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The perturbation theory expression for the HD molecule vibration-rotation dipole-transition probabilities is

cast into the form of an instantaneous dipole-moment function D(R). Two large components of D(R) can be

obtained from accurately known ground-electronic-state expectation values, whereas the rest is computed by

a sum-over-states procedure similar to the one we used previously for the dynamic polarizability of H, . From
this D{R)we compute dipole-transition matrix elements for the 0-0 through 6-0 vibrational bands, for all P
and R branch lines with J, ( 3. Our results agree well with the recent calculations of Wolniewicz tCan, J.
Phys. 53, 1207 (1975); 54, 672 (1976)]. They also agree well with experiment for the 1-0 through 5-0

bands, but, like the results of Wolniewicz, are a factor of approximately Q2 larger than the 0-0 band

results of M. Trefler and H. P. Gush [Phys. Rev. Lett. 20, 703 (1968)].

I, INTRODUCTION

Because of nonadiabatic effects which couple
the electronic and nuclear motions, the HD iso-
tope of molecular hydrogen has an electric dipole
vibration-rotation spectrum which is completely
absent in the symmetric H, and D, isotopes. The
first observation of such a transition was made by
Herzberg' in 1950, and several bandS were studied
by Durie and Herzberg-' in 1960. Intensity mea-
surements for the pure rotation 0-0 band have
been made by Tref ler and Gush, ' and in the 1-0
band by Bejar and Gush. ' A series of recent
papers by McKellar' and a paper by McKellar,
Goetz, and Ramsay' have reported rather precise
intensity measurements for several lines in the
1-0 through 5-0 vibrational bands. In addition,
the 6-0 band has been observed. ' The dipole spec-
trum of HD is of astrophysical interest as a
means of detecting extraterrestial HD and of de-
termining its abundance. The P1 line in the 4-0
band has been observed in the atmosphere of Jupi-
ter by Trauger et al. '

Theoretical calculations of the dipole-transition
moment were first carried out by Wick, ' and
somewhat later by Wu' and by Blinder. 'o Mare
recent calculations include those of Bunker-" and
of Wolniewicz and Kowalski. " Very recently
Wolniewicz, "as an extension of earlier work by
Kolos and Wolniewicz, "has carried out an ela-
borate perturbation-variational calculation of the
dipole-transition moment for several R -branch
lines in the 0-0 through 4-0 bands. These results
are in generally good agreement with the experi-
mental results of McKellar for the vibration-ro-
tation bands, but are about 1.4 times larger than

the results of Tref ler and Gush for the pure-rota-
tion transitions. For a closely related problem,
Alemar-Rivera and Ford" have very recently com-
pleted a theoretical study of X'Z~ E,F'Z' non-
adiabatic-allowed dipole transitions in HD; obser-
vation of these transitions has been reported by
Dabrowski and Herzberg. "

The calculation of Wolniewicz" constitutes the
best previous theoretical treatment of the vibra-
tion-rotation line strengths in HD. It is, however,
limited to R-branch lines and goes only up through
the 4-0 vibrational band. The probable accuracy
was given as around 10 ' D, whereas the experi-
mental transition moment in the 5-0 band is only
on the order of 2 && 10 ' D. These calculations al-
ready involve extensive computing, and improved
accuracy by using longer expansions may not be
available for some time. There is also the prob-
lem of the disagreement between these calcula-
tions and experiment for the 0-0 band. In view of
these remaining problems, we report in this paper
a theoretical calculation of the dipole-transition
moments for HD, using a method considerably
different from that of Wolniewicz. A principal
feature of our method and approximations is that
they lead to a dipole-moment function D(R), whose
matrix element is then taken between initial- and
final-state vibrational wave functions. A further
reason for publication of our- work despite the
recent progress made by Wolniewicz is that the
results of preliminary versions of our work have
been quoted in the literature', the details of the
origin of these results should be made available.
Two errors in the computational procedure have
been corrected. The computed dipole-transition
moment now agrees well with Wolniewicz for the
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0-0 band transitions, and our agreement with the
1-0 through 5-0 band experiments of McKellar
are a bit improved. The calculations reported
here are in somewhat better agreement with Mc-
Kellar' and McKellar, Goetz, and Ramsay' than
are those of Wolniewicz. " This close agreement
with experiment for the higher transitions and the
close agreement between quite disjoint but very
thorough calculations make further measurements
of the 0-0 band highly desirable.

