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Diffusion of fast electrons in the presence of an electric field*

H. A. Bethe' and J. H. Jacob
Avco Everett Research Laboratory, Inc. , Everett, Massachusetts 02149

(Received 8 February 1977)

The diffusion of high-energy electrons () 10 keV) in the presence of an electric field is discussed. Solutions
are obtained by extending the Rethe age theory to include effects of the applied electric field. Since we
restrict ourselves to the P, approximation, the results are only valid for diffuse beams, i.e., beams whose
distribution function can be adequately described by a current and number density. The solution predicts a
range enhancement in the presence of an accelerating electric fie}d. A simple exponential decay is obtained
when the electric field is large enough so that the electrons gain as much energy in the electric field as they
lose by inelastic collisions. The validity and accuracy of the solutions and predictions are discussed.

I. INTRODUCTION

In the last four years high-energy electron
beams have been increasingly used both in direct
laser excitation, as in molecular rare gases' and
the rare-gas monohalides, ' and as a source of
ionization, as the E-beam sustained and controlled
laser."Recently Monte Carlo calculations, in-
cluding effects of electric and magnetic fields,
have been published. ' However, these simulations
donotprovide physical insight or scaling laws. In
this paper we treat the electron scattering in the
gas by assuming that the fast electrons can be
described by a current and number density. Such
a simplification is not valid for a well-collimated
beam. However, the high-energy electrons have
to pass through a foil first. If the foil thickness
is greater than -', of the transport mean free path,
the fast electrons, after traversing the foil, are
fairly diffuse. " For a diffuse beam, in the ab-
sence of an electric field, we get the age theory. "
We will extend the age theory to include the effects
of the discharge electric field. '

The effect of the electric field is twofold: (i) it
sustains the electron energy; and (ii) it tends to
turn the electron trajectories in the direction of
the electric field. The importance of the latter
effect is easily estimated by the dimensionless
parameter y which is the energy gained per trans-
port mean free path divided by the electron energy.
The above effects will enhance the age and range
of the fast electrons in the direction of the electric
field. The modified diffusion theory is valid for
weak electric fields, i.e. , fields of such a magni-
tude that on the average the electron gains as much
or less energy from the electric field than it loses
by inelastic collisions. As we will see subse-
quently, most E-beam controlled lasers have
"weak" electric fields.

In Sec. II, the general age diffusion equations
are derived in the presence of an arbitrary elec-

tric field. These are obtained by assuming that
the electrons can be adequately described by a
number and current density. We then integrate
the Boltzmann equation over the angular velocity
variables only. The first two moments yield equa-
tions similar to the usual continuity and momentum
equations.

In Sec. III, we derive the exponential solution.
This solution is valid when the energy gained by
the electrons in the electric field is equal to the
energy lost via inelastic collisions. In this section
we also derive the mean angular distribution of the
electrons by integrating over all energies. The
angular distribution is affected by both the applied
electric field and the energy lost by inelastic
collisions. One can define a second dimensionless
parameter E that is the energy lost per transport
mean free path along the electron trajectory di-
vided by the electron energy. The angular dis-
tribution function is more strongly peaked when
either y or $ increases. The angular distribution
is important as it enables us to determine the
validity of the P, approximation.

In Sec. IV, the age theory in the presence of an
E-field is developed by a Fourier transform
method. The inverse transform is obtained by a
saddle-point integration. For the special case of
zero electric field, the Bethe age theory is re-
covered. When the electric field reaches a criti-
cal value, an exponential solution similar to that
derived in Sec. II is obtained. The validity and
accuracy of the theory are discussed. Finally, in
Sec. V an approximate half-space solution is de-
rived and discussed.

II. TRANSPORT EQUATION INCLUDING AN ELECTRIC
FIELD

The transport of fast electrons is adequately
described by the Boltzmann equation
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gling have been neglected.
Assuming that f is diffuse enough, we can write

f .= (1/47r) (N+ 3J u)

where

a —-eE p

where e is the charge on the electron.
Following Landau" the inelastic collision inte-

gral can be written explicitly as

Bf '

8S inel
{P(w+ b„, n.)f(w + b, ) P(w, a)f(w—)'Idb, ,

where P(w, A) is the probability that an electron
having an energy u will lose an energy h. The
upper limit ~ is valid because P(w, n) = 0 for
6 &so; as L~ 0 the lower limit is set to zero.
Typically n/w-10 ' so we can write

P (w + n, a)f(w + n) = P(w, n, )f(w )

(3)

8
+ b. —J|P(w, a)f(w)j+ ~ ~ ~ ~ (4)

