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Magnetic quadrupole transition probabilities for the beryllium isoelectronic sequence
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The magnetic quadrupole transition probabilities for the 1s'2s2p 'P, —1s' 2s' 'So and 1s'2s2p
'P, —1s' 2p' 'So transitions of elements of the beryllium isoelectronic sequence are calculated using
eigenfunctions obtained by the Z-expansion method. Matrix elements are presented for Z = 6—30 and
transition probabilities are obtained for all elements with Z ) 6 for which excitation energies are available.
Good agreement is obtained with other calculations when common values for the transition energies are used.

I. INTRODUCTION

Reliable values for the allowed and forbidden
transition rates between low- lying levels of ele-
ments of the beryllium isoelectronic sequence are
of importance in the spectroscopic diagnostics of
high-temperature plasmas. In the solar atmo-
sphere, elements such as C, N, Ne, and Fe are abun-
dant, and the study of the berylliumlike spectra,
of these atomsprovides a valuable means for under-
standing the nature of the solar environment. '

The determination of the electron density from
the observed intensity ratio of the spin- forbidden
electric dipole (E1) line, 2s' 'S,-2s2P 'P„ to
the magnetic quadrupole (M2) line, 2s' 'S,
2s2P 'P» requires knowledge of the transition
probabilities between these levels. While a num-
ber of studies employing various theoretical meth-
ods have been made of the allowed and forbidden
E1 transitions of the members of the beryllium
sequence, "' the magnetic multipole transitions
have received less attention. In this paper we cal-
culate the M2 transition probabilities from the
1s'2s2P 'P, state to the 1s'2s 'S, and 1s'2P' 'S,
states using wave functions obtained by the Z-
expansion method.
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Using Eq. (1), we may express the probability for
the M2 transition from the 'P, to the 'S, state,
averaged over initial magnetic quantum numbers
and summed over final magnetic quantum numbers,
a,s
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and where the quantum numbers in the bras and
ket. s are L, S, J, and M J.

Using the Wigner- Ecka,rt theorem, we wr ite
the squared matrix element as
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The reduced matrix element for the four-electron
system can readily be expressed in terms of the
matrix element of q,"' between I., S,M+, M~
states with the result that

II. THEORY

The probability for the emission of magnetic
J-pole radiation from an. N-electron atom' is, in
atomic units,
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where e is the transition frequency, c= 1/o.', and
the tensor operator of rank J is

where in the reduced matrix element the quantum
numbers are L, S, and J and in the matrix element
on the right the numbers are L, S, M~, and M~.
performing the summation over M J and M in Eq.
(6) and inserting the result into Eq. (4) yields for
the transition probability
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with the individual electron operator given by

(2) where &E is the excitation energy in atomic units.
A thorough discussion of the construction of the

Z-expansion wave functions for atomic systemshas
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been given by Qnello, Ford, and Dalgarno' for
states which are nondegenerate in a hydrogenic ap-
proximation. The case of a zero-order degeneracy
removable in the first order of perturbation theory
as occurs for the 1s'2s' 'S and 1s'2P' 'S, states
of the beryllium isoelectronic sequence has been
treated by Watson and ONeil. '

Briefly, the Z-expansion method proceeds by
choosing the unit of length to be Z ' a.u. and the
unit of energy to be Z' a.u. The Schrodinger equa-
tion for the four-electron system is, in these
atomic units,

degenerate Bayleigh- Schrodinger perturbation
theory.

III. CALCULATIONS

The basis set (Q» j and the matrix elements of
the interelectron potential V between these states,
required for the evaluation of l4'„'') and Z„",were
obtained using a modified version of a configura-
tion-interaction program written by Schaefer. '
This program uses L-S configurations of the form
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with
4
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where r, is the position of the ith electron with
respect to the nucleus. The wave function l4'„)
and energy E„are expanded in a power series in
Z 1.
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Inserting these Z expansions into Eq. (9) andequat-
ing the coefficients of different powers of 1/Z
equal to zero yields a set of equations for the ex-
parision terms, with the lowest-order term in both
Eqs. (10) and (ll) being hydrogenic if there is no
degeneracy.