In Sec. II the terms in the molecular Hamiltonian
which give rise to the dipole-transition moment,
and the perturbation theory expression for this
transition moment, are briefly discussed. In
Sec. III and IV the approximations are described
which lead to the final expressions for the II„
(perpendicular component) and Z„( parallel com-
ponent) intermediate-state contributions to the
dipole-transition moments. Section V describes
the calculations. The results are presented and
compared to previous calculations and to experi-
ments in Sec. VI.

II. THEORY OF THE HD NONADIABATIC-ALLOVf ED

DIPOLE-TRANSITION MOMENT

H'=H'+H'
2 (2)

is the perturbation due to the external field (H,'}
and to the coupling between electronic and nuclear
motions (H,'). If E is the external electric field,
m J and m~ are, respectively, the proton and deu-
teron masses, and r, and r, are the position vec-
tors of the two electrons measured from the mid-
point of the internuclear axis (geometrical center
of the nuclei), then in atomic units

H'= -r ~ E, (3)

where

r= r, + r„
and

H'= (IMP )&B —(-list)(&)'- (IMP.)&B ' &„(4)
where

m&mD mJ, mDand p~=-.+m.

The theory of the effect being studied here has
been discussed extensively in the previous theo-
retical work (see especially the paper by Bunker" )
and will be only briefly reviewed here. 'The total
nonrelativistic Hamiltonian for HD in a static
electric field is

H=H +H',

where H, is the usual Born-Oppenheimer Hamil-
tonian and

Note that the &~ term is also present in H„where
it is understood to operate only on the nuclear
motion part of the wave function.

Treating H' as a double perturbation, the transi-
tion dipole moment between states A and B is
given (to first order in H,') by

~3~AN(+ )N (+ )A«(3+NB)

N~ Vg J'g 8 N A N

where (8)„a=(A;.U„J„i8 jB;Vaja} and the eigen-
functions and energies are those of H, :

Hai¹VQ„)= E(U„)iN; VQ„).

Here iN; V+„) is the usual Born-Oppenheimer
product of electronic, vibrational, and rotational
wave functions, and N, V„, and J„denote elec-
tronic, vibrational, and rotational quantum num-
bers, respectively. The sum over N, V„, and
J„is a sum over all eigenfunctions of H, for which
the matrix elements do not vanish. Such sums
will throughout the paper be meant to include an
integration over the nuclear-motion continuum.

The matrix element (r)„„is nonzero only if the
electronic states A. and N are of opposite inversion
symmetry; e.g. , if A and 8 are the X'Z' HD elec-
tronic ground state, then N mustbe of 'Z'„or '0„
electronic symmetry. The only part of H,'which
has nonzero matrix elements between electronic
states of opposite inversion symmetry is

h= -(I/2p, )&„~& . (7)

Thus it is this nonadiabatic perturbation, which
mixes some ungerade symmetry into the predom-
inantly gerade electronic ground-state wave func-
tion, that gives rise to the dipole-transition mo-
ment of HD. The sign of the above perturbation
operator is reversed from that given by Blinder, "
because following Kolos and Wolniewicz, "we
choose R to be R= RD —R~. Here R& and RD are
the proton and deuteron position vectors taken
from the midpoint of the internuclear axis. In our
convention, a negative component of dipole mo-
ment along the internuclear axis, p„, corresponds
to H'D .

III. ANALYSIS OF THE PERPENDICULAR COMPONENT

The operator h of Eq. (7}has been given by Kolos
and Wolniewicz" in terms of molecular-axis fixed
coordinates x, y, and z (whose origin is at the
geometrical center of the nuclei) and the polar
angles 8 and Q of the molecular axis in a space-
fixed coordinate system. That part of h which has
nonzero matrix elements between 'Z~ and 'Il„
states is
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8 g, 8
h~= ——cot OJ

4gp " 98 sin8 sg

8 g 8+ &„—+, —+ cot 8L, . (8)" 88 sin8 BQ

Consider for simplicity the space-fixed Z com-
ponent of p, . The first step in its evaluation is to
write this component of r, Z', in terms of molecu-
lar-axis fixed coordinates and the angles 8 and

Z' = (1/v 2)(x+ fy)D,'~f'(Q, 8, P)

—(1/v 2)(~ —fy)D.',"(0,8, 0)

+zD,",'(Q, 8, P).