~K

Substituting (4) into (3) we find

where X is the Bethe stopping power which is the
energy lost by an electron per unit path length
along its trajectory and is defined by"

where the distribution function f is a function of
the kinetic energy zv, velocity angular coordinates
g and 8, and position r. f is the number of elec-
trons in a six-dimensional volume around the point

p„, p„p„x, y, and z. p„, p„and p, are the
three-momentum coordinates while x, y, and z
are the spatial coordinates. The unit vector u is
in the direction of the velocity u; u is the magni-
tude of u. The first term on the right-hand side
(RHS) of (1) is just the collision integral for elastic
scattering. N„ is the neutral number density and
0 is the scattering cross section per unit solid
angle. We account for inelastic deflections' ap-
proximately by replacing Z' in the screened
Rutherford cross section cr by Z(Z+1) (see Ref.
10). Z is, of course, the atomic number. The
second term on the RHS of (1) describes the change
in f resulting from inelastic collisions along its
trajectory s. The force a results from an electric
field E:

dg deaf, (8)

If N and J are integrated over all energies we will
obtain the electron number density and current,
respectively.

Integrating (1) over all directions we obtain'

~J eK J
V ~ J — (yN)+ eE ' + —0 ~

BK PM
(10)

The result of multiplying (1) by u and integrating
over all directions is

VN B(XJ) eE BN J
3 8% 3 BK

The transport mean free path ~ is defined by"
+1 12'„dp, o(g)(l —p. )

-1

In the usual age theory it is assumed that B(gJ)/
Bw && J/A. . This assumption ls valid for Z + 30.
The region of validity can be extended to Z = 13
by the modified age theory. ' The third term in
Eq. (11) is of opposite sign to B(yJ)/Bw. So we

would expect tht.' age theory to improve as the
electric field is increased. This is because the
effective stopping power decreases in the presence
of an applied electric field. So neglecting B(XJ)/Bw
and (eE/3)BN/Bw, Eq. (11) reduces to

—,
'

VN + J/A. = 0. (12)

Equations (10) and (12) are the lowest-order dif-
fusion equations and are sometimes referred to as
the P, approximation. They are valid provided
that the electron distribution function f is diffuse
enough to be adequately represented by (7) and the
effective stopping power is sufficiently weak.
Such will be the case if the foil separating the
lasing mixture and the high vacuum chamber is
equal to or thicker than 2A/5. 6 7 For example, this
criterion is satisfied for 150-kV electrons im-
pinging on a 1-mil aluminum foil, or 300-keVelec-
trons incident on a 1-mil stainless foil.

y(w) = P(w, a)r dr .

In writing (6) we have assumed that the electrons
lose energy continuously and effects due to strag-

III. THE EXPONENTIAL SOLUTION

A simple solution to the electron diffusion in the
presence of an electric field can be obtained by
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integrating the Boltzmann equation over energy.
In one dimension, Eq. (1) becomes

2p, &——2& ~ + y(1 —p. ') =—(1 —p, ') —.af s e(w)f], sf 8, sf
Bx c/K ~p Bp, ~p

(13)

Parameters in this equation will be explained
presently. The parameter y, in the nonrelativistic
limit, is the ratio of the energy gained per trans-
port mean free path to the electron energy. For
relativistic electrons y is given by

-2 du w(1+ T/2) — [e(w) f]a

=2 QZU 1+7 E.

0

2(X, —eEp, )(1+T,)E (13)
w, (1+T,/2)

Multiplying by ~, again and dropping the subscript
0,

BF
2 8F

2p, A. —+ 2)E —2yp, E+ y(1 —p, ')—8+ Bp.

2eEA. eE& 1+T
pu u 1+T/2

(14)

where
(1 —p. ')—,(19)
8, BE

8LLt eP

e(w) =X —eEp, . (15)

In the above equation the collision term has been
approximated by the Fokker-Planck expansion. '
The transport mean free path may be evaluated
and is given by"

The electric field is assumed to be along the x
direction and T =w/m, c'. y is a familiar param-
eter, in plasma physics. e(w) is the net energy
lost by an electron per unit length along its tra-
jectory.

2XX —XX 1+T
Pu w 1+T/2 ' (19a)

A,—+ =0,
dx (p, )

where

The dimensionless parameter $, in the limit of
I -0, is the ratio of the energy lost per transport
mean free path to the electron energy.

