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We show that a class of multiphoton-absorption problems has exact solutions. In these problems an N-level
. atom or molecule absorbs energy from near-resonance monochromatic laser fields, and one asks for the time-
dependent populations of the energy levels of the absorber. We find that the equal-Rabi and the harmonic-
Rabi N-level systems studied numerically in the preceding paper are associated with Chebyshev and Hermite
polynomials. Using the exact solutions we find exact expressions for the time averages of occupation
probabilities in terms of sums of squares of polynomials. In addition we find the first approximate analytic
expression for the long-period population oscillations observed in numerical solutions; and we show that a
steady-state population inversion between the highest and lowest levels may be maintained by multiphoton
pumping.

I. INTRODUCTION

Numerical studies of laser-induced atomic or
molecular excitation, described in the preceding
paper, ' have shown the new features of many-level
systems which are not present in simple two- or
three-level atomic or molecular models. These
indicate that it is worthwhile to develop a broad
framework for the analytic study of multilevel
systems interacting with many laser beam@ for
arbitrary level multiplicity. In this paper we give
a general, : but still very simple, theory of multi-
level systems interacting with many intense photon
beams which are in (or near) resonance with the
transitions occurring between neighboring levels.
The simplicity of this theory is due to our extreme
point of view: that for sufficiently intense beams
only coherent interactions are important and one
can neglect all losses due to incoherent relaxation.
We also use the global rotating-wave approximation
(RWA) and neglect all nonresonant interactions.

Our theory is based on the mathematical equiv-
alence of the following two classes of physical
problems:, (i) an N level quantu-m system interact-
ing with N —1 photon beams in RWA, (ii) a chain of
N classical harmonic oscillators interacting via
nearest-neighbor harmonic forces (the so-called
Sturm system).

The basic mathematics encountered in both
classes reduces to the study of Jacobi matrices.
Such studies were made in the past in connection

with Sturm systems, ' and we will use the results of
these studies to draw conclusions relevant for co-
herent optical interactions of multilevel systems.

The general theory is developed in Sec. II and
special cases (including those studied in ESBB,
Ref. 1) are described in some detail in Sec. III.
Section IV is devoted to studies of the time aver-
ages of level populations, which are found to be
particularly amenable to our analysis, and Sec. V
provides 3,

'

compact analytic explanation of the basic
long period for the "population sloshing" observed
in ESBB, Sec. III.

II. N-LEVEL SYSTEM AND JACOBI MATRICES

The semiclassical time-dependent Hamiltonian
describing the fully coherent interaction of the N-
level quantum system ("atom") with Q —1 laser
beams in RWA can be written in the form

N g
N-1

H(t) =QE b„b +
2 Q&A bt„b e ' ~'+Hc.

m=1

where b (bt) annihilates (creates) the atom or
molecule in the mth unperturbed state ~m) of en-
ergy p, ~ is the frequency of the mth laser
beam, and Q is the Rabi frequency defined in
ESBB (4).

The Hamiltonian (1) can be transformed to a
time-independent form by the following unitary
tr ansf ormation,
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where D, is arbitrary. In the representation of un-
perturbed states, this transformed Hamiltonian
can be written as the following N&&N tridiagonal
time-independent matrix:

Q 0 0 ~ ~
0

1
2 ~1 D1 2 2

0 1gg

properties of Jacobi matrices found in connection
with their role in classical mechanics turn out to
be of importance in the study of the optical inter-
actions of multilevel quantum systems as well. We
will give a brief review of those properties which
will be used in Sec. III.

Let us introduce a set of N polynomials 5) (X),
defined as the determinants of the N —1 principal
minors associated with a given Jacobi matrix g»
along with the "initial" polynomial K)o(A. ) =1.

X)o(A) =1,

n, (~) =det(~, -X) =Z, -X,

0 ~ ~ ~

C1 S2 C,

0

where

N-1

CN-1 ~N

1
DN-2 2 N-1

1
2 N-1 DN-1

where D denotes the accumulated detuning of the
rnth transition defined in ESBB. The Schrodinger
equation (ESBB-1) is based on this form of Hamil-
tonian.