Only the first two terms contribute in Eq. (5) when

the states N are of 'll„symmetry. Here D"',{Q,
8, g) is a rotation matrix as defined by Rose,"and
the angle g refers to rotations about the internu-

clear axis. The integrations over rotational wave
functions

u+ y '"

can now be done in Eq. (5), using Rose's expres-
sion for the integral of the product of three rota-
tion matrices and Kolos and Wolniewicz 's" expres-
sions for the rotational wave-function matrix ele-
ments of the operator k, . In the sum over N, both
components of the doubly degenerate II state must
be included, either by taking ~ = + 1 and A = -1
states, or by forming the standard combinations
II 'which have def inite reflection symmetry with
respect to reflection in a plane containing the nu-
clei. If the latter is done, only the II' component
has nonzero h~ matrix elements with the electronic
ground state. In either approach one obtains

( p Q~, = — C (J,.1J~,1H,.O) {[J,.(J,. + 1)]' '[C (J,. 1J„11)+C (J,.1J„11)]
2'+ 1

+ [J~(J~+ 1)]'~'[C (J;1J~,01)+C(J,.1J~, 01)]P~,.).
Here f andi are used instead of A and 8 to refer to the initial and final states, and C(j,jj,;mm ) is a
Clebsch-Gordan coefficient, as defined by Rose. We have defined

g (X; V~ I (x —fy) IN; V~&(¹U~ I (V„'/8 ) IX; V,.)
E(v, ) —E(v„)

(12a)

and

(X; Vf I (V„/R) IN; V~& (N; V~ I (x+ fy) IX; V,.)
Vg , E(vf) E(VN)

(12b)

where the wave functions ~N; V„& are products of
electronic and vibrational parts.

The sums of Clebsch-Gordan coefficients give
selection rules on J. In particular, (i „&&,.

——0
if J, = J&, and is nonzero only for Jf ——J,. + 1 (R
branch) and J& = J, —1 (P bra. nch). Evaluating the
Clebsch-Gordan coefficients we have, for the R
branch,

1 {J,+ 1) - 1Vf,

4i,, (2J, +1)(2J&+1)

x[(o.„.—P~,.) —(J, + 1)(&~;+P„)]

When one takes Z„,,
~
(p&

~

', the factor

(J,.+ 1) —M',.
(2J,.+ 1)(2J~+ 1)

leads to the usual J~+ 1 R -branch rotational line-
strength factor, so we define

&D &g;=(1/4V, )[(o'„.—Pf )(J'+1)(~'+/3 )] . (1

A similar analysis for the P branch yields

&D.&~'; = (1/4".)[(&~; P~;)+ J—;(~~&+ P~;)1

This part of the problem has been reduced to the
evaluation of &f,. and P&, As Bunker has shown, "
approximate expressions for the quantities may be
derived as follows. If one assumes that [r, , H~o]
= 8/Br, , where r, =x, y, or z, then

&N; v„
i v,. ix; v,.&

= [Z(v,.) E(v, )]&N; V„Ir-, ~X; V,&. (16)

With this approximation the sums in Eq. (12) can
be evaluated by closure, and one has

~„.= -p„.= 2&v, I (&x
~

x'~ x&/R)
~
v,.&.

