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We study numerically the solution to Schrodinger s equation for the radiative interaction of fictitious Ã-
level model atomic and molecular systems with monochromatic radiation fields. The numerical method of
solution allows us to study multiphoton transitions in N-level systems unhampered by the assumptions usually

adopted, such as weak fields or large detunings of intermediate states, in perturbative and quasiperturbative
analytic studies. We point out regularities and near regularities in the population dynamics that appear to be
qualitatively different from those encountered in two- and three-level systems.

I. INTRODUCTION

The two-level atom is one of the best known and
most fruitful of atom models in optical resonance
physics. ' Multiple-level atomic and molecular sys-
tems have been of interest in quantum optics during
the past several years because tunable-laser ex-
citation of such systems allows the experimental
study of various phenomena for the first time.
Among these phenomena are such effects as res-
onant multiphoton ionization' and dissociation, '
Doppler-free two-photon absorption, ' isotopically
selective multiphoton ionization' and dissociation, '
strong-field resonance fluorescence, ' and others.

It has become important to understand the dy-
namics of N-level atomic and molecular systems
that are near-resonantly coupled to monochromatic
radiation fields. Theoretical work in this area to
date is almost completely confined to one of two
approaches: the N-level system is thought of eith-
er as a sequence of connected two-'level transitions,
each stimulated by single-photon absorption, or as
one giant two-level system whose single transition
is stimulated by the simultaneous absorption of N
—1 photons. The view of an N-level system as a
sequence of two-level systems has its roots in the
familiar rate-equation treatment of multistep pro-
cesses, a treatment in which there is supposed to
be no way to reach the mth level without first go-
ing through the (m —i)th. It was probably the pio-
neering work of Bebb and Qold' that served to em-
phasize the opposite possibility: that all of the lev-
els between 1 and N could be discarded "complete-
ly, " under certain far-from-resonance conditions,

thus permitting the N-level system to be viewed as
a single two-level system whose excitation re-
quired N —1 photons simultaneously. This latter
viewpoint has been developed extensively recently
by Takatsuji' and other workers" to permit a sim-
plified two-level treatment for detailed dynamics
of resonantly interacting three-level atoms.

Neither of these two approaches is particularly
well suited to the problems of recent interest. This
is because near-resonance excitation is desired,
not avoided, and because the electric field
strengths and degree of monochromaticity com-
monly encountered in recent work make coherent
and nonperturbative analyses imperative. The
simplest generalization of the familiar two-level
system is of course the three-level system. Re-
cently, Sargent and Horowitz" displayed an exact
and explicit solution (in the rotating-wave approx-
imation} to the Schrodinger equation for a three-
level atom with the assumption that none of the
three levels are subject to decay. They also in-
dicate how to modify their solution when all three
levels are characterized by the same decay con-
stant. They illustrate their results with a graph
of the time dependence of the three levels'occupa-
tion probabilities when the lasers are adjusted so
that the two transitions are being driven exactly on
resonance and at the same Rabi rate. "

It is, of course, possible to solve the Schr6-
dinger equation. analytically in more general sit-
uations than the one they discuss, in particular,
for atoms with more than three energy levels, ir-
radiated by more than two monochromatic radi-
ation fields, because the time-dependent ampli-
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tude equations remain linear first-order differ-
ential equations no matter how many levels are
considered, or what damping constants are as-
sumed. This is certainly well-known, but the so-
lution is not often attempted, because the diag-
onalization of an N-dimensional matrix is required
for the N-level solution.

Closely related questions whose answers do not
seem to be well known are: What is the highest
dimensionality N for which an explicit analytic
evaluation of the diagonalization problem can be
accomplished? Can it be done off-resonance?
Can it be done with different Rabi rates? With
what kind of off-resonance detunings can it be
done? More generally, one can simply ask wheth-
er or not there is a framework sufficiently broad
to allow aQ of these questions to be discussed
analytically at the same time. The important cen-
tral question underlying all of these is: Just what
is N-level atom behavior, and is it distinct from or
roughly the same as two- and three-level behavior?