It is convenient to have all equations dimension-
less. We choose to do this by scaling the time by
the modulus of the Rabi frequency of the first tran-
sition,

(4)

and by referring all other frequencies and detun-
ings to this Rabi frequency.

By an appropriate choice of the phases of the
basis vectors Im), one can transform the possibly
complex matrix (3) to the real Jacobi form, '

C1
(Z, -X)(Z, -X) -c»

z, -x)
c, O

42-A. C2

43 —X

=(A, -X)(a, -X)(a, -Z)

and so on. The polynomials 5) (A.) obey the follow-
ing recurrence relations, for m ~ 1:

Clearly, X)„(X) is the characteristic polynomial
of the original Jacobi matrix gN. Therefore the
roots X„.. . , A.„of X)„(A.) are the eigenvalues of J„,

n„(x,) =0. (g)

If all coefficients c are different from zero, all
these roots are different.

The eigenvectors of gN have a simple form when
expressed in terms of the polynomials 5) (A). We
will denote the normalized eigenvectors by IX„).
The scalar products (mIX~) are the transformation
coefficients connecting the unperturbed basis
states Im) with the new basis states IX,). These
states IA., ) are the eigenstates of the total Hamil-
tonian in the global rotating-wave approximation
(that is, the dressed-atom states). For future
convenience in writing we define

~ „(x„)=(m+1Ix, )

=(-1)"A(~„)(c,c, . . .c ) '& (~))), (10)

/IQ I
and c„=-'IQ I/In I

. (6) where Co=1, and

are real quantities and c is positive.
In order to solve the problem of the time evolu-

tion of the state vectors, we have to find the eigen-
values and eigenvectors of the matrix gN. As we
have mentioned in Sec. I, the same mathematical
problem arises in classical mechanics in the study
of coupled harmonic oscillators. Many of the

N-1 -1/2
A (X ) = g (c c, . . .c ) '[& (X),)]'

m=0

An arbitrary vector Iy(w)) evolves in time ac-
cording to the formula

N

le(7)& = pe
""(l~,& &~, (le(0)& .
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The transition amplitude T„„(~)to find the atom in
its mth unperturbed state l m) at time w, if it was
at g = 0 in its nth state ln) is

N

T „(T)=pe "«'(rnlx«&(x, ln)

tion in level w evolving from the ground level n =1
is given by

u~T„,(v) = gsxp -iv vos -)

N'

e V~ Xp Vn (13)

her
x sin ) san (19)

The transition probability is therefore given by

N

P „(T)= g e '~ « ~(~' v*(A., ) v ()(.«) v, (X, ) v„*(A«) .

(14)

Since the eigenvalues A.„are in general not com-
mensurate, changes of populations with time will
be periodic only for very special choices of the
Hamiltonian matrix.

In the special case of the five-level system stud-
ied numerically in ESBB the eigenvalues are —,'2J 3,
—,', 0, --'„--,' W and the transition amplitude to the
middle level only is a periodic function of time,

T»(7) =-', [-I +cos(-,'&~)] =--', sin'(gW) . (20)

All remaining transition amplitudes T,(r), m g 3,
will contain both of the incommensurate frequen-
cies —,

' and —,"2/3 and therefore will not change peri-
odically in time.

III. SPECIAL SOLUTIONS FOR N-LEVEL SYSTEMS

Since the relation (8) connecting the polynomials
5) (X) have the form of recurrence relations for
orthogonal polynomials, we would expect to obtain
particularly simple ("exactly solvable" ) results
whenever the recurrence (8) coincides with that of
a known classical polynomial. We found the cases
of Chebyshev, Hermite, Legendre, and Laguerre
polynomials especially interesting.