Thus to this level of approximation the explicitly
rotationally dependent terms in Eqs. (14) and (15)
vanish and (D„)~,'is given in terms .of the matrix
element of a, dipole-moment function D, (R) between
the initial and final vibrational wave functions,
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where

D,(R)= (I/p, )(Xlx'lX). (16)

The X 'Z~ state expectation value of x'= (x, +x,)'
has been very accurately calculated as a function
of R by Kolos and Wolniewicz. "

The explicitly J-dependent parts of E(ls. (14) and
(15) have also been approximated by Bunker" [his
)7(v', v}) as

( „+p„.)=-- ' — ' (v, lD,(R)lv,.&.4p,

Here E is an average-energy denominator, which
we define by

p (XI (x —iS) IN) (N I (x+iS) IX& 2

E,(R) -E„(R) E

(20)

so that the explicitly rotationally dependent term
contributes only a small amount to the total tran-
sition moment computed here (at most -0.026
x IO~ D, for the R3 line in the 1-0 band), and
note that (VzlD, (R) l V,) will itself depend some-
what on J,. and J& through the centrifugal term in
the vibrational potential.

IV. ANALYSIS OF THE PARALLEL COMPONENT

That part of h whichhasnonzeromatrixelements
between 'Z' and 'Z„' states is"

——+ (v'I,—- -vg') . (21)
2p, , Bz BR 2R

Here L is the electronic angular-momentum oper-
ator, in the present molecule-fixed electronic
coordinates. Again taking the space-fixed Z com-
ponent of p, and integrating over the rotational
wave functions, one has

The Ex(R) and E„(R)are electronic energies. Note
that it can be shown" that &«+P&,. is rigorously
zero for the 0-0 band. Again, the only calculation
required is to compute the vibrational matrix ele-
ments of the already accurately known Dx(R). It
will be shown in the next section that E =0.6 a.u. , where

2J +y z/2

C(4,12~, 00}(y~,.+ Ly&), (22)

(x;v, lz IN; v„)(N; v„l (8/sz)(8/8R) Ix; v, &

2)J,, )v „„E(V;)—E(V„)

(X; V, l(S/Bz)(8/SR) IN; V„)(N; V„)z IX; V,))
E(vy) E(V/v)—

1 g (X; Vylz I¹Vt)(&(N; Vtvl [(v„'t. vT, ')/R] IX; V,)
E(v() —E(vz)

(X; Vy l [(VP —V I ') /R] )N; V„)(N; V„la l X; V
))

E(vy) —E(V~)
(24)

Note that as for (p~&«, (g„&z, vanishes if J,= Jz.
Hence HD has no permanent dipole moment, no
first-order Stark effect, and no Q branch in its
vibration-rotation spectrum. " Evaluation of the
Clebsch-Gordan coefficents for J&=J, + I leads to

(4,+ 1) —M,'
(u' + 1)(2J + 1)

(and a similar expression for the P branch), and
hence to defining

(2s)

straightforward. Similar to the approximation of
E(I. (16), assume that

E(V() —E(v„)=E(V~) E(v~)=Ex(R) E„(R),

so that the sum over V„can be evaluated by clo-
sure. Further note that

(xl(v:I -vg )IN&=(Nl(v', z -vg')lx&

«Nl(8/8. ) lx&, (26)

so that
The problem now is to evaluate y«and K&, . We

choose to treat these two terms separately. Note
that neither (8/8z)(8/8R) nor VQ —Vg' is Her-
mitian; only their sum is. Analysis of fz, is rather with

(27)
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K(R) = K, (R)+ C, (R)

1 g &X I z I PPj &N I (v+ —(v'g') IX)
2@p N Ex(R) —EN(R)

&X Iz'IX&
jL(,,R

(28)

[E(v ) E(v,.)]&+;v„(s/sR)IX;v, .
&

&N-; V„(sV/sR)Ix; V &. (29)

Here t/" is the potential in the electronic part of
the Born-Oppenheimer Hamiltonian, so that

S V 1 ~R cos(e) cos(8) 1

As for &XIX'IX& ne~d~d for D (R) &XI"IX& is very
accurately known from the calculations of Kolos
and Wolniewicz. " The computation of K, (R) will be
described in the next section.