One of the motivations for undertaking an inves-
tigation of these questions arises from high-power
laser experiments on atomic ionization, molecular
dissociation, and chemical reactions. A general
goal in these experiments is to attain as large a
transition rate to an nth excited level as possible.
It is not known in the general n-transition and m-

laser case what arrangement of laser powers and
detunings will lead to the highest rate, although'
some preliminary results are known. Ackerhalt
and Eberly" have established the conditions under
which multistep ionization and dissociation pro-
cesses can be faithfully treated by purely rate-
equation analysis, even in the high-power limit,
without important error; and Garrison and Wong'
have shown in two-level and three-level examples"
that these conditions do not lead to the highest
rates. The highest rates appear always to arise
when a substantial degree of atomic coherence is
present. Feldman and Elliott" have come to a sim-
ilar conclusion in their study of multiphoton ab-
sorption by a 10-level model molecule.

Apart from possible application to multiphoton
excitation, the problem of coherent monochro-
matic excitation of an N-level system is of intrin-
sic i.nterest as one of the few soluble problems of
quantum dynamics. Like the two-level atom and
the harmonic oscillator, it provides insights into
behavior of aspects of real systems.

Thus we here consider the problem of an N-level
system coupled to monochromatic lasers that are
nearly or exactly resonant with the N -1 interme-
diate transitions. We assume that the N near-res-
onance levels are the actual energy levels of the
system, with all power-dependent shifts due to the
existence of the remaining off-resonance levels al-

ready accounted for. We ignore the existence of
any relaxation or damping processes. That is, we
take the extreme view that the atom-field inter-
action is completely coherent. In this case all
rate-equation approximations will fail, of course.
The temporal behavior of the level-occupation
probabilities can be expected to bt very compli-
cated, with the common feature being population
pulsations rather than monotonic population flow.

The levels near the bottom of the excitation lad-
der and those near the top are particularly inter-
esting. The probability is initially confined to the
lowest levels, and we assume that the highest lev-
els in the model correspond to those in a real
atom or molecule where a useful laser-independent
interaction or reaction occurs. Our completely co-
herent lossless model is relevant whenever this
reaction (induced by, for example, static fields or
collisions) occurs at a rate significantly smaller
than the probability pulsation rate for the Nth lev-
el. Such an assumption can be relevant to multi-
ple-photon atomic ionization if the cross section
for the ionizing step is sufficient1y low compared
to that for the next lower discrete-level transition.
The applicability to multiple-photon molecular dis-
sociation processes is less clear because such pro-
cesses are still poorly understood. However, if
multiple-photon dissociation proceeds via a weak
transition from a low-lying single-vibrational mode
discrete-level ladder into a mixed-mode quasicon-
tiouum, then our results should be useful in that
context also.

In the following section we define our problem
mathematically by stating the relevant form of the
Schr6dinger equation. In Sec. IG we show graphs
of several families of numerical solutions to the
equation, choosing particularly regular relations
among the dipole moments and field strengths ap-
propriate to the various transitions. Among the
interesting features of these numerical solutions
are long-term quasiperiodic swings in occupation
probabilities, surges of population into a certain
"highest" level, and a nearly linear relation be-
tween the number of levels and the time required
for the last level to first become substantially pop-
ulated. In Sec. IV we present a first-order inter-
pretation of a set of numerical "experiments. " We
point out broad features of the numerical soLutions
for the level populations, particularly features that
have no theoretical formulas to support them. Fi-
nally, in Sec. V we summarize our findings, and
suggest problems remaining for numerical study.
In the accompanying paper we undertake an ana-
lytic examination of the examples explored numer-
ically here, and develop a polynomial method of
analysis applicable to a wide variety of N-level
absorption problems.



2040 J. H. EBER L 7 et al. 16

II. EQUATIONS OF MOTION

Consider an N-level system with & —1 allowed
consecutive transitions, as shown in Fig. 1. We
imagine that one or several monochromatic lasers
are present, so that all of the N-1 transitions can
be stimulated at, or very near to, resonance. We
assume that the individual laser frequencies cg

are sufficiently close to the Bohr frequencies (the
actual power-shifted transition frequencies of the
system) hE /h to justify a global rotating-wave
approximation (RWA)" for the N-level system.
Under this assumption, the Hamiltonian matrix
becomes time-independent and tridiagonal, with
zeros everywhere except along the two diagonals
located one above and one below the main diagonal.
That is, in a representation which has suitably
chosen phases and which diagonalizes the N-level
field-free Hamiltonian, the HWA Schr6dinger equa-
tion for the transition amplitude T (t) to find the
atom in state

