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Theory of angular distributions of electrons resonantly scattered by molecules.
I. Vibrational and rotational excitation of diatomic molecules
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Resonant angular distributions for low-energy electrons scattered by diatomic molecules are derived. For
homonuclear molecules, our expression for vibrational excitation is equivalent to those of others. However,
we are able to clarify the role of parity favoredness. For heteronuclear molecules, our expressions are new.
In particular, they contain only one parameter and are necessarily symmetric about 90'. Furthermore, the
individual rotational cross sections within the vibrational band can be determined in terms of the same
parameter. Asymmetry about 90 is predicted for these. Finally, a theorem relating these integrated
rotational cross sections is derived. Results for the angular distributions are given in tabular form for easy
usage.

I. INTRODUCTION

The general theory of angular distributions can
be found in standard textbooks which deal with an-
gular momentum. ' Specific application to resonant
scattering of electrons by molecules is found in the
recent works of O' Malley and Taylor' and Read. '
These are similar in that the molecular axis is
assumed to be fixed during the lifetime of the re-
sonance. A classical method has been proposed4 to
correct for the rotation of the axis, but the need
for the correction appears to be in doubt. ' Other
questions raised in their approach are whether the
total angular momentum is conserved, and whether
parity is conserved.

The present work examines the resonant angular
distributions from the viewpoint of the frame-
transformation theory. ' In this approach, the wave
functions of the system (electron and target) are
explicitly eigenfunctions of both total angular mo-
mentum and parity. Thereby, we can ensure that
angular momentum and parity are always pre-
served. Further, the question of correction for
the rotation of axis never arises, as the axis is not
assumed to be fixed in our approach.

We will show that the angular distributions are
given by a sum of terms characterized by the angu-
lar momentum transfer j&. Each term is the pro-
duct of certain Clebsch-Gordan (CG) coefficients
containing information on the resonance and a
standard angular function e which depends only on

j& and the participating partial waves. The same
angular functions appear in the theories of photo-
ionization' or nuclear reaction' angular distribu-
tions. The role of these functions in the frame-
transformation theory is reviewed in Sec. II. As
in the previous work, ' we restrict the scope of this
work to diatomic molecules in the Z' state, and
ignore the electron spin.

The application of this theory to the resonant vi-
brational excitation of homonuclear molecules is
presented in Sec. III. Only a single partial wave l
needs to be considered at low energies. The re-
quisite CG coefficients and angular functions are
tabulated for E +3, and some examples are given
to illustrate the utility of the Tables. Thus, one of
the objectives of the present work is to provide ex-
perimentalists with convenient theoretical angular
distributions. Although our derivation and presen-
tation are different from others, "the results are
identical. However, we are able to show that, be-
cause our wave functions are eigenfunctions of par-
ity and tota1 angular momentum, only parity favor-
ed transitions' contribute. On the other hand, the
results of others contain two terms. Each has par-
ity-unfavored as well as parity-favored components.
Upon combining with a suitably' chosen coefficient
(type I or H), the unfavored components cancel out.

The more general case of a heteronuclear dia-
tomic molecule is considered in Sec. IV. Here,
even at very low energies, at least two partial
waves must be included. In particular, we show
that the absence of a second partial wave leads to
vanishing cross sections for the strong 4j= + 1 ro-
tational transitions. We extend the previous table
to give angular distributions where two different
partial waves contribute. However, these tables
are no longer sufficient to give unique angular dis-
tributions, since the expression now contains a
parameter —the mixing parameter in the standard
two-channel scattering theory. Nevertheless, the
present theory is simpler than that of Read' which
contains two parameters. We show that when the
parameter takes on limiting values, our expression
for the angular distributions reduces to the case of
the homonuclear molecule.

In general, the parameter may be found by fitting
to the experimental vibrational-differential cross
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section. Then each vibrational-rotational crass
section is uniquely determined. Though the vibra-
tional angular distributions are shown to be sym-
metric about 90, the individual rotational compon-
ents are not. In particular, we will show that those
with 4j =0 will have a forward peak, and those with
4j &0 a backward peak. Finally, we derive a rela-
tionship between the integrated rotational cross
sections.