One possible approach to the evaluation of pf, ,
and the one we use, is to assume that in addition
to Eq. (16) one has IffRo, S/sR]= —SV/BR, so that

The polar coordinates are those of each of the two
electrons, in coordinate systems centered on each
of the nuclei a and b. The z axis of each coordin-
ate system points in the direction a to b. Follow-
ing the analysis given by blinder, "one can show
that

1 P 'X; V, IB IN;V„)(N; V„IB(BVIBR)IX;V) (X; V I (BBVIBBR)IN; V„)(N; V„IB IX;V ))2P, „v E(V,.) —E(V„) E(V~) —E(V„)

If one again assumes that the energy denominators
can be approximated by electronic energy differ-
ences, then one has

y„.= &V, Iy(R)
I
V,.&

with

1 p &Xlz IiV&&XIz(SV/SR)IX&
E (R) —E„(R)

The evaluation of y(R) will be described in the next
section.

V. COMPUTATIONAL PROCEDURE

It has been shown in the previous two sections
that the HD dipole-transition moment for the P
and R branches can be written as the usual rota-
tional line-strength factor times the vibrational
matrix element of a dipole-moment function:

&D&„.=&V, ID(R)I V,.&,

D(R) =D„(R)+D,(R).

The D,(R) is defined by Eq. (18), and D„(R)=y(R)
+ (,(R)+ K, (R) [Eqs. (28) and (33)]. 13y E~qs. (14),
(15), and (19) there is also a small additional term
in &D)z, which is explicitly rotationally dependent
and proportional to &V&ID,(R)I V, &. The ground-
state matrix elements needed for D,(R) and C, (R)
are accurately known. "

The difficult part of the calculation is the eval-
uation of y(R) and C, (R), each of which involves a
sum over a complete set of eigenfunctions of sym-
metry '2'„of the Born-Qppenheimer electronic
Hamiltonian &&,. These sums were evaluated by
approximating the complete set of H, eigenvectors
by a finite set of approximate eigenvectors, ob-

tained by matrix diagonalization of the representa-
tion of H, on a finite basis. The finite sets of
eigenvectors used were the same as were used by
us to evaluate the sum-over-states formula for
the dipole polarizability of H„"and contain up to
52 members. These sets of eigenvectors have the
property of being complete with respect to the
dipole oscillator strength. The results, along
with the previously known Dx(R) and d, (R), are
given in Table l. Our computed D(R) does not have
a maximum for the range of R values considered
here so

One indication that the sets of 'Z„' functions used
form an accurate approximation to the complete
set of exact Born-Oppenheimer electronic eigen-
functions is that the computed y(R) and f, (R) are
reasonably well converged with respect to increas-
ing the size of the finite basis sets from which the
approximate functions were obtained. This is il-
lustrated in Table II. The 8-state contribution is
about 50/o of the total for y(R) and about 25/o for
f, (R)

A second check on the completeness of the set
of 'Z'„ functions is provided by setting the energy
denominators in y(R) and K, (R) equal to unity.
Then the sums can be carried out exactly by clos-
ure. The resulting ground-state matrix element
can be evaluated and compared to the value ob-
tained by explicitly carrying out the summation.
The results of doing this are given in Tables III
and IV. It is seen that the set of 'Z'„ functions
used here forms a very good numerical approxi-
mation to a complete set for the present operators.

The accuracy to which closure is satisfied for
the matrix elements over the given wave function
basis also lends credence to the use of the Hell-
mann-Feynman theorem in the development of
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TABLE l. The HD dipole-moment function in units of 10 D.

Total D (R)

0.5ap
0.75
1.0
1.2
1.3
1.35
1.4
1.45
1.5
1.6
1.8
2.0
2.5
3.0

12.868
9.800
8.296
7.539
7.244
7.108
6,983
6.864
6.753 .

6.546
6.182
5.865
5.183
4.573

-26.426
—13.768
—8.747
—6.516
-5.692
-5.35b
-5.028
-4.665
-4.422
-3.839
—2.926
-2.126
—0.578
+0,420

—0.394
—0.738

. -1.052
—1.445
—1.624
—1.707
-1.794
-1.909
—1.984
-2.189
-2,571
-2.938
—3.633
—3.708

—13.438
—10.644
-9.423
—8.883
-8,690
-8,607
—8.532
-8.462
-8.397
—8.281
-8.077
-7.892
-7.347
—6.556

-40.258
-25.150
—19.222
—16.844
-16.006
—15.664
—15.354
—15.036
-14.803
—14.309
—13.574
—12.956
—11.558
—9.844

-27.390
—15.350
—10.926

—9.305
-8.762
—8.556
-8.371
-8.172
-8.050
—7.763
—7.392
-7.091
—6.375
-5.271

Eq."(31), since the expectation value for the
ground-state function is found to be quite stable
with respect to increasing the complexity of the
ground-state wave function. Further confidence in
the use of the Hellmann-Feynmann z(S V/SR) ma-
trix elements is given by the stability of the Z(R)
sum over wave-function representations of in-
creasing complexity.

