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The experimental data for vibrational excitation of CO by electrons with incident energy of 1.8eV are

analyzed using a recent theory. Though the theoretical expression for resonant angular distributions contains

only one parameter, it fits the data very well allowing accurate determination of the parameter's value.

Using this value, all rotational cross sections within the vibrational band are calculated.

A new theory for angular distributions of low-
energy electrons resonantly scattered by diatomic
molecules has recently been developed' (referred
to here as I). In application to homonuclear mole-
cules, the expressions are equivalent to those of
O' Malley and Taylor (OT)' and those of Read. '
However, its application to heteronuclear mole-
cules produces expressions different from the
others. In particular our expressions contain only
the mixing parameter, while those of Read con-
tain two parameters, and apparently so do those
of OT in the same approximation. In this work,
we apply this theory to CO where good data are
available from the work of Ehrhardt, Langhans,
Linder, and Taylor~ (ELLT).

These data show that for vibrationally elastic
scattering, the angular distributions vary greatly
depending on the incident energy in the range
1.0-3.5 eV. On the other hand, for vibrational ex-
citation to the final state v = 1 up to v =6, the angu-
lar distributions are remarkably constant for
1.5-3.0 eV. These observations strongly indicate
that vibrational excitation in CO is dominated by
a resonance with negligible potential or background
scattering. Previous analyses' ' show that the
resonance is of 'll symmetry. Hence we have A

=1, and the lowest two partial waves are Lp 1 and
l= 2. Substituting these values into the previously
obtained expression for the angular distributions,
I(23), we obtain

(o-c',)=4so, (1) ( Z [(1+cos22)'(ll, j, (11)0e(j„(11 )'+((01—eos2I))*(21,j, 0 (12) 0(j„2 222)0]

j~ = even

+ L 2sio'2I)(21, j,0)(()'()(j,; 1)220))
jg. = odd

In Eq. (1), v (1) may be regarded as a normali-
zation constant, and tanP is the mixing parameter
whose value may be determined from an a P~~o~i

calculation or from fitting to the experimental

data. The quantities (. .„..
~
. . ) are Clebsch-

Gordan coefficients and e(j„I, I,' ll'8) are standard
angular functions. Utilizing the Tables in I, we
find'

&&
(&- vo) =4&&„„,(1) [k(1+7cos'8)(1 +cos2p)' +, (3 —9cos'8+14cos'8) (1 —cos2p)'+ (3+5cos'8)sin'2p].

The first term gives the pure Pm contribution, and
is identical to the theoretical curve in ELLT where
only this lowest partial wave is considered. The
second term gives the pure dn contribution, and is

identical to the ELLT theoretical curve for the 'II~
resonance in N, . The last term has both P~ and
dm waves, i.e., P in, d out amplitude squared and
vice versa, but is not an interference term, as is
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evident from the fact that it contains only even
powers of cos 8. The results of this work differ
from those of Read in the absence of a second
parameter which determines the asymmetry about
90'. For comparison, Head's expression for a
resonance is

do
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He obtained best fit with experiment with p = 1.0
and cos~y=0 (and with p=1.0 and cos'y=0. 25 a
close second-best fit).

In Fig. 1, we show the experimental data of ELLT
for CO v = 0-1 vibrational excitation at an incident
energy of 1.8 eV. With all theoretical curves
normalized to the experiment at 90; the param-
eter-free expression of OT (dashed line) clearly
does not fit well. ' The best fit of Read, Eq. (3)
with p = 1.0 and cos~y = 0 is shown as the dash-dot
line. It can also be obtained from Eq. (2) with
cos2P = 0.25. The solid line shows the result for Eq.

FIG. l. Angular distributions for vibrational excita-
tion of QO'by electrons at 1.8 ev. A11 curves are nor-
malized to 1 at 90'.

(2)with cos2P =0.31, and clearly both curves fit the
experimental data very well. Sincethe small-angle
data are less accurate and more prone to contain
nonresonant contributions, we consider ihe curve
with cos2P =0.25 a better fit.

As discussed in I, we may now proceed to evalu-
ate the individual rotational-vibrational cross
sections from I(21). We find

—(jv-j v)=ssv (1)( 2 (j0j 0(j0) J(1+vvs28)(11 j (1 20&(j)„1 ()))8
jf = even

+ (1-cos2pp(21, j,0 (21 pe( j„.22228)

+ 2(1 +cos2P)(1- cos2P)(11,j,0
~
11)(21,j,0

I 21)e (j„12128)]

+ g (j00, j20 ~j0)2[2sin 2p(21, j20 I 11)e(j28 11228)
odd

-ssis 28(li,j,0(21)(21j,0(11)0(j,;(2218)J). (4)

Similar to Eq. (2), the first term comes from p wave, the second d wave and the fourth the same mMure

(not interference) of p and d waves. The third and fifth terms are new and represent true interference ef-
fects, with the third showing pure p interfering with pure d amplitudes while the fifth showing p in, d out

interfering with d in, p out amplitudes (and vice versa). As shown in I, these two terms will cancel out

only when one sums over rotational states. Utilizing the tables in I, we have the following: For b j= 0,

—(jv -jvo) = 4' (1)((j0,00/ j0)2[(1+cos2p)'cos28 + (1-cos2p)~(0. 25 —1.5cos28+2. 25 cos~g)
dQ

+ 2(1 + cos2P)(1 —cos2P)(-0.5cos8+ 1.5cos'8)]

+(j08 201j0)~[(1+cos2pp(0.15+0.05cos'8)

+ (1- cos2P P 0.071(1.429 —3.214cos~g+ 3.214cos48)

+ 2(1 +cos2 p)(1- cos 2p)(-0.085)(0.423cosg + 1.266cossg)]

+(jo, 40(j 0)'(1- cos2p)'x0. 127(1.446+Q. 965cos g+Q 16lcos'8)) . (5)
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For Aj= 1,

—(j+ 1v -jv, ) = 4'„„(1)((j 0, 10
~ ja 10)' 2s in'2 p[ 0.3(0.5 + 1.5cos28) + 0.387(1.936c os 8 —3.486c de'8)]

+ (j0, 30(j+ 10)2 2sin22P[0. 086(2+ cos'8) +0.111(-1.936cos8 -0.367cos 8)]j.