I/ (cose) = sin [(m + 1)e] /sine . (16)

It follows from this formula and Eq. (9) that the
eigenvalues X„are

~, =cos[ON/(/)/+I)], u=l, 2, . . . ,X,
and that the components of the normalized eigen-
vectors can b'e written

2 '" men
v (1,)=( s's, =1, 2, . . . ,N . (18)+1 Pl+1 '

A. Chebyshev polynomials

This case corresponds to an interaction with no
detuning (((2 =0) and with e(lual Rabi fre(luencies
(c„=—,'). This is one of the problems extensively
studied numerically in ESBB. The solution of its
mechanical counterpart goes back to Euler,
d'Alembert, and Bernoulli. ~

The components 5) (X«) of the (unnormalized)
eigenvectors are proportional to the Chebyshev
polynomials of the second kind,

n (~) =(--,')"v (x).

These polynomials can be expressed in terms of
trigonometric functions in the following way, '

8. Hermite polynomials

Hermite polynomials emerge if there is no de-
tuning and the sequence of Rabi frequencies is
2) 1,2/2, )/3, . . . (c =-', )/m). This situation arises
physically if the K-level system comprises the W

lowest levels of a harmonic oscillator. This case
has been studied by Feldman and Elliott' and in
ESBB. The recurrence relation in this case is

~ „,(x) =-xu (x) --,'mn, (z),

and it leads to the following result:

(y)
—

( I )822- 3m /2' (~2g) (22)

From the Christoffel-Darboux formula for the
Hermite polynomials' one obtains the following
formula for the normalized eigenvectors,

v „(x,) = ll(/ff„, (W2x, )l-'

y(l)/( 2N —«2-2/~ ))2/21' (V 2 v( ) (23)

The eigenvalues X«are I/2I 2 times the roots of the
Nth Hermite polynomial.

C. Legendre polynomials

This case also corresponds to no detuning, and
the coefficients g must be chosen in the form

c =(4 —I/m2) '/'. (24)
/

/

That is, the dimensionless Rabi frequencies quick-
ly approach unity from above as m gets large. The
normalized eigenvectors are

~, (~ ) =INP„,(&,)I '(2m+1)'/'(1 —A,')'/'P (A„),

The amplitude T,(w) which determines the popula- and the eigenvalues are roots of p'„.
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D. Laguerre polynomials

This is the simplest case with detuning. The
coefficients g and ~ in this case are

C~=m, bm (26)

Comparing Eq. (26) with Eqs. (6) and (ESBB-3),
we see that all detuning frequencies are the same
and equal to 2l A, l.

The components of the normalized eigenvectors
in this case are

t „(~,) =I&L, ,(!~,)l '!t, '"&„(~,), (27)

and the eigenValueS A, k are the rOOtS Of L,„.
The relations described here, and similar ones

associated with other polynomials, indicate one
answer to the question posed in ESBB. A general
framework has been found within which whole
classes of N-level problems can be discussed. In

addition, we will show in the next section that the
polynomial method easily provides some quanti-
tative results about long-time behavior not readily
obtained by ab initio numerical integration.

0'-
0 10 20

IV. TIME-AVERAGED LEVEL POPULATIONS

The time dependence of the level occupation
probabilities, described by Eq. (14) and also re-
vealed by the numerical studies of the preceding
paper, becomes very complicated for large N.
Obviously not every detail of this time dependence
has great physical significance. We will certainly
simplify the description greatly by considering
averaged characteristics of the atomic system.
The simplest approach consists in evaluating time
averages p „of transition probabilities over infin-
ite time intervals:

1
p„„=lim — dt p„„(t).

P~oo T P

(28)

This expression can be evaluated in a closed form
for the equal-Rabi case,

N+&

These probabilities measure the relative average
time that the atom spends in its m th unperturbed
state if it was originally in its nth unperturbed
state.

All oscillating terms drop out as a result of time
averaging, because all eigenvalues Ak are different,
and the final formula for p „ is

N

p„„=Q I ~.(!„)I'l~„(!„)I'. (29)

n&t

FIG. 1. Populations of the levels of 6-level qnd 12-
level atoms in the equal-Habi case.