As a further check on the accuracy of our inte-
gral evaluation programs, we repeated Blinder's
calculation" of y(R = 1.4a,); complete agreement
was obtained. Blinder's value of y(R = 1.4a, ) is
-5.68 && 10~ D, in fairly good agreement with the
value -5.03 x 10 ' obtained with the more elaborate
wave functions of the present work. It is of inter-

TABLE D. Convergence of the calculation of y(&) and

g g(B) .

est to note that Blinder's set of 'Z'„ functions give
fairly good values for the moments S(0),S(-1), and
S(-2) of the parallel component of the dipole oscil-
lator strength distribution, for R = 1.4a, . His wave
functions give (taking the average of length and
velocity formulation results) S(0)= 2.006, S(—1)
= 3.394, and S(-2)= 6.086. The correct values for
these quantities are S(0)= 2.000, S(-1)= 3.453, and
S(-2)= 6.380.

The vibrational matrix elements of the D(R) of
Table I were computed using vibrational wave
functions obtained from standard Numerov solution
of the radial Schrodinger equation, using the very
accurate adiabatic potential of Kolos and Wolnie-
wicz.""The results will be presented and dis-
cussed in the next section.

VI. RESULTS AND DISCUSSION

1,0ap
1.2

1.6
2.0
3.0

y (A) (10. D)

X(14-term);
~„(36-term)

X24- term);
Z„+ (52-term)

X(14-term);
Z+„(26-term)

—8.926
—6.757
—5.233
-3.925
—2.193
+0.272

-8.792
—6.578
-5.020
-3.860

-8.747
-6.516
-5.028
-3.839
-2.126
+0.420+0.400

4, (R) (10 4D)

X(14-term);
Z+„(26-term)

X(24-term);
Z„" (52-term)

1,0a p

1.2
1.4
1.6
2.0
3.0

-1.114
-1.464
-1.828
-2.208
—2.977
—3.734

-1.052
—1.445
—1.794
—2.189
—2.938
—3.708

Our (D)&, can be compared both to experiment
and to the recent elaborate perturbation-variation-
al calculations of Wolniewicz. " Wolniewicz also
treated the parallel and perpendicular components
separately. Table V compares his results and
ours for the perpendicular component. The agree-
ment is quite good. Note that Wolniewicz states
that the last figure in his result probably has little
meaning. Our part with explicit J dependence is
given separately. It is seen to be small, but does
somewhat improve the agreement, especially in
the 1-0 band. The E required for this term was
obtained from Eq. (20) by comparing o'~(R) (the
perpendicular component of the static dipole po-
larizability) to (x'). In this way E was estimated
to be about 0.60 a.u. We emphasize that for the
perpendicular component we have done really
nothing new, merely making use of the analysis
of Bunker" and the matrix elements of Kolos and
Wolniewicz. " A similar comparison is given in
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TABLE III. Completeness test for y{R). L=—(X]st{BY/Bft ~X) and M= —Q» (X(z)iV}
(IV)z[ aI /SR)X), both in a.u.

X(14-term) &(24-term) +(14-term);
~u (26-term)

sly

X(14-term) ~

Z„(36-term)
&(24-term);
&„(52-term)

1.0a ()

1.2
1.4
1.6
2.0

0.896
0.613
0.431
0.310
0.156

0.894
0.610
0.434
0.310
0.157

0.906
0.622
0.436
0.326
0.170

0.901
0.618
0.436
0.314

0.899
0.6 14
0.436
0.312
0.159

Table VI for the parallel component. The agree-
ment is again rather good, if one again notes that
the last figure in the Wolniewicz calculation is
said by him to have little meaning. For both the
parallel and perpendicular components, the agree-
ment does become worse in the higher vibrational
bands. The accuracy of Wolniewicz's perturba-
tion-variational calculation surely becomes worse
for higher V&, and both calculations suffer from
increased cancellation for higher &V.