~

m) at time t if it was initially in state
)n) at t=0 is

~ 8 1
2 m-&Theft-y, ff Dm-]. Tm, n +.2+m m+]. ,n

with the initial condition

Z.„(t=0)=6

As Eq. (1) shows, the dynamics is governed by
two families of parameters. The first is exempli-
fied by

D = Z(~. -~a&@)+Do
k=1

the accumulated detuning at the mth transition. (D,
is an arbitrary constant. ) The other parameters,

the Rabi frequencies 0, given by

h~l. =ld. g.l, (4)

are proportional to the peak values of the inter-
action energies of the dipole transition moments
d (between levels m and m+1) and the electric
field vectors E (t) (the field of the laser respon-
sible for the mth transition):

E.(t) =3 cos(~„t).

In the simple two-level situation the Rabi fre-
quency has two interpretations: it is also the fre-
quency of population oscillations between the two
levels as well as equaling the interaction energy
(d @ divided by h. In the N-level case, as we
will see, these two frequencies have no simple re-
lationship. In the remainder of this paper we
adopt the latter meaning for the term Rabi fre-
quency.

Well-known techniques exist for computing nu-
merically the solutions of coupled linear equations,
of which the time-dependent Schr'6dinger equation
(1) is a simple example. A particularly conve-
nient method, applicable when the equation coef-
ficients are time dependent, as they are in the
RWA, makes use of the eigenvalues and eigenvec-
tors of the coefficient matrix.

Various standard routines exist for the com-
putation of eigenvalues and eigenvectors of given
matrices. With their use it is a simple matter to
solve Eq. (1) numerically and compute transition
amplitudes and probabilities for any time t. In the
next section we demonstrate some of these solu-
tions for two particular choices of Rabi frequen-
cies, assuming in all cases that the population is
in level 1 at t =O.

First, however, we point out again that it is use-
ful to solve for the full set of Schrodinger ampli-
tudes T „(t) for m, n=1, . . . , N only when the cor-
responding population rate equations (PRE' s) are
inadequate. " Thus we should exhibit graphs of the
off-diagonal quantities such as T,T,, so as to
show most dramatically the differences between
the solutions to the full SchrMinger equation and
the much simpler PRE solutions. " From each ini-
tial state ) n) we obtain 1V' such complex-valued
quantities. To show all of them would be imprac-
tical. Therefore we show only N quantities

P, (t) =i V', (t) i'
(6)

PIG. 1. Notation appropriate to the transition of an
N-level system.

representing the population in level m evolving
from the ground level m= l. The existence of off-
diagonal coherence in the N-level system will still
be evident from the distinctly nonmonotonic behav-
ior of these level populations.
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FIG. 8. Maximum height of population curve for Ãth
level of an +-level system, during the initial popula-
tion surge as a function of ~, for harxnonic-Rahi {0
=vmQ&) case and for equal-Rabi {0~=0&)case.

voked here, the probability fluid seems to set up
a standing wave near the top end of the excitation
ladder, with the next to last level very near to a
node.

Another feature of the population-dynamics graphs
is shown in Fig. 7, where the time lapse before the
occurrence of the surge in the last level is plotted
as a function of the number of levels in the system,
both for the equal-Rabi case and the harmonic-Rabi
case. The equal-Rabi case is more striking be-
cause the time lapse appears to be very nearly a
linear function of level number.

An almost equally regular feature of the popu-
lation surge is the dependence of its maximum
height on level number. As Fig. 8 shows, the max-
imum height falls off very smoothly, and rather
slowly, as a function on N. The curves in Fig. 8
suggest the interesting possibility that there might
be a universal asymptotic slope of the curve,
common to all multilevel models. No theoretical
confirmation or refutation of this possibility is
known to us.