The equations can be solved by finding the
stationary values of the functionals'
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with respect to trial forms of 4„'". Following
Dalgarno and Drake, ' the trial form C „'" is chosen
to be a linear combination of N orthonormal func-
tions p», one of which is 0 '„", with the set (Q»].
satisfying

&e(lifo le/&=~(~(/ ~ j =' 2

This procedure leads to iterative solutions for
l4„")) and Z'„''. Because of the hydrogenic de-
generacy of the 1s'2s' 'Soand 1s'2p' 'So states,
appropriate linear combinations of the zero-order
wave functions must be chosen so as to diagonalize
the perturbing potential V in the usual manner of

where b,. is a symmetry-adapted coefficient and
D, is a determinant constructed from atomic orb-
itals e&. Each spin orbital is a product of a ra-
dial factor, a spherical harmonic, and an n or P
spin function. The radial factor is expanded as
a sum of Slater-type orbitals so that the individual
spin orbitals assume the form

p g)n+)/2
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where g is the orbital exponent. The orbital ex-
ponents for the 1s, 2s, and 2P orbitals were
chosen so that these wave functions correspond to
hydrogenic orbitals in order to produce the correct
high-Z limit behavior. These and the remaining
exponents are the same as those chosen by Watson
and ONeiljntheir study of electric dipole transi-
tions in the beryllium isoelectronic sequence.
Sixty configurations were used in calculating the
wave function for each state. The orbitals, orbital
exponents, and configurations used for the 'S and
'I' states are given in Tables I and II of Ref. 2.

The calculation of the matrix element of Eq. (8)
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is reduced to the evaluation of the matrix element
of the tensor operator between single particle
l, s, m„m, spin orbitals which are then expressed
in terms of l, s,j,m& states using vector addition
coefficients. The matrix element

&l'sj''m/ i@2") llsjm/)

is simplified by using the Wigner-Eckart theorem
and the resulting reduced matrix element is eval-
uated by. standard tensor algebra methods. 'O

Since the excitation energy 4E is raised to the
fifth power in the expression for the transition
probability, Eq. (8), it is essential to employ ac-
curate energies if the transition probabilities are
to be reliable. The energy differences used have
been obtained from the compilation by Fawcett
of 2s', 2s2P, and 2P' energy levels for elements
of the beryllium isoelectronic sequence.
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TABLE l. Z-expansion coefficients for the square of
the transition matrix element for the 2s2p P2-2s Sp

and 2s2p P2-2p 'Sp transitions. A{8)denotes A &10 .

(2s2 ig )

0
1
2
3
4
5
6
7
8
9

10

3.292V(i)
1.4156{2)
4.1253(2)
i.O42i(3)
3.6995(3)
1.3895{4)
1.8638 (4)
1.5o4o(5)

-1.0964 (6)
-3.8810(6)
-9.O85i(6)

3.0729
1.4721 (1)
5.7212 (1)
1.6709 (2)

-1.1182{2)
3.5O6V (3)

-1.1381(4)
1.8497 (4)
2.8213(5)
1.0165(6)
V.V224(5)

IV. RESULTS AND DISCUSSION

Use of the Z-expansion wave functions leads to
an expansion series for the square of the transition
matrix element of Eq. (4):

Table I presents the first 11 expansion coef-
ficients, T„ for the 1s 2s2P 'P,-ls'2s' 'Sp and
1s'2s2P 'P, -1s'2P' 'S, transitions. With the under-
standing that the initial level for both transitions
is the 1s'2s2P 'P, state, we label the transitions
by the configuration of the 'S, state.

The squared matrix elements, T, obtained by-
retaining 50 terms in the expansion of Eq. (13),
are given in Table H for Z=6- 30. For the 2s' Sp
transition, the 11 terms of Table I yield a value
for T within 0.1/p of the full 50-term sum for Z
~ 7, while for the 2P' 'S, transition the first 11
terms converged to within 0.2% of the full sum
for Z ~7. The eigenfunction of the 2p 'Sp state
is not as accurate as the eigenfunctions of the
2s' 'S, or 2s2p 'P, states which are the lowest
states of their respective symmetries and some
loss of accuracy will occur when calculating the
squared matrix element T(2P' 'S,) using the 2P'
'$, Z'- expansion wave function.

TABLE II. Squared matrix elements I, excitation energies DEin a.u. and transitionprobabil-
itiesA in sec ', for the 1s 2s2p ~P2-is 2s 'Sp and 1s 2s2p ~P2-is 2p 'Sp transitions. A(B) de-
notes A x10 .