The accuracy of the present calculation is diffi-
cult to assess, as errors come not only from the
incomplete set of states used for y(R) and f, (R),
but also from the approximations used to derive
the form of D(R). In Table VII we give the various
components of our (D„)&, for the RO lines, so one
can see their relative importance. Except for the
0-0 band, y&& to a large extent dominates.

In Table VIII our results for (D)z,. are compared
to experiment. The calculations of Wolniewicz
are also included in the comparison. It can be
seen that for the 0-0 band the two calculations
agree very well with each other, but are about
~2times larger than the experimental results of
Tref ler and Gush. ' Another experimental mea-
surement of the 0-0 band line. intensities would
thus be of great interest. For the other bands the
agreement is rather good, although in some in-
stances our results are somewhat outside the ex-
perimental error limits. Our results are in gen-
eral closer to the experimental values than are

those of Wolniewicz, but in the absence of any
quantitative error estimate in our calculation one
cannot say with any assurance that this is of any
real significance. Note, however, that our results
continue to agree well with experiment up through
the 5-0 band. Also note that the rotational depen-
dence in the 1-0 band is very similar in our and
Wolniewicz's calculations, but does not agree
very well with that of McKellar. In Table IX we
tabulate our dipole-transition matrix elements for
vibrational bands up through 6-0 and through the
P3 and A3 rotational lines.

The present results differ quantitatively from
our earlier unpublished calculation. The differ-
ence between the present results and those quoted
by McKellar et al.' as "Ford and Browne (I975)"is
due to the following: (I) Our earlier work had an
algebraic error in the analysis that led to D~(R);
this error results in a D~(R) smaller by v 2 from
the present one. (2) In our earlier preliminary
work, the VP —V„l' operator was treated as if
it were Hermitian; as a result we missed the C,(R)
term of the present calculation.

In summary, we have evaluated the HD dipole-
transition moment using a sum-over-states pro-
cedure similar to that used previously for the dy-
namic polarizability of H, ." The analysis we use
casts the problem in terms of a dipole-moment
function D(R), two large components of which can
be obtained from accurately known ground-state
expectation values. Our results agree well with

TABLE IV. Completeness test for t'i{&). I = (X)z {V'L -V L+)~X) and M=+» (X~z(IV)
(N){V+L —V L )[X), both in a.u.

X(14-term) X(24-term) X(14-term
Z„(26-term)

X(24-term)
Zu (52- term)

1.2a 0

1.4
1.45
1.6
2.5

0.459
0.572
0.600
0.686
1.030

0.565
0.451
0.546
0.604
0.684
1.026

0.454
0.559
0.590
0.670
1.016
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TABLE V. Comparison of theoretical values for (D~)~», in units of 10 D.

0-0 band

Wolniewicz
Present calculation

1st term in Eq. (14) 2nd term Total

RO
R1
R2
R3

1-0 band

Ro
Rl
R2
R3

2-0 band

3-0 band

Ro
Rl
R2
R3

4-0 band

RO
Rl
R2
R3

6.91
6.90
6.89
6.88

—0.398
—0.445
-0.492
—0.536

0.090
0,103
0.117
0.130

—0.029
-0.034
-0.039
-0.044

0.011
0.013
0.016
0.018

6.91
6.91
6.90
6.88

—0.395
-0.429
-0.462
-0.494

0.094
0.103
0.111
0.119

-0.033
-0.036
-0.039
-0.041

0.014
0.015
0.016
0.017

0,0
0.0
0.0
0.0

-0.005
—0.011
-0.019
-0.026

0.003
0.006
0.009
0.013

—0.001
—0.003
-0.005
-0.006

0.001
0.002
0.002
0.003

6.91
6.91
6.90
6.88

-0.400
-0.440
-0.481
-0.520

0.097
0.109
0.120
0.132

—0.034
-0.039
-0.044
-0.047

0.015
0.017
0.018
0.020

Present calculation

0-0 band

RO
Rl
R2
R3

-15.27
-15.28
-15.28
—15.29

-15,22
-15.21
-15.18
-15,14

TABLE VI. Comparison of theoretical values for
(D~~)~~, in units of 10 4 D.