Integrating (19) over all p, we find

2~%„Z(Z+1)e' 1 1
ln 1+

where o.'=Z/13V and the screening angle q is
given by

(16) j = pEdp, , (20a)

(20b)

=1 S112g"' '
2 p 0 855a„

Notice when g = 0 the current j is conserved.
Equation (20) has a simple exponential solution

where a, is the Bohr radius.
We now multiply (13) by w(1+ T/2)/Rand inte-,

grate over all energy; then we encounter such
terms as

oexp

Assuming that

x ( 1

(p) X
(21)

dw fu (1+T/2) =E(p, , x),

dw fw(1+ T/2)/&= E/&, ,

dw yfw (1+ /2T)/A. = Ey, /X,

(17)

(17a)

(1Vb)

(22)

Eq. (19) reduces to an ordinary differential equa-
tion for g(p, )»

2p, 4g
&u)

+2(a —2yuu+ y(1 —V')
Sf'

(1 —p') — (23)
Gfg

p, 4p.

We assume that f is spread only over a moderate
range of energy, an assumption which mill turn
out to be mell fulfilled for the case to which me
wish to apply the solution of the present section.
Then yo, X„and Xo in (1Va) and (17b) refer to some
average value ur, in the energy interval over which
f extends.

The integral of the second term in (13), after
multiplication by w(1+ T/2)/& is

In the limit of g = 0, if we are to have no singular-
ities at p, =+1, it is easy to show that

We see from Eq. (24) that the electron distribu-
tion function is peaked in the direction of the elec-
tric field. The degree of the peaking is given by
y. In the nonrelativistic limit y is the energy
gained per transport mean free path divided by
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the electron eriergy. Physically, this peaking oc-
curs because of a balance between the elastic col-
lisions tending to drive the distribution function
isotropic and focusing resulting from the electric
field. The exponential decay in x arises because
of backscatter that takes place continuously. The
inelastic collisions are described by E. As E in-
creases from 0, g will become more sharply
peaked in angle. This is because particles with

trajectories along the direction of the field will
lose energy more slowly than the rest. For a
nonzero $, Eq. (23) may easily be solved by ex-
panding g in Legendre polynomials.

g= QA, Pg(p).
2 —0

(25)

Substituting (25) into (23) results in an infinite set
of simultaneous equations. The nth equation is

yn — — +A„[n(n+1)+ 2&J
n+1 2$
2n+3

-A„, (n+ 1)y+ = 0. (26)
n 2$

P—

A solution can be obtained by truncating the series
given by (25) at f= L. An iterative procedure is
necessary as (p, ) is not known a Priori. For y
=1, $= 2 (which will turn out to be a limiting case).
The series converges rapidly. In fact, the final
value for (p, ) differs by only 5% from that obtained
by truncating at I.= 1. Using this "P, approxima-
tion" we can write

-I.O
I

-0.5
I I

0
I I

0.5 I.O

FIG. 1. The electron distribution function g(p} for the
special cases of y =1 and (=0 and 0.5.

I

which for our limiting case is 15%. For compari-
son in Fig. 1, we have also plotted the exponential
distribution function ($ = 0) given by (24). It should
be pointed out that if the elastic scattering were
isotropic and not Fokker-Planck, the lowest-
order P, approximation could no longer be valid
when @=1. This point is discussed further in
Appendix A.

Now if we define an electric field E, such that
on average the electron energy is constant, this
electric field will be given by

y+ [y'+ 12($)(f+ 1)]'~'
( )

(27)
or

ez„=q/(u), (28)

For a bounded solution as x-~, we must choose
(v)'

ln fact, using Eq. (26) and truncating the expan-
sion given by Eq. (25) at some larger n (n= 25),
we can obtain a solution to any desired accuracy
provided g is not singular. In Fig. 1 we show the
plot of g(p, ) for y= 1 and $ =-,'. We will show sub-
sequently that Z= 1 for a CO, laser mixture cor-
responds to an electric field of 6.5 kV/cm atm for
100-keg electrons. The applied electric field in
a CO, laser is typically' 4-6 kV/cm atm. The
value of $ for this mixture is about 0.46. So g(p, )
shown in Fig. 1 will be the most sharply peaked
distribution function considered. For y& 1 and

$ & 0.5 the P, approximation is no longer valid.
From a solution (25) and (26) we can estimate
the accuracy of the P, (lowest-order diffusion)
approximation (for our extreme case of y= 1, (= 2)
by evaluating the following ratio:

(u), = (/y, (29)

where y, is the value of y when E =E;. Combining

E

E

IO

—W=OI MeV

W =03 Mev

=W= I.O MeV

I 0
I

20
I

40
I

60
I

BO
I

IOO I20

Z (ATOIVIIC NUMBER )

FIG. 2. E&, the electric field required to balance the
energy lost by electrons due to inelastic collisions, as a
function of atomic number.
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(29) and (27), y, and (p, )~ can be evaluated simply

y. =[-.'&(I &)]"', &} ),=[-'&/(&. I)]"'.
For our limiting case of y=1, $= 2, (p, )~=0.47.
Then from (21) we find that the electron current
has a simple exponential decay

j =.j,exp[-(eE,x/w)] (3o)

Since the energy is constant the energy deposition
will also have this simple exponential decay.