't

p~.t, n.t=(&i)'& '4" 'Zl&g-t(~2~&)] '2 " "
k=1

x (m!)-'(tt! ) '[If„(W»„)]'

x [a„(W2!t,)]'. (31)

In Fig. 2 we show the time-averaged probabili-
ties for the levels of an equal-Rabi system and of
a harmonic-Rabi system having 2, 3, 4, 5, 7, and
15 levels. These graphs make it clear that the
temporal behavior, shown for only a few population
cycles in Fig. 1, is a fairly general property of the
interaction, not associated solely with the first
population surge. That is, the two ends of the ex-
citation ladder are preferred locations for the
probability over the long term as well as initially.

It follows from this formula that, on the average,
all levels with the exception of the initially excited
level (level n) and its mirror image (level N+1-n)
are equally populated. The relative probability of
the exceptional levels is —,

' times larger. In the
special case when n =N + ~ -n, the population of
the initial level is twice the population of the other
levels. This average behavior is a consequence
of the kind of temporal behavior shown in Fig. 1 and
in ESBB, Fig. 2, for the equal-Rabi case.

In the harmonic-Rabi case, the formula for the
averaged probabilities reads
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(When the Rabi frequencies are successively smal-
ler in a non-equal-Rabi system the intermediate
levels are dominant in the long term. )

V. LONG-PERIOD POPULATION OSCILLATION

One of the striking features observed by ESBB,
and evident here in Fig, 1, was the relatively slow
oscillation of population from one end of the exci-
tation ladder to the other and back again. The
period of this "sloshing" oscillation is significant-
ly greater than any Rabi period associated directly
with the system-laser interaction. Such slow, and
fairly stable, near-recurrences of the initial con-
figuration indicate again the persistent internal
coherence of the dressed states of the system.

We can show the origin of the long-period slosh-
ing in the equal-Rabi case, and can evaluate the
period itself approximately. For an equal-Rabi
system the expression for the transition amplitude
from the lowest to the highest level is:

2
T»(q-) =

1
(-1)~"exp( iT cosy-, ) sin'

FIG. 2. Time-averaged level populations of the levels
of 2, 3, 4, 5, 7, and 15-level systems, in both theequal-
Rabi. and the harmonic-Rabi cases.

(+} 1 i [e-in'1'/2+( 1)Neiw7'/2] tan 2(N+ 1)

cos [2v/(N + 1)] —1
cso[2m/(N +1)] +cos [ gv/(N +1)]

'

(35}

This formula describes fairly well the many cycles
of slow pulsation in the populations of the highest
and lowest levels evident in the graphs in Fig. 3.
For small q- (relative to N) the amplitude T sta s
clos e to zero and it reaches its first maximum
equal to one in our crude approximation, at 7 =/+ 1.
As time goes on, departures from the equal-
spacing formula (34) increase, of course, and
aperiodic terms will eventually destroy the popula-
tion sloshing.

The approximate expression derived here for the
sloshing period shows a linear relation between the
period and the highest level number. This is con-
sistent with Fig. 7 in ESBB, where it is seen that
the time required for the population in level N to
reach its first maximum is approximately linear in

0 vv i~ I'py

0
0 50 100 150

N =12

quasiperiodic behavior with half-period equal to
X+1. One can see this explicitly by evaluating
the sum in Eq. (32) in a closed form in the approxi-
mation (34). Using standard relations for trigono-
metric functions, we obtain in this approximation:

where

p~ =km/(N+1) .

(32)

(33)

The weight function sin'y, enhances contributions
from the slowly varying terms, those with small
cosy„ i.e., y, close to v/2. These small eigen-
values are nearly equidistant and their spacing is
close to n/(M+1) because

12

0
0 50 100 150

~ N+1-2l
cosp(~+g)/2 ) 2 + y

or 8mal 1

For that reason the amplitude 1'» will exhibit a

FIG. 3 Populations of the lowest and highest levels
of 6-level and 12-level atoms in the equal-Babi case t

shovnng the long-period population sloshing from the
bottom to the top of the excitation ladder and back again
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(~Im —
&~I) = g Im —III', (tt (37)

we find'

In Fig. 4 we plot (~m —l~} vs 7 and find a relation
that is very nearly exactly linear. That is, the
average of the population flow upmard in an un-
truncated equal-Rabi atom or molecule obeys a
law very much like that obeyed by a truncated one.
Detailed comparisons of both equal-Rabi and har-
monic-Rabi N-leveel systems with their untruncated
counterparts indicate that the latter can serve as
useful simple approximations to the former in some
circumstances. '

VI. TIME-AVERAGED INVERSION
\

The possibility of inversion in the level popula-
tions is always interesting. In ESBB and in Secs.
IV and V here we have described the relatively

It is interesting to compare this finding with
the result to be expected of an infinite (i.e., un-
truncated) equal-Rabi atom or molecule. This 'can
be done indirectly.