Wolniewicz'

the recent theoretical calculations of Wolniewicz,
and with experiment for the 1-0 through 5-0 bands.
For the 0-0 band our results agree very well with
those of Wolniewicz, but are therefore about a
factor of v 2 larger than the experimental values
of Tref ler and Gush. We do not know the reason
for the discrepancy, but urge that additional ex-
perimental and theoretical checks be made.

1-0 band

Ro
Rl
R2
R3

2-0 band

Ro
Rl
R2
R3

3-0 band

0.996
1.073
1.148
1.221

—0.250
—0.269
-0.287
—0.304

0.960
1.034
1.104
1.170

—0.289
-0.308
-0.326
-0.342
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TABX E UD. Comparison of the various components of
(D~t)«, for the RO line and in units of 10 4 D.

RO
Rl
R2
R3

4-0 band

RO
Rl
R2
R3

0.129
0.136
0.142
O. 147

—0.066
—0.069
—0.070
—0.071

0.116
0.123
0.129
0.134

—O.O54
—0.057
-0.060
—0.062

Band

0-0
1-0
2-0
3-0
4-0

—4.83
0.984

-0.253
0.093

—0.045

-1.89
-0.282

0,031
—0.004

0.003

-8.50
O.258

-0.067
0.027

-0.012

Total

-15.22
0.960

-0.289
0.116

-0.054



2000 A. LEWIS FORD AND J. C. BROWN E

TABLE VDI. Comparison between experimental and theoretical dipole-transition moments,
in units of 10 4 D.

0-0 band

Experimental

Trefler and Gush Wolniewicz

Theoretical
Present

calculation

RO
R1
R2
R3

1-0 band

5.42
5.52 mean value is
6.18 5.85 + 0.17
6.41

Bejar and Gush 4 McKellar ~

8.31
8.30
8.28
8.26

8.36
8.38
8.39
8.41

P3
P2
P1
RO

R1
R2
R3

2-0 band

Pl
Ro
R1

3-0 band

RO
R1

0.42 +0.08
0.68+0.12

0.72 +0.14

McKellar 5

0.17+0.02
0.19+ 0.02
0.20 +0.02

McKellar ~

0.0795 +0.0035
0.0800 +0.005

0.330+ 0.04
0.405+ 0.03
0.450 + 0.03
0.515+ 0.02
0.550 + 0.03
0.615+0.03
0.655 + 0.04

0.401
0 445
0.485
0.560
0.594
0.623
0.650

0.176
0.192
0.199

0.082
0.084

0.598
0.628
0.656
0.685

0.160
0.166

0.100
0.102

4-0 band McKellar et al. 8 McKellar ~

P1
RO
R1
R2
R3

5-0 band

0.0397 +0.0026
0.0417 +0.0024
0.0425 +0.0021
0.0459+ 0.0026
0.0514 +0,0053

McKellar et al.

0.0207+ 0.0020
0.0214 +0.0014
0.0231+0.0021

0.0464+ 0.0033 0.038
0.039
0.040
0.042
0.042

0.023
0.023
0.024

0.056
0.056
0.055
0.053

TABLE IX. Dipole-transition moments of HD, in units of 10 D.

Ba RO

0-0
1-0
2-0
3-0
4-0
5-0
6-0

-8.282
+0.401
-0.156
+0.068
-0.033
+0.020
-0.012

-8.297
+0.445
-0.167
+0.072
-0.035
+0.021
-0.012

-8.306
+0.485
-0.176
+0.076
-0.038
+0.021
-0.013

-8.306
+0.560
-0.192
+0.082
-0.039
+0.023
-0.014

-8.297
+0.594
-O.lgg
+0.084
-0.040
+0.023
-0.014

-8.282
+0.623
-0.206
+0.085
-0.042
+0.024
-O.o14

-8.262
+0.650
-0,210
-0.087
-0.042
+0.024
—0.015
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