Conclusions are presented in Sec. V. Indications
for some future directions are also given.

while the laboratory-frame wave function which
describes the asymptotic region is given by

e ",„"(r,R) =F(„'„")(r))(„(Z)~(,'„')(r, 8),
where

II. REVIE% OF THE FRAME TRANSFORMATION THEORY

The theory of resonant angular distributions of
electrons scattered by molecules can be most con-
veniently derived from the frame-transformation
formulation of Chang and Fano (CF).' This ap-
proach differs from others in that the wave func-
tions are always eigenfunctions of total angular
momentum 8 and parity. In particular, the body-
frame wave function which describes the (reson-
ating) electron-molecule complex is given by

X(tA)))g @ II(z)))(r ft)x(&Av)(r" ft)

where

@",„"(r,II) =Q(fr)],, jM mjZM)

x I', (8, q)y,„(8 p)

For these equations, the F's are the ordinary
spherical harmonics, (8, (]()) are the angles of the
molecular axis, while (8, (]()) are electronic angles
with primed terms indicating body frame coordin-
ates and unprimed terms indicating laboratory
frame coordinates. D~„are symmetric top func-
tions and (..., ...

~
...) are CG coefficients.

The differential cross section for the transition
(jv-j,v, ) without resolving internal states oi' the
electron-molecule complex is given by

(5)

where the 8 " matrix may be obtained from the asymptotic form of F„.„" (r). The integration over 8 is
easily carried out, and as explained previously E(I. (5) may be written as a single sum in the angular mo-
mentum transfer j„

(jv -j v) =(((]))2 (2jo+1) g (2I +1)~~2(2()'+1)~)'2[fjvlS(jr)lloj v 1[I'j votP(j, )IIj'v]e(j~, lolo, fl', 8).
Q o o oo

sot6

E(luation (6) emphasizes the fact that the angular distribution for any process is given by the superposition
of the standard angular functions

m+ I '" 2i'+I ' ' 4 fo(
e(j„I I', )I', 8) =(-I)'~(2j, +1) ) g o 0 (I0 I Ol&0)(Io0 V)lk0)P (cos8),r l l'j,

weighted by elements of the scattering matrix

l j J'
[Ij v]S(j)((jv] g'( ,1)", ,"~(=2J+1)-()jv]Sled&](,),~)

j, l() j~

Applying a.transformation to the body frame, one obtains

()'v]8(~!I1(( ' u) =-1' 'QUO~"~ f d))& ( )
ale i)a)m(W1C(a)1 ()))((1

where U is the unitary matrix given by

,~„) 2j+1 '~' 1+)I(-1)~ ~ '
(IA, 0/A) „.. .„, .

The body-frame description is particularly appropriate for a resonance, since the electron spends an ap-
preciable amount of time near the molecule and it is this interaction which determines &,A(A). Using an
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identity of Racah algebrag as in CF, we may combine Eqs. (8), (9), and (10) to yield'0

(lj v(S(jt)(l j v ) =-i~o ~(-1)&0+)+6(2lo+I) (2jo+1) (jo0, j,OI j0)

x g (1A, q,O[ig) et X„(Z)g(CI:&e2"~i"&0'„;&)X„,(ll).
A + A0 0 fx

Note that in (11) the first CG coefficient requires
that (hj -j,) =even, where hj=j- jo; but the second
does not require (&1—j&) = even, where n. l =l - l„
unless A =0. However, we will see that considera-
tion of parity favoredness' does require (hl —j,) =

even. Resonant scattering implies strong domina-
tion by only one value of A in the cross sections,
therefore the summation over A in Eq. (9) is super-
fluous. Furthermore, at low energies, very few
values of l contribute significantly. We will see
that Eq. (6) is quite tractable in Secs. III and IV.