Another characterististic observable in numer-
ical solutions, for which a heuristic explanation
is possible, but which is also not directly pre-
dicted by any N-level-atom formula known to us,
arises in the following way. Many molecules ex-
hibit pronounced anharmonicity in their vibrational
transition ladders, with the vibrational levels
gradually getting closer together at higher vibra-
tional quantum numbers. Consequently, a laser

that is exactly resonant with the first vibrational
transition will be detuned by an amount 2A, withe
the anharmonicity parameter of the ladder, from
two-photon resonance with the second transition,
and will be detuned by an amount

D„=m(m —1)A (9)

from exact m-photon resonance with the mth tran-
sition.

In Fig. 9 we show the effect of such anharmon-
icity on the population dynamics of a ten-level har-
monic Rabi system. In the first graph, for zero
anharmonicity, we see behavior of the same kind
shown in Fig. 3. That is, population flows to the
top of the ladder, building up an appreciable am-
plitude in the last level, and avoiding the next-to-
last level almost completely. Given a small anhar-
monicity, the graph, Fig. 9(b), shows that the be-
havior is roughly the same, with two differences:
it is now the ninth level that is effectively the last,
and there is some populat;ion found in the next-to-
last eighth level. %hen the anharmonicity is made
even larger, Fig. 9(c), the trend persists, Now
the fifth level is effectively the last, and the fourth
level is not avoided at all. FinaOy, the last graph
shows the logical conclusion of such a trend. The
anharmonicity has become so large that even the
second transition is so far out of resonance that
almost all of the population is confined to the first
transition and simply swings back and forth be-
tween levels 1 and 2.
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A rough explanatiog for the trend shown in the
graphs in Fig. 9 is easily found. It is natural that
levels substantially out of resonance should re-
ceive little population. What is surprising is that
there is always one level that acts as if it were the
last. That is, population does not simply get
smaller in levels farther and farther from reso-
nance. Instead it surges into and "rebounds" from
a certain detuned level whose probability equals or
exceeds that of the levels immediately preceding it,
and is much higher than that of any of the levels
following it. We note that the level for which this
occurs is predicted in a qualitative fashion by in-
voking the idea of ac-Stark broadening. " We can
guess that the two-level ac-Stark effect will give
each transition a "power br'oadened linewidth" re-
lated to its Rabi frequency, If this is so, then we
can expect to induce transitions up the vibrational
ladder until the accumulated detuning exceeds the
Rabi frequency and not much further. "

Finally, we examine briefly a question that is
especially important in the case of the N-level
harmonic-Rabi system. We show in /he following
paper' that the truncated harmoriic-Rabi system
is exactly solvable. It remains true, however,
that the untruncated harmonic oscillator is so sim-
ple in its dynamic behavior that it would be of only
academic interest to study the truncated system if
it were well approximated by the familiar untrun-
cated one. Evidence that the N-level and the ~-
level oscillators are similar is already evident in
Fig. V. The time required for the populate. on to
flow into the highest level, shown in Fig. 7, is nu-
merically very nearly proportional to the square
root of the last level number. This is the behav-
ior to be expected from the familiar ~-level har-
monic-oscillator transition-pr obability for mula

(8a). That is, from (8a) one easily constructs
the rule that the expected level number (m(t))
takes the form

(10)

In other words, the time required for the mean
level number to depart from (m) = 1 is proportional
to ((m) —1)'t'.

A more thorough comparison of the truncated and
untruncated oscillators is possible by using the
well-known feature of the Poisson distritribution
(8a): the dispersion in level number is linearly
related to the average level number. In the pres-
ent case, where we have begun our level-number
labeling at 1 instead of at 0, this means that

E(m) = -(m) —(m)'+ (m') + 1 = 0 .
We show, in Fig. 10, a plot of E(m) as a function
of time for a 15-. level truncated oscillator. For
reference we also show the populations curves of
the first and the 15th levels. It is cleax' that the
truncated oscillator behaves very nearly like an
untruncated one, with E =1, for a major portion
of the time required for the first population surge
to flow into the top level. However, as soon as
the 15th level begins to be populated the oscillator
can recognize that it is not infinite in extent, and
E departs significantly from unity. It is interest-
ing to observe the extent to which the truncated
oscillator can forget about the truncation at level
15, and return to the E =1 mode of operation, as
the population flows back down toward level 1.
This might have been expected from the nearly
perfect periodicity of the truncated oscillator
curves i:n Fig. 3. From our point of view, the de-
viation from purely untruncated behavior near the
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ate scale: solid curve is 8'(t) = —(m) —(m) + (m ) + l.

top of the ladder is more important than the very
nearly untruncated behavior in the lower levels
because, of course, ionization or dissociation will
occur near the top.