Figure 2 shows a plot of E,/p as a function of
atomic number and for various electron energies.
It should be noted that E, in Fig. 2 is normalized
to the density p in the medium of interest. In the
case of gases, the density is proportional to the
molecular weight. Putting in numbers one finds
that in xenon, E, for 100-keV electrons is 66 kV/
cm atm as opposed to 6.5 kV/cm atm in a CO,
laser having a mixture He/N, /CO, in a volumetric
ratio 3/2/1. For 1-MeV electrons in Xe, E, drops
to 23 kV/cm atm. The dc breakdown electric field
in xenon is about 7 kV/cm atm, so it is clear that
in Xe discharges the effect of the electric field on
the fast electrons is negligible.

Finally, we come back to the assumption of
moderate energy spread of the electrons which we
made below Eq. (17). Multiplying Eq. (13) by w

or sv' and performing the same operations as in
Eq. (17) to (20), we can show (see Appendix B)
that the mean-square spread of the energy in-
creases exponentially; thus

eJ 9 eJ yJ———(&)+«—+ —= o
ex ~K ew

eN 9 eE eN J
(N)+ -- +—=o.

3 ex ~K 3 ~SU
(33)

If we neglect s(}tJ)/Bw and ', eE-(sN/aw), Eq. (33}
simplifies to

-x gv
3 ax' (34)

L'et

U =. (ikeEX/3+ }i)N .
So (35) becomes

(36)

This is the diffusion approximation. Neglecting
s(}tr)/Bw in (33) results in an overestimate of the
number of electrons at large distances from the
source. This term ensures that electrons that
traverse a distance x must lose an energy x}tj(p).
Thus in the absence of an electric field the age
theory will overestimate the penetration distance
of electrons into the medium. The term eE SN/Sw
is of opposite sign, and at large electric fields
(E =E,) it will become important. It is for this
reason that the critical electric field calculated
using (32) and (34) is always larger than the bal-
ancing field E~ as given by (28).

Equations (32) and (34) can be Fourier trans-
formed and combined to give

(ik+ y /&)(i k& /3) N+ —((ikheE/3+ g}N)= 0. (35)
6

(bw')(x) = (bw')(0)e"'e

where

S=B(p)/(1+ o'). , (30b)

dU & k(k - iy/A),
dw 3g. 1+ikeE&/3y

We set a = eE&/3 }t,, b = y/&, and di = (-X/3 }t}dw.
Then treating a and b as constants we get

(37)

Here R is the range of an electron in the absence
of an electric field, N( i) dke

y(l+ ika)
(38)

8 =w o/}(o (30c) where

and n measured the correlation between the aver-
age p, for a given energy, (p, (w)), and the energy
A separate calculation gave u = ~. Since 8 is rea-
sonably large, the energy spread will remain
moderate if it is small to begin with, i.e. , if
(bw')(0) «w,'. The latter condition is satisfied for
electrons coming from a source through a thin foil
into the gas.

Pf. AGE PIFFUSION IN THE PRESENCE OF AN ELECTRIC
FIELD

Going back to Eq. (13) and expanding the electron
distribution function f as

k(k- ib)
y =ikx- . t ~

1+ika (39)

Equation (38}may be evaluated by a saddle-point
integration. By letting dy/dk =0, the saddle point
is given by

Z f + Z p (40)

where z =ka, r=t/ aand c= 1 —ab. The appro-
priate saddle point is given by the negative root.
This is because the contour cannot be deformed to
go beyond k =ija which is an essential singularity.
Hence at the saddle point the value of k is given byf=(I/4n)(N+3Jp, ),

we obtain

(31)
(41)
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Thus the contour will always remain below the es-
sential singularity.

Substituting (40) into (39) we find that apart from
a normalization constant

E= l.o
~4o W =~O0

x exp(-(I/a) I( x+7')'~' —(cr)' ']'). (42)

Equation (42) is the full-space solution. In fact, the
result is valid for —v. &x& . For x&='7. no solution
exists because no electrons can reach this spatial
region. Electrons traveling towards negative x
are being retarded by the electric field and x=-7
is the point at which they will be reflected even if
there was no medium. In the limit of the product
ab-0, i.e. , the limit of zero electric field, we get
the usual age diffusion solution

~ M
I

.)0

'X = 24.0

X-" Xo

(43}

When ab =1, (37) simplifies to

dU X k———U=O.
dzv 3$ sa (43a)

Combining the solution of the above equation with
(36) and taking the inverse transform, we get a
simple exponential solution for ¹

m eE, 1+T
N =—exp — ' (x+7)