Ion
Squared matrix element
r{2s 'Sp) 7.'{2p' Sp)

Excitation energy Transition probability
gE(2s2 '&p) ~{2p2 imp~ A (2s2 i&p) A {2p

6 Cm
7 NIv
8 Ov

9 FvI
10 Ne VII

11 Na VIII

12 Mg Ix
13 Al x
14 Si xr

15 P xu
16 S XIII

17 Cl xrv

18 Ar xv
19 K xvI
20 Ca xvii

21 Sc xvn::

22 Tl XIX

23 V xx

24 Cr xxI
25 Mn xxii
26 Fe xxui

27 Co xxlv
28 Ni xxv
29 Cu xxvl

2.1191 2.0564 (-1)
1.36O3 1.34OV( 1)
9.4266(-1) 9.3561(-2)

6.9066(-l) 6.8631(-2)
5.2747 (-1) 5.2322 (-2)
4.1589(-1) 4.1127(-2)

3.3628(-1) 3.3137(-2)
2.7750( 1) 2.7248(-2)
2.3288 (—1) 2.2789 (-2)

1.9821(—1) 1.9336(-2)
1.7074(-1) 1.6608(-2)
1.4861{-1) 1.4417 (-2)

1.3051( 1) 1.2632(-2)
1.1553( 1) 1.1158{ 2)
1.0299( 1) 9.9273{-3)
9.2377(-2) 8.8892 {-3)
8.3327 (-2) 8.0056 (-3)
V.5544(-2) 7 2473 (-3)

6.8802 (-2) 6.5918(-3)
6.2923 (-2) 6.0213(-3)
5.7767 (-2) 5.5217(-3)
5.32i9( 2) 5.O8i8( 3)
4.9188(-2) 4.6924 (-3)
4.5597 (-2) 4.3461(-3)

0.2390
0.3072
0.3754

0.4440
0.5135
0.5843

0.6564
0.7314
0.8080

0.8881
0.9718
1.0596

1.1518
1.2495
1.3534

1.4642
1.5827
1.7099

1.8464
1.9934
2.1516

0.5927
0.7652
0.9365

1.1070
1.2778
1.4485

1.6201
1.7917
1.9658

2.1406
2.3167
2.4958

2.6780
2.8634
3.0531

3.2487
3.4495

5.O2( 3)
1.13( 2)
2.13(—2)

3.62{ 2)
5.V2( 2)
8.60(-2)

1.24 (-1)
1.76(—1)
2.44( i)
3.33(—1)
4.49(-1)
6.o3( 1)

8.o4(-1)
1.07
1.42

1.89
2.51
3.35

4.48
6.01
8.09

4.5V{ 2)
i.ov( 1)
2.O5( i)
3.4V( 1)
5.41(-1)
v.96( i)
1.12
1.53
2.03

2.64
3.37
4.24

5.28
6.52
8.00

9.77
1.19(1)

30 Zn xxvII 4.2386(-2) 4.0367 (-3)

aFawcett, Ref. 11.
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TABLE III. Comparison of thz 1s 2s2P P~-1s 2s So
2-expansion transition probabilities in sec, with other
works. Quantities in brackets have been obtained by
adjusting for the different values of the excitation energy
used in the various calculations. g (8) denotes»& 10 .

Present
work Ref. 12 Ref. 13 Ref. 14

C rrl

Ne vii
Si XI

5.02 (-3)
5.72( 2)
2.44 (—1)

Ca xvu 1.42

Fe xxru 8.09

5.23( 3)
5.76{ 2)
2.38(—1)

[2.42( 1)]
1.41

[&.39]
7.69
[7.81]

5.15(-3)&3' 5.08 (-3)
5.74( 2) 5.70( 2)
4 8( 1)'~b

[2.45( 1)]
2.12

1.02(1)
[7.86]

The values for the excitation energies are
also listed in Table II. The squared matrix
element T(2P' 'S,) is an order of magnitude smaller
than T(2s' 'S,), but b.E(2P' 'S,) is more than twice
AZ(2s' 'S,). Because &E enters to the fifth power
in Eq. (8), the 1s'2s2p 'P, -ls'2p' 'S, transition
probability is five to ten times greater than the
1s'2s2p 'P, -1s'2s' 'S, value.

The transition probabilities for the magnetic
quadrupole decay of the 1s'2s2P 'P, states for
Crrr through FexxIII are presented in Table II.

Also given are the probabilities for the 1s'2s2PP, -
1s22p' 'S, transition for C tit through Ti Xix. Rela-
tivistic effects need to be taken into account for
the more highly charged elements. They affect
the excitation energy more strongly than the transi-
tion matrix, '3'~' and we have used the nonrelativis-
tic matrix elements to calculate transition. prob-
abilities for all ions for which the excitation en-
ergies are available.

A comparison with other values for the 2s2P 'I', —

2s' 'S, transition probability is given in Table III.
The CIII and Ne VIII results are in close agree-
ment. For Si XI, Ca XVII, and Fe XXIII the dis-
crepancies can be attributed largely to the dif-
ferent values employed for the excitation energies.
Use of the excitation energies given in Table II
yields the modified values given in brackets in
Table III which agree well with our transition prob-
abilities.
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