V. SUMMARY

In this paper we have explored numerically the
solution to Schrodinger's equation for an N-level
system near-resonantly coupled to electromagnetic
radiation in the global rotating-wave and dipole
approximations. Qur interest has been in begin-
ning to understand the N-level system in its own

right, instead of as a sequence of two-level sys-
tems or as a single (N —1)-photon two-level sys-
tem. It is these two limits that have been employ-
ed in most studies to date.

Qur approach is also based on a simplified view
of an N-level system. We have avoided approx-
imations based on assumed small or large para-
meters, such as small electric field strength or
large detunings from intermediate resonances,
because it is just the regime of large field
strengths and small detunings that is currently of
most interest. We have instead considered only
two, particularly "regular, " kinds of N-level sys-
tem: one in which all of the Rabi frequencies are
equal, and one in which the Rabi frequencies obey
the square root rule, 0 =urn@, . These are not un-
realistic N-level systems, although far from the
most general. The equal-Rabi system can be real-
ized in an atom simply by adjusting the various
lasers' field strengths to compensate for variation
in dipole moment from transition to transition.
The so-called harmonic-Rabi system is well ap-
proximated by the vibrational ladder of a molecule.
Letokhov and Makarov" have also treated exactly
these two special cases, but. from an approximate
analytic approach. "

Qur results are necessarily experimental, em-
bodied for the most part in the graphs of level pop-
ulations. We have observed a number of regular
features that seem to be common to N-level sys-
tems, as soon as N is not 2 or 3, and this by itself
may be the central result. That is, we have seen
clearly that two-and three-level systems are al-
most singularly simple in their differences from
general N-level behavior. Sargent and Horowitz"
have reminded us that, for the most part, -a three-
level system is barely different from a two-level
system. However, we see here that even a four-
level system is qualitatively different from two-
level and three-level systems, and closer in its
nonperiodic population dynamics to a 10-level or
15-level system.

Qur graphs suggest that it may be more than
merely picturesque to think of probability as a
fluid. In Figs. 2 and 3 we see behavior very sim-
ilar to that expected of water in a channel with fix-
ed ends. This appearance is heightened by an ex-
amination of time averages, and is discussed in
the following paper. "

We see, particularly in Fig. 6, that the top few
levels of a truncated N-level system are striking-
ly dissimilar in their temporal behavior: they are
significantly distorted by the abrupt termination.
Level N is overpopulated, and levels N - 1, N - 3,
etc. , are underpopulated, as compared with the
extrapolation of preceding levels. This termination
effect becomes increasingly pronounced with in-
creasing N. By contrast, the effective termination
caused by anharmonicity does not exhibit this en-
hancement/diminution effect. This means that
models in which dissociation occurs only from the
terminal level of an N-level system, as in the
work of Mukamel and Jortner, "may give an un-
realistic overestimate of dissociation. In any
realistic molecular system, there will be no single
level leading to dissociation. To our knowledge
this feature of N-level dynamics has not yet been
incorporated in an analytic or numerical treatment
of photodissociation.

Another feature, the quasiperiods apparent in the
graphs, for example the almost regular recurrence
of substantial population of the initial level, is not
explained by a direct examination of the atomic
Hamiltonian. The frequency of these periods is
much lower than any of the system's Rabi fre-
quencies or Hamiltoniao eigenvalues. They in-
dicate strongly that the N-level system has an in-
ternal coherence, a coherence that permits inter-
ference and beat phenomena among the system's
fundamental frequencies to become manifest even
in the diagonal and "incoherent" variables, the lev-
el populations. These quasiperiods are also ex-
mined in the following paper. "
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The internal coherence of the N-level system is
one of its most intriguing features for further
study. Its existence may suggest the existence of
a valuable semiempirical theory underlying most

of the obvious population dynamics, but containing
far fewer parameters than the exact Schrodinger
equation. To our knowledge no steps have yet been
taken to delineate such a theory.
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