)ta w 1+T/2

where the critical electric field E, is given by

1/2 1+T 2 1/2

(44)

(45)

where $ is defined by (19a). For a CO, laser mix-
ture of interest $ =-,' and E, is 13/0 less than E,. So
for electric fields equal to the critical field, age
theory underestimates the penetration distance by
15/0 for CO, laser mixes. For larger-Z mixtures
t will become smaller and the difference between
E, and E, larger. Thus we can see that at large
distances from the source and E =0 the age theory

It is interesting to note that the limit oi Eq. (42)
as ab-1 is different from Eq. (44} by an algebraic
prefactor. The reason for this difference is that in
the limit of E -E, the saddle point approaches the
essential singularity located k=i/a. Hence the
saddle-paint solution is no longer valid. Going
back to differential Eq. (37), however, one finds
that in the limit of ab = 1, Eq. (43a), there is no
longer an essential singularity at k =i/a In fact.
N(k) has a simple pole at k =i/a which results in the
solution given by Eq. (44). Comparing (45) and
(28) it is easy to show that the ratio

.05—

0
0

X*O

20 40 60
~(~eV)

I

80 l00

FIG. 3. Variation of the saddle point k~ as a function
of electron energy for various values of x and an applied
electric field of 1 kV/c~.

overestimates. .the number of electrons, while for
electric field of magnitude E, it underestimates
the number of electrons. Hence the theory breaks
down for distances that are much greater than the
transport mean free path. However, the number
of electrons that penetrate the medium to this
range are exponentially smaQ.

For nonconstant a and 5 the saddle point has to be
evaluated numerically. Equation (39) may be. writ-
ten as

k-ib—k . ding
3g 1+ika (46}

=ikx- If (k) .
The saddle point is evaluated by equating

ay . ey(k)—=ix- = 0.
ek Bk

(48)

Figures 3, 4, and 5 show the evaluation of the sad-
dle point for electric fields of 1,3, and 5 kV/cm
and initial electron energies of 100 keg. The med-
ium was assumed to be a CO, laser mixture con-
taining He/N~/CO, in a volumetric ratio of 3/2/1 at
a total pressure of 760 torr. In the absence of an
electric field (a =b = 0}, the saddle point may be
evaluated from (41) to be

k, =ix/2f .
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E = 3.Q kV/cm

Wp = IOO keV

X=-2)p

l.2I

I.O

.05—
X=0

O.. .

o
I

20

X- Xp
IO—

I

I I

40 60

w (keV)

I

80 I 00

.B

.6

LL
IJJ
Z'.
Llj

k.V/cm)
FIG. 4. Same as Fig. 3 except the electric field is

3 kV/cm.

Note that as x increases, the saddle point approaches
the essential singularity asymptotically, similar to
the predictions of (41). Also, the saddle point var-
ies more slowly with x as the electric field is in-
creased, This behavior is also apparent from (41).
Finally, U may be evaluated numerically and is
given by

tr=[v/y "(k,)]'"exp[ik x —Q(k, )]. (49)

We are, of course, interested in the energy de-
posited which is given by

N Xdzo

dK
y+i k, eE/3

Equation (50) will reduce to the age diffusion solu-
tion for zero electric fields.

In Fig. 6 we see the results of the age theory.
For clarity the results when E =0 and E =E, (7.5
kV/cm) ai"e shown. For electric fields less than

E„ the energy deposition as predicted by (50) de-
creases more rapidly in space. The initial electron

'0 10 20
x (cm)

E=Ect7.5kV/cm)

E=0
30 40 50

FIG. 6. The predicted energy deposited for zero elec-
tric field and the critical field of 7.5 kV/cm. Also shown
is the exponential solution derived in Sec. III.

energy was taken to be 100 keV which is approxi-
mately the mean energy of a beam of 130-keV elec-
trons having traversed a 1-mil Al foil. The medi-
um was assumed to be a CO, laser mixture con-
taining He/N, /CO, in a volumetric mixture ratio of
3/2/1 at a total pressure of 760 torr. The mean
atomic number was computed to be 5.6 and mean
square of the atomic number 37.2. Also shown in
Fig. 6 is the exponential solution derived in Sec.
II [see Eq. (30)].

