eq. (4) reduces to the
scalar wave equation, ~

8 g 1 8 8
+——y —E +—qE=O

Bz g 8'v Bx c (5)

where n, (z) is the profile of electron density in the
absence of the beam, and

n = e'/8 hmPkaT„

-e, m, and T, being the electronic charge, mass,
and equilibrium plasma temperature, co the fre-
quency of the laser, and k~ Boltzmann's constant.
Using Eq. (2} the nonlinear dielectric constant of
the plasma may be written
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To solve Eq. (5) we employ the WEB and paraxial-
ray approximations. Then we may express

z =&&~&+yz, yz

8.0—

zl/4(0)
E =A(r, z) ' exp i &ut - — e'/'dz

~1/4(z) c a

where

sz s(EE*)c,= c(z, r = 0), y =

Substituting for E and z in Eq. (5), we obtain

BA 1 8 BA—2i —e', ' —+——p —+ —2''A =0.
c ' az ra~ 8~ c' (8)
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On separating the real and imaginary parts of A as

A Ao(r, z) exp[-iS(4', z)]
FIG. 1. Variation of critical power for self-focusing

with roc'&/e for co&2/co~= 0.5.

and following Akhmanov, Sukhorukov, and Khok-
hlov' and Sodha, Ghatak, and Tripathi, ' the solu-
tion of Eq. (8) satisfying the initial condition ex-
pressed by (1) may be written

(9)

(10)

pression

cp
8m

2mxd~E'e "' "oE' '
0

A. Homogeneous plasma

When two terms on the RHS of Eq. (11) cancel
each other at z =0, d'f/dz'=0; and since df/dz =0,
f= 1 at z ~0 and for all values of z, i.e., the beam
propagates without convergence or divergence.
The condition for self-trapping is therefore

nE', „exp(-uE,'„)= c'/r, '~2~ . (12)

Equation (12) is the same as Eq. (4.18) of Ref. 1
(where it is derived in the limit of 4 «z, ). The
power of the beam is related to Eo through the ex-

p
— Zl /2&o 1 df

c ' fdz'
where f is the beam width parameter governed by

df 1 de, df c' &'~c/I

'dz' 2 dz dz uPro4f' (u'f

where

E',e', /2(0)
1/2~2

&a I
The initial conditions on f are

f(z=0)=l and df/dzI, ~=O

corresponding to an initially plane wave front. The
first term on the right-hand side (RHS) of Eq. (11)
corresponds to diffraction divergence and the sec-
ond term corresponds to convergence due to non-
linearity.

The variation of critical power P„with r, /11/c is
displayed in Fig. 1.

Equation (12) has two roots E„„andE„„(E„„
&Eo„,). E„„,increases with decreasing r,&o~/c,
whereas E„„decreases with decreasing 4;&u~/c.
At y, &u /c=e'/' the two roots are coincident. For
r, e~/c& e'/', Eq. (14) does not have any real root,
and hence self-trapping can not occur. The beam
can be self-focused only when Eo y&EO&EO 2 and
the range (E„„-E„„)increases rapidly with in-
creasing r, co~/c.

In the range P„,&P &P„2 the second term on the
RHS of Eq. (11) is larger than the first term, and
hence the beam gets focused. In this case Eq. (11)
can be integrated once to obtain

df ' 2 c2 1 1 118
1 ——, —— faIe ~/d-f (13)dz z 2(4 4O f gg 471

Ne have solved this equation numerically and the
variation of beam width parameter with distance
of propagation is displayed in Fig. 2 (for P,„,& P
&P„,);f is seen to be an oscillatory function of z.
This may be explained as follows. For a given
value of so~~/c, when E,&E„„the second term
on the RHS of Eq. (11) is greater than the first
term at z = 0 and d'f/dz' is negative. Consequently,
f decreases with z. At some value of z, where

~E z', /4(0)
~l /& Ocr2

a
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FIG. 2. Variation of beam width parameter with dis-
tance of propagation on short time scale for &&2/co2= 0.9,
I'pQ)p/c = 30, and three values of eEo. Solid line, ~Ep2
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the two terms on the RHS cancel each other; for
larger values of z, the RHS becomes positive.
However, the beam still continues to converge due
to the curvature it has already gained though Bf/Sz
becomes less and less negative. At z =z~, df/dz= 0
and f=f,„Beyon.d this point, f increases with z,
attains a maximum f = 1 at z = 2z&, and then repeats
its behavior. Thus the beam propagates in a self-
made oscillatory waveguide. For a given value of
E, the effect of increasingr, e~/c is to increase the
value of Ep 2 and hence to increase the value of
(E,/f, „)[e', ~'(0)/e', ~']

(.which is always greater
than E„„);i.e. , f,„decreases w.ith increasing
to(d~/C .

For P &P, ~ and P &P„, the diffraction effects
predominate over nonlinear effects and the beam
suffers divergence; in the former case f is amono-
tonically increasing function of z whereas in the
latter case it is an oscillatory function of z.

Z C/(dl" 2

FIG. 3. Variation of beam width parameter f and axial
intensity of the beam IQ = ~E2oq, (0)/p, ~f ] as a function
of distance of propagation for roc'/c=30, ~&o/co =0.5,
(yEo= 4.0, and B(cu/c)y'p= 5.0.

where e, = 0. However, the present treatment is
not applicable around this point. Hence, in order
to have an idea of the depth of penetration as a
function of the power of the beam, we have intro-
duced a typical distance z =z, where e, =0.7. The
variation of z, with the power of the beam is dis-
played in Fig. 4. It is obvious from the figure that

z, varies rapidly with power; i.e. , a beam ofhigher
power penetrates much deeper in the plasma.

Thus it is seen that intense beams can penetrate
overdense plasmas. In a typical case, a 15-6%
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B. Inhomogeneoos plasma

Equation (ll) is valid for all profiles of unper-
turbed electron density. However, for the sake of
explicitness we have solved it numerically for a
linear profile, viz. ,

&u2/e' = (&u', /&u')(1+Bz) .

Figure 3 shows the variation of axial wave intensi-
ty [viz. , 'Ee', ~'( )0a/', ~'f'] as a function of distance
of penetration into the plasma. As a competition
of self-focusing and diffraction effects the intensi-
ty varies in an oscillatory manner. As the beam
penetrates in the plasma, the axial dielectric con-
stant decreases, and one expects a turning point
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FIG. 4. Variation of depth of penetration g
&

with the
power of the beam for zo/p = 30, &p/(o = 0.5, B(co/c)xo
= 5.0.
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CO, laser of width 100 p,m can penetrate a plasma
up to a region where &u2~/uP = 20 in the absence of
the beam. It will be interesting to include this as-
yect of propagation in the computer codes for si:-
mulation of laser fusion.

In the present analysis we have neglected the
filamentation instability of the beam. For a per-
turbation of size a the threshold for filamentation
is given by [cf. Eg. (6.14), Ref. 1]

The relevant scale length for filamentation in the
yresent case would be a~ r,/2; hence the threshold
is given by

this has two roots, E, and E„and filamentation
occurs when E, &E &E,. On the other hand, the
threshold for self-focusing corresponds to

e+E* 1

Eo /Pdo

having roots E„,and E„,where E„,&E, and E„,
& F, Thus there exists a range of values of beam
power in which self-focusing is important and the
filamentation does not take place. Moreover, in
the present case as we are more concerned with
the depletion of the plasma from the axial region
and not so much with the self-focusing, we employ
powers as high as possible which essentially cor-
respond to fields greater than E, at which filamen-
tation does not occur.
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