The probability of occupation of level m at the
time y =Q, g is given for the untruncated equal-
Rabi case in (ESBB-9):

(36)

where, as in (ESBB-9), m is in this case infinite
in range: -~ ~m ~ ~. We now calculate the aver-
age location of probability at time z, actually the
average departure from the initial value m =1;

p11 2(C1 2C2)(CI+C2)
1 2 2 2 -1

pal ~ci(cl c2)

ps' 2 + lc2(cl c2)

and, in the four-level case,

2 1/2(c2+c2+c2+ ~1/2)1/2

1/2( 2+ 2+ 2 ~1/2)1/2
3,4 1 2 3 7

p gg
= ((;~ ++2 +c 3 +2C 2 c 3

—2C ~ c ~ )(2 'Y )

p2x ( x+ s+ x 2+ 2 3 x 3)(
2 2 -1

P3y —Cycp&

p4g =C2(Cg+c2+C3) (2&)

where

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

large population of the last level, even in the long-
time average.

However, there is no time-averaged population
inversion between the ground level and the highest
level in the equal-Rabi case or in the harmonic-
Rabi case. The question arises: Can one obtain
such a steady-state population inversion by a
proper choice of Rabi frequencies and detunings?
That is, could one promote very high harmonics
of the pumping laser to appear in fluorescence
from high levels? We do not know the answer to
this question in the general case since it mould

require a solution of highly complicated algebraic
inequalities. We can, however, answer this ques-
tion completely for three-level and four-level atoms
with no detunings, since we can evaluate the aver-
aged probabilities p „ in closed form.

Here me give a list of eigenvalues and time-aver-
aged transition probabilities for three- and four-
level systems ~ith no detuning and ambit any Rabi
frequencies (c„=-,~Q ~ j~Q,~). In the three-level
case we have

X, =(c,+c )', A. =0, X, =-(c', +c,')' ', (39)

( 2+ 2+ 2)8 4 2 2 (49)

The ratio of the highest to the lowest level popu-
lation is, for the three-level atom,

PM.

p~~ c ~+2c24 4

] 2 3 4. 5 {j
I

7 8

and for the four-level atom,
I

p4& c2(c&+c2+cl)
4 4 4 2 2 2 2

pyy cy +c2+c3+2c,c,—2c,c3

FIG. 4. Average number of transitions made away
from the initial ground state as a function of time, for
an infinite-level equal-Babi atom.

The maximal values of these ratios are 1.05 for
the three-level atom and 1.2 for the four-level
atom. '
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VII. SUMMARY

In this paper we have developed a general frame-
work for the analysis of multilevel quantum sys-
tems undergoing near-resonance excitation by one
or more monochromatic radiation fields. We have
been able to do this compactly by recognizing the
mathematical equivalence of the classical problem
of the Sturm system. Transition amplitudes, and

particularly time-averaged transition probabilities,
have simple expressions in terms of the eigenval-
ues and eigenfunctions of certain Jacobi matrices.
We have shown that in several cases, explored ex-
tensively numerically, these eigenfunctions are
well-known classical orthogonal polynomials. We

have also been able to explain qualitatively the
long-period population "sloshing" observed in the
preceding paper (ESBB), and in the equal-Rabi
case have given an approximate analytic formula
for the value of the period. Finally, we have shown
that if the Rabi frequencies are properly adjusted
in three-level and four-level systems, a steady-
state population inversion may be induced between
the highest and lowest levels by the multilaser
pumping of the systems.
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