V. HALF-SPACE SOLUTION

We are actually interested in the half-space solu-
tion where the laser gas fills the space x &0. On
the side x&0, there is usually a foil. We may de-
scribe this foil by an albedo o. : If a certain current
J of electrons comes out of the gas at x&0, flow-
ing toward negative x, then the foil will reflect
back into the gas the current

.I 5—

E = 5.0 kV/cm
Wp= IOO keV

the net current flowing into the gas is then

(51)

(52)
X= 2XpM

.IO—

,X= Xp

X=0

The electron density is proportional to J,+J; more
accurate consideration of the angle averages gives

N=-, (Z, +4 );
hence

0
0, 20

I I

40 60
w(keV)

BO 100
2 1 —nJ = —— N—= —~ gN.
3 1+a (54)

FIG. 5. Same as Fig. 3 and 4 except the electric field
is 5 kV/cm. ,

[Note that N and J are defined to have the same
dimension, as in (31).]
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If we now use the diffusion approximation (34), we
get

N„(x, f) =N(x —0.4A. , t) —N(x+ 1.82K, t)

x exp f- (1.82&/a) (1 —~c)] . (60)
1 ~

dN/dx „~ 2
(55)

This is the boundary condition on the electron
density at the free surface. A more accurate
theory" gives a factor 0.71 instead of & on the
right-hand side of (55). After this correction if the
curvature of N is not too big, and g not too small,
(55) is equivalent to the condition"

N =0 at x =x, = —0.71K/g. (56)

= 0.4X, (57)

(The foil thickness should be subtracted. ) Third,
the condition (56) will be satisfied, for all r, if we
put a "mirror source" of opposite sign at

x2 2' xp (58)

where, of course, x, &0. If we now use Eq. (Cl),
we find that the correct solution for the half-space
is

N„(x, t) =N(x —x„t)-N(x —2x, +x, f)

&& expI [-2(x, —x,)/a](1 —~c)), (59)

where N(x, t) is given by (42). It can easily be ver-
ified, using (Cl), that

N„(x„t) = 0 for all t .
Inserting (57) and (56) with g =1,

(59a)

This is known as the extrapolated end-point condi-
, tion.

The simplest situation is ~ =0, which means that
the foil does not reflect any electrons; i.e. , it is a
perfect absorber. (We shall find below that this is
not far from the truth. } In this case, g = 1 in (55).
The electric field does not appreciably change
the situation because in the foil it has negligible
effect, compared with elastic and inelastic scat-
tering; 0. is not affected by the field E.

The extrapolated end point (56) can easily be put
into the solution (42) provided X/g is constant (we
have anyway assumed a and 5 in (37) to be con-
sants). " The solution, which is valid for y~ 0.3,
can then be given in terms of a mirror source. To
construct this, we use Appendix C which shows that
solution (42) holds for negative as well as positive
x. We note that (42) is still valid if the electron
source is at xo, rather than x = 0; the x in (42) must
be replaced by x —x, .

The "source" of electrons may be put about two-
fifths of a transport mean free path inside the laser
gas because this is about the distance at which the
direction of the electrons becomes random, "so

This is easy to evaluate.
The solution given by (60) is approximate because

as the electron energy decreases X, or better &/e,
decreases rapidly with ze. Then the extrapolated
end point (56) changes with the age t, and (59} is no
longer a solution. Fortunately, however, just the
rapid decrease' of ~ with w makes a numerical sol-
ution fairly easy. Relatively few electrons return
from the gas to the surface x =0, and those that do
have much reduced energy. If they are reflected by
the foil at all, this will entail a further large ener-
gy decrease. Hence the existence of a surface at
x =0, and especially the albedo of the foil, will only
affect the electrons of greatly reduced energy.

A possible solution procedure is again numerical:
(1) Calculate the electron distribution for an infinite
gaseous medium; (2) calculate the number and en-
ergy distribution of the electron flowing out through
x = 0, consider these as a negative source and cal-
culate its effect on the electron distribution; (3)
taking the outflowing electrons as a source, cal-
culate the electrons reflected by the foil, and con-
sider these as a positive source in the gas, etc.
This series should converge very rapidly.

A further help comes from the case without elec-
tric field. Then, if g is the same in the foil and in
the gas, and if the foil is thick enough, foil and gas
may be considered one medium, and there is no
surface effect. It is only necessary to measure x
in terms of the mean free path ~, which means a
change of scale at the surface x =0. If the foil has
a smaller atomic number than the gas, the result
will be between no surface and a perfectly absorb-
ing surface. With an electric field and Z, =Zf
the same will be the case: In the foil, the elec-
trons are not experiencing an electric field, while,
if the foil were replaced by gas for x&0, such a
field would exist and would tend to bring the elec-
trons back to x=0 and x&0. Therefore, fewer
electrons come from a full space of gas. We be-
lieve, however, that all these effects are small,
and have neglected them.