III. HOMONUCLEAR DIATOMK MOLECULES

In homonuclear molecules, consideration of nu-
clear symmetry requires 4j =even, and hence
j& =even. As discussed previously, ' that in turn re-
quires 4l =even; so only alternate values of I con-
tribute, and at low energies we may include only E„,
the lowest value of l consistent with the symmetry
of the resonance A,@. The C matrix in Eq. (11)
simply becomes the unit matrix. In most experi-
mental data, rotational states are not resolved so
one is usually interested in the total differential
cross section for vibrational excitation, given by

d& X.(&)e""~'X.,(&) '

Equation (12) reiterates the fact that the angular
distribution is the superposition of angular func-
tions e, weighted by a squared CG coefficient which
contains the body-frame information in A.

These standard functions e and the CG coeffi-
cients for values of I up to 3 are presented in Table
I. The first line shows the trivial result that e:=1
and dv/d 0 = 1 for the s wave. The second line
shows that for P-wave scattering with no angular
momentum transferred (j, =0), e =cos'8, ' a well-
known result for do'/d0 in electron-atom scatter-
ing, e.g. , e-He at 20.45 eV."

For the ~ wave which is responsible for vibra-
tinnal excitation via the 'Z„' resonance in 8, at 4
eV,"the angular distribution is found by multi-
plying the 0 column and then summing over j„

= 0'„„(1,0)g(10,j,O(10)'e( j,; 11118)

where

(v- v, ) =4m„„,(lA)

x P (lA,j,O~IA)'e(j, ; llll8), (12)
even g,

= &„,„,(1, 0)[cos'8+ 0.4(1.5 + 0.5 cos'8]

= 0.6cr„„(1,0) (1 + 2 cos' 8) .

Similarly for the 'Il„resonance (Pw wave),

(14)

TABLE I. Angular distributions for homonuclear molecules. For the resonance A, the
angular distributions are found by going to the block ${)

——lp ——E =l'=l„. One multiplies the col-
urnn A by the standard angular functions 8 expressed as asumof powers of cos~withthegiven
coefficients. Then one adds up these products within the appropriate block.

lp lp l l
(IA,j,e( i, A}'

6
{4~)e{~,, &„V,n', e)

cos 8 cos 8 cos68

0 0 0 0 0
1 1 1 1 0

2
2 2 2 2 p

2
4

3 3 3 3 p

2
4
6

1
1
0.4
1
0.286
0.286
1
0.267
0.182
0.233

1
0.1
1
0 ~ 071
0.127
1
0.15
0.005
-0.131

1

0.286
0.008
1 1
0 0.417
0.247 0.045
0.021 0.001

1
0
1.5
0.25
1.429
1.446
0
0.062
2.045
1.392

1

0.5
—1.5
-3.214

0.965
2.25
8.563

-3.989
1.051

2.25
3.214
0.161

—7.5
-20.313

1.023
0.540

6.25
13.021
2.557
0.047
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=a„„(l,1)Q(11,j,o (11)'8(j„.11118)

-F„„(1,1)[cos 8+0.1(1.5+0.5 cos'8)]

=0.15 (r„„(l,1)(l+'I cos 8) . (15)

It should be noted that Table I contains only even
values of j&, corresponding to parity-favored tran-
sitions. These must satisfy the condition that
(l —I, +j,) is an even integer. ' An example of a
parity-unfavored angular distribution is I, =I,' =l =l'
=1 and j, =1, so that (l —f, +j,) =odd. The corre-
sponding values in completing Table I are 0 under
0 and 0.5 under m, with 1.5 under 1 and -1.5 under
cos'e. Note that 8 (1; 1111,0' or 180 ) =0 as pre-
dicted by Fano for all parity-unfavored transitions.
These transitions are known to occur only in a
more complex model (e.g., such as when one in-
cludes the spin-orbit interaction), but not in the
present single-configuration model (ignoring spin).
We therefore exclude these from Table I to avoid
causing confusion.

We note in passing that the contribution from
each vibrational-rotational cross section can be
recovered from (12). All one needs to do is to
multiply the right-Pand side-by the squared CQ co-
efficient (j,o, j,Oj~o)'.