+ 1.27cos'8], (7)

—(1-0)=4'„„(1)1.76[0.15+0.75cos8

+0.45 cos'8 —1.35cos'8],

(6)

—(2 -0}=4'„„(1)[0.29 —0.07cos8 —0.05cos'8"p
—0.20cos'8 +0.18cos'8], (9)

For bj=2 and 4, we use Eq. (5) replacing the
Clebsch-Gordan coefficient in each term by the ap-
propriate one, and similarly for hj=3, we use Eq.
(6) with the same replacement. Cross sections
with hj &4 are zero in our model, and expected
to be negligibly small in practice.

Specifically we consider the case j =0, and taking
cos2P =0.25, we find

—(0-0) = 4'„„(1)[0.14 —0.94cos8dG

+ 0.72cos2g + 2.81cos'g

Equations (7)-(11)are shown in Fig. 2, together
with their sum which is also given by Eq. (2). As
noted in I, the elastic cross section given by Eq.
(7) shows a large forward peak while the inelastic
one given by Eq. (6) shows a backward peak. The
sum is symmetric about 90. Results for other
values of j are similar, with the elastic cross sec-
tions a little larger, and the inelastic ones smaller.

To illustrate the dependence on rotational quan-
tum numbers, we show the integrated cross sec-
tions in Table I. These cross sections may be
normalized to the experimental data of ELLT for
p =0-1 at 1.8 eV by multiplying by 0.9X10 ' cm .
%e see that the rotationally elastic cross sections
(given by the diagonal) are indeed larger than the
one for jp= 0 Similarly the inelastic ones are
smaller (though the superelastic ones are larger)
than for the case j, =0. The last column provides
the classical limit cross sections for large values
of j. Note that the first row provides a numerical
check of I(28} or alternatively I(29).

dg
d
—(3 -0) = 4&o„„,(1)1.76[0.17 —0.22cos 8

Ratio.—. =1+2ctn'2P=1. 13.(6jeven)
6j odd

(12)

+ 0.09cos'8 —0.04cos'8],

—(4- 0) = 4vc„„(1)[0.10+0.07cos'8
do'

0

+ 0.01cos'8] .

Other rows may be used for the same purpose with
trivial extension of the table.

Returning to Eq. (2), we now see that for homo-
nuclear diatomic molecules, ) cos2P ) =1, hence
sin2p =0. Consequently b j= odd transitions repre-
sented by the last term must vanish. In particular,
for a Ilg resonance as in N„cos2p =-1, while for
a Iiu resonance cos2P =+1. However, for a hetero-
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FIQ. 2. Angular distri-
butions for rotational-vib-
rational excitation of CO
by electrons at 1.8 eV. The
initial rotational state is
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TABLE I. Integrated rotational cross sections in CO
computed with cos2P=0.25. These values have the same
normalization as the expression in the curly bracket of
Eq. (5). Actual cross sections for &=1 at incident ener-
gy of 1.8 eV are found by multiplying by 0.9 ~10 6 cm .
jo and j are the initial and final rotational states, and the
last column is valid only for large values of j() and j.

0.30
0.54
0.72
0.31
0.10

0.63 O. f 9 0.38 0.13 0.70
0.19 0,71 0.24 0.22 0.35
0.06 0.32 0.44 0.19 0.13
0.05 0.10 0.71 0.41 0.12
001 007 032 070 004

nuclear molecule,
~
cos2P

~
must be different from

one, with a positive value favoring P character and
a negative one d. In fact, the value of 0.25 for the
CO resonance implies the P/d amplitudes are in
the ratio 5 to 3. Therefore the parameter-free
expression used by ELLT for the CO resonance is
equivalent to the misleading assumption of III
symmetry and would forbid the strong ~A j~ =1 ro-
tational transitions. (See Table 1.) More gener-
ally, we expect near-homonuclear (e.g. , isotope-
substituted homonuclear) molecules or covalent

resonances to have cos'P nearly one, hence having
very small cross sections for ~j = odd transitions.
On the contrary, highly polar molecules or ionic
resonances should have a value for cos'2P of nearly
zero with 4j = odd cross sections equal to those
b j =even. Thus cos'2P may be regarded as a co-
efficient of covalency useful for classifying reson-
ances of the same (cylindrical) symmetry.

Taking an experimental viewpoint, the theory
developed here appears capable of working as a
powerful microscope. From an inherently low

resolution measurement (100 meV, characteristic
of vibrational levels), one can reconstruct the
whole rotational spectrum with its requisite high
resolution of about 1 meV. Specifically, detailed
cross-sectional information for which the rota-
tional states are fully resolved is of great import-
ance in the areas of interstellar molecules, and
maser and laser spectroscopy.

Unfortunately, the prospect for a direct verifica-
tion of this aspect of the present theory for CO
seems remote at present, since the rotational
constant is only 0.24 meV. However, in other
molecules such as HF where the rotational con-
stant is 2.6 meV, a direct measurement of some
rotational-vibrational cross sections seems fea-
sible. Application of the present theory to a '5'
resonance as in HF is discussed elsewhere. '
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