VI. CONCLUSION

The age theory for electron scattering has been
extended to include effects of an applied electric
field. When the electric field is less than a critical
field E, a solution which is valid for moderate dis-
tances is obtained by a saddle-point integration.
For an electric field equal to E, an exponential de-
pendence on distance is obtained. A simple expon-
ential solution is obtained when the energy gained
in the electric field E, is equal to the energy lost
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by inelastic collisions. However, care should be
taken to insure that the angular distribution is dif-
fuse enough to allow the use of the P, approxima-
tion. Ke have verified in Sec. III that for our limit-
ing case (y= 1; $ =-,') the error in neglecting the
higher-order polynomials is about 15%.

APPENDIX A: ISOTROPIC VS FOKKER-PLANCK

SCATTERING

One reason that P, approximation is valid for
the age theory is that small-angle Coulomb scat-
tering [approximated in (13) by the Fokker-Planck
expansion] tends to smear the electron distribu-
tion. For isotropic scattering Eq. (13) may be re-
written as

fl

K
I—
CQ

9 8 8
2pI) -2I). [e(s))f]+y(l- (((2}

Bx 8N Bp,
-1.0 - 0.5 0.5 I.O

=-2f+ f(v') dV' (Al)
FIG. 7. The electron distribution function g{p,), as-

suming isotropic scattering for the special cases of
y=1 and ( =0 and 0.5.

%e can then integrate over energy to obtain an
equation in F [see Eq. (17)]. Assuming that F has
the form given by (22), we can write

2 dg+24- 2y Vg+ y(I —I ')
d jL

g(I ') de'. (A2)

Note when $ =0, g doesn't have the simple exponen-
tial solution given by (24). Using the Legendre
polynomial expansion as given by (25), (A2) can be
represented by infinite set of simultaneous equa-
tions. The nth equation is

A„, yn- —+A„[2(1-&o „)+2)]
n+1 2&

2' +3 p

n 2$-y)„, ) ( ) +(g+()y)=0, (A3)

dy' ]
PA. + $F = — FdI). F-

dx 2
(A4)

the error in using the P, approximation can be es-
timated. When y =- 0 and $ = 0.5, which corresponds
to Z--6, the error in using the P, approximation is
30%and decreases to 15%for $ =0.25 (i.e., Z= 12).

It is interesting to note that for the special case
of y=0 the distribution function g(I() can be solved
exactly and in closed form. " Integrating (A1) over
energies for this special case, we find

%'here ~p = 1 when n = 0, otherwise &p „=0.
The P, approximation for isotropic scattering

gives the identical result as the Fokker-Planck.
However, going to higher-order approximations
makes it clear that the solution converges slowly
and the P, approximation is inadequate for the lim-
iting case of y = 1, $ = ~ . In fact, even when $ =0
and y=l the P, approximation is a poor represen-
tation. Figure I shows a plot of g(p) for these
cases using 25 polynomials. The oscillations in

g( p} are indicative of the fact that even 25 poly-
nomials are not adequate to represent g(I(, ), In Fig.
8 we see the plots for g(I)) when y =-, and $ =-, and
0. For isotropic scattering the P, approximation
is valid only for y=-, , )=0. Figure 9 shows g(p)
when y=0 (i.e. , E=O), and )=0.5 and 0.25. By
evaluating the ratio

(0I-
Z.'

IX

K

IO
K

-!.0 - 0.5

(=0.5

I I

0
I

0.5

FIG. 8. Same as Fig. 7 except y=0.5.

i.o
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y=0
~ NORMAL MODE SOLUTION

Set

g = ggwo/w

and introduce

(B3)

F„(g, x) = J u ""fdw; (B4)

K
K

K

Ql
kl

I

-0.5
I

0
l

0.5 t.o

then

The third term of (Bl) can be written as

2 (I —~')«sF, /s kk

The term on the right of (B1) is not important for
the following, but it may be brought into the same
form by setting

FIG. 9. Same as Figs. 7 and 8 except y=0, i.e., zero
electric field. The points correspond to the eigenvalue
solution [Eq. (A6)].

X = A.,w'/w2O.

The entire Ekl. (Bl) then becomes

8y',' +X,w,F,—eF. p,F, +-,'eE(1- kk')
8x 8 p.

(BV)

Making the substitutions

e = 1/(1+ g) and ki =x/cX

(A4) may be rewritten as

dF c
p. +E= — Ed p, .

2
(A5)

1 Ko 8 8F(1- u') ' . (B8)
2 A.o 8 p. 8$,

We now integrate over p,. Then the right-hand
side vanishes. We introduce the notations

g =~/(v- u) (A6)

Equation (A5) is the one-speed neutron transport
equation. c is the average number of secondary
neutrons produced per collision. The solution for
g ls

dp, F„=p„.