Next we compare our results to those found by
O' Malley and Taylor' and Read. ' Instead of Eq.
(12), Read has

cfAX

&„&~(cose),dQ (16)

where

(I, I j,i' I I j,xi
EA -ii 0),(l, i

(18a)

lo l
=Q(2j+1)

In (IV), (:::)is the Wigner 3-j symbol, and P has
the interesting property of having a value of 0.5 for
A =0 (type II) and of 1.0 for A &0 (type I).

From simple Racah algebra' we derive the fol-
lowing in Appendix A:

Left-hand sides are contained in Eq. (1V), while
the right-hand sides appear in Eqs. (7) and (12) of
the present work. In the case at hand, l, =l and
k = even in (18), and j, takes on all values, soparity-
unfavored as well as favored terms are included.
However, after summing with P =1 in Eq. (1'I), the
parity-unfavored terms cancel because they enter
Eqs. (18a) and (18b) with opposite signs. For A =0,
such addition is not necessary as parity-unfavored
terms automatically vanish. Thus the present for-
mulation differs from the others. by excluding par-
ity-unfavored contributions at the start, rather than
by judicious subtraction (or addition) later. It can
certainly be argued that as long as both approaches
yield the same results, no one method should be
preferred over another. We will see in Sec. IVthat
incorrect results can be obtained in tQe approach
disregarding parity.

(~) cosp sinp
-sisP sssli ) ' (19)

In normal situations where the Born-Oppenheimer
approximation is valid, P and the eigenphases 6 „
are slowly varying functions of the internuclear
distance A. However at a resonance, one eigen-
phase (the resonant one labeled 1) varies rapidly
with A as well as with the energy. We may repre-
sent this eigenphase near the resonance in a Taylor
series,

5„(Z)= .'~+&„(ft—Z)+ ~ ~ —~ . (20a)
The first term is standard for a resonance, the
second is the primary cause for vibrational ex-
citation, and the higher-order terms are neglected
here for simplicity, since they only complicate
Eq. (22) below, which is treated as a normaliza-
tion factor. The nonresonant eigenphase and the
mixing parameter are simply approximated by

~.~(&) = 52~(&0) (20b)

IV. HETERONUCLEAR DIATOMIC MOLECULES

In our previous treatment of homonuclear mole-
cules, we have derived only (6j =even) cross sec-
tions from one partial wave. Conversely, the as-
sumption of only one partial wave a)lows even-bj
transitions and forbids odd-4j transitions. Hence,
at least two (adjacent) partial waves are required
for the case of heteronuclear molecules. At low
energies, we expect that the two lowest values lo
and l =(&, +1) consistent with molecular symmetry
A are sufficient. In this "two channel" model, the
C matrix in Eq. (11) may be written

(18b)

p(&)= p(&,) =p (20c)
Substituting Eqs. (20) into Eqs. (11) and(6), one
obtains after some manipulation
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—(j v j e ) =4+(T„'„(A) g (j,O, j,0 jj0)'[(1+cos2p)'(E,A, j,0]E,A)'B( j„,,E,E,E, 8)
dg even St

+(1 - cos2P )' (EA,j,0]EA)'B(j„EEEE8)

+2(1+cos2p)(1- cos2p)(E,A, j,0jE,A)(EA, j,OjEA)B( j„E,EE,E8)]

+Q (j,0, j,0 jj0)'[2 sin'2 p(EA, j,0 jE,A)'B( i.; E,E,EE8)

where

odd &t

. -2 sin 22(l Aj D])A)(lAjn,])+)e(j;, l ill, n)]), (21)

(22)

(&- &,) =4m&„'„(A) p [(1+cos2p)'(E,A, j,0 jE,A)'B( j„E,EOE,E,8)+(1 —cos2 p)'(EA,j,0 jEA)'. B(j„EEEE8)]
even jt

s 2 2 sin'2))(ln, j,n]l A) 8( j„l l, ill)) .
odd jt

(23)

In (21), E, and E are the two lowest values of the orbital angular momentum consistent with the symmetry
A. The terms fall into two groups because of the requirement of parity-favored character. The first must
have j, = even (and Aj=even) as for homonuclear molecules, while the second must have j, =odd (and Aj
=odd) and are new. It can be seen that Eq. (21) contains only one parameter —the mixing parameter

P —but describes all rotational-vibrational cross sections via the resonance A. One observes that
cos2p=+I corresponds to the homonuclear case, with one value for geode and the other for ungerade sym-
metry. For a heteronuclear molecule we must have jcos2Pj& 1.

Usually, as in Sec. III, we are interested in the total vibrational cross section (summed over rotational
levels). We find

Note that the third and the last terms of E(I. (21)
cancel out exactly when summed over j." Conse-
(Iuently E(I. (23) is always symmetric about 90'. In
contrast, Head's expression' predicts asymmetry
about 90' in general, with the amount of asymmetry

I

determined by a second parameter.
In the first two terms of (23), the angular func-

tions and CG coefficients have already been given
in Table I. The remaining terms require addition-
al quantities found in Table H. An example will

TABLE II. Angular distributions for heteronuclear molecules. Usage is similar to Table I. However, here one does
not obtain a unique expression, but one with a parameter. The expression is given by Eq. (23), and instructions for
usirig Table II in conjunction with Table I is given in the text.

l p EIp E E'

(EAj (0 l l()A)(PAj20 loA)
0' 7r cos8

(4n')e (j t, Eoloil', 8)
cos28 cos38 cos 8

0 0 1 1

Q 1 Q 1
0 1 1 0
1 1 2 2

2 3 2 3

2 3 3 2

1
0
1
1
3

1 2 1 2 0
2
1
3

2 2 3 3 1
3
5
0
2

1
3
5

0.333
1

-0.577
0.4
0.257
1
0.338

-0.516
—0.332

0.429
0.190
0.216
1
0.276
0.228

-0.507
-0 ~ 225
-0.256

0.3
0.086
1

-0.085
-0.387
—0.111

0.238
0.024
0.108
1
0.207

—0.025
-0.451
-0.028
—0.128

0.238
0.238
0.011
1
0
0.044

-0.282
-0.282
-0.013

0.5
2.0

0.45
2.217
1.708

1
-1.732

—0.5
0.423
1.936

—1.936

9.493
-Q.611
—0.384

1.9Q1
-0.740
-1.897

1.5
1.0

-0.9
-5.6

1.25

1.5
1.268

-3.486
-0.387

-3.5
10.101
1.795
9.889
2.859

—0.446

2.25
5.25
0.375

3.75
10.229
0;641

-9.508
-3.698
-0.528
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illustrate the utility of Table II in conjunction with
TaMe I in Eq. (23).

Consider the '~' resonance, for example, inthe
vibrational excitation of HF or HC1 in the experi-
ment of Bohr and Linder. " The first two terms in
Eq. (23) are obtained from Table I, rows 1 to 3,
and the last from Table 0, row 1, as follows:

(v- vo)dQ

=o „'„(0)(1+ cos2P)'[(1)(1)]+(I - cos2P)'

x[ (1)(cos'8)+(0.4)(1.5 + 0.5 cos' 8)]

+ 2 sin'2P(0. 333)(3)]. (24)

Equation (24) can be rearranged to give

Av (v- v,}=(y„'„,(0)[4 —0.4(1 —cos2P)'

+1.2(1- cos2)6}'cos'8]
(25)

which is symmetric about 90'. Note that Eq. (25)
is isotropic only when cos2P =+1 which correspond,
to the 'Z~ symmetry. In the case under considera-
tion, 'Z" symmetry, cos2P& 1, and the angular
distributions cannot be isotropic. (However, the
amount of anisotropy is small even for cos2P=0,
only a difference of 25%%uo between 0 and 90 .} Or-
dinarily, fitting (25) to the experimental data en-
ables us to find cos2P. Unfortunately, the error
bars in the data of Bohr and Linder are too large
to determine cos2p uniquely, except that
0.2 