(B9)

The fourth term in (B8) after partial integration
gives

where q is a constant and v is the. eigenvalue satis--
fying the equation

eE pF ydp=eEj, (B10)

vetanh '(1/v) =1. (AV)

For )=0.5, v=1.165 and for )=0.25, v=1.41.
Solutions given by (A6) are shown in Fig. 9 for
comparison to the P» result. sj,/ex+ a~,p, = 0. (B11)

which exactly cancels the integral of the third
term, as it should. Thus the electric field drops
out, .and we get

APPENDIX B: ENERGY SPREAD OF ELECTRONS

Starting from Eq. (13) in Sec. III, and assuming
T =& 1, we obtain, after multiplication by w/2X and
integrating over so:

8 8 1- pP y8f
wf dw — w - ( ef) dw + —w dw

8x 8' 2 A. 8p.

(1- kk') —dw. (Bl)
1 s, &f

8p, 8p, A.

The second term can be integrated by parts, giving

This is exactly analogous to Ekl. (20) in Sec. III,
and gives the solution (21) if the energy spread is
small.

Now we repeat the same procedure, multiplying
Eq. (B1) by w" under the integral signs. (B2) is
now replaced by

(n+1) I afw" du

4Ã = g cd- eEp dip. (B2) Accordingly, (B8) is replaced by
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(jF
+Xowo(n+1)F„2- (n+1)eEuF„

~F„, & ge 8, &F„+-'«(I- u') " ' =— ' (I- ~')
8 jL 2 A. 8p. p.

(B13)

Integrating over p, , the right-hand side again van-
ishes. The last term on the left cancels one unit
of the third term, leaving n units. Using the nota-
tion (B9) we get

So the (5w'& will increase exponentially; an in-
crease by a factor e' will take place in a distance

(w, /x, )&v& =ft&~&, (B25)

where A is the range of the electron, disregarding
the electric field. In the distance (B25), (&5w'&)' '
increases by a factor e.

Unfortunately, assumption (B21) is unjustified.
For larger n, faster electrons are emphasized,
and for these &g will be larger. This correlation
can be accounted for by assuming

aj.
~X

" +(s+1)X,w,p„,—neEj„, =0.

Consider first the average energy,

(B14)

(B15)

and

p„=j„/p„=p+n5.p.
5p, = p,,n&5w'&/w', i

(B26)

(B27)

Using (B14) with n = 1 together with (Bl1), we get then the term in the square brackets in (B21}becomes

&5" 2p —H/'p-1 -2
a&

(B16) 2
" = &5w'&

2e
l8

(B28)

2~-i —~o~-2 Xoe y =xowo (BIV)

which is the same as Eq. (28) in Sec. III.
Now the energy spread,

This then is the exact condition for the balancing
field:

[8/(I + o.) ]& p& . (B29)

The rate of increase of &5w'& will now be faster
than (B24). The root mean square of 5w will in-
crease by a factor e in the distance

&w'& - &w&' =(j,i.-jl)/j '. (B18)
APPENDIX C: AGE THEORY FOR NEGATIVE x

I.et us first consider

i./p. =(u&

independent of n, then (B19) becomes

(B20)

(X,w, j',/&u&)[4&w&&w '& -3-&w'&(u '&]. (B21)

Now let wo=&w& and w =w, +5w. Then, by defini-
tion, &5w& = 0, and

n(n-1) &5w2&1+
Ão

(B22)

On substituting (B22) into (B21) we obtain zero.
Hence the numerator in (B18) does not change, up
to order &5w'&. Concerning the denominator, we
have

1 djo Xo op2 X o

j, dx j, w&p&

Hence

(B23)

(&w'& —&u'&) = "'
&6w'& . (B24)

d„(ig.-i,) =-X,w,(i.p, +3j,p, -4j,p, ). (B19)

The termswith eE cancel between j,j,' and 2j,j,', and
the electric field has no effect. Now assume that

The solution (38), (39) is valid for any x and t,
whether x is positive or negative. However, the
saddle-point integration is only valid if t is large
enough. The saddle- point result, Eq. (42}, pre-
sents some difficulty if (xTHowe-ver (42} may
be certainly used for small negative x.

We compare the results for positive and negative
x. Assuming ~x~«v', we may expand (42) in
powers of x and find

N(x, t) =
X

T 2 X X2
xexp — —(1- v c}'+—(1- v c) +

a a 4t

The characteristic diffusion result (43) is part of
this answer, and (C1) reduces to (43) for c= 1. It
is interesting that for given ~x~, (Cl) is smaller
for positive than for negative x. This result seems
paradoxical: the electrons go preferentially
against rather than with the electric field. Physi-
cally, this occurs because the electric field accel-
erates the electrons in the direction of x& 0.
Hence there exists a positive current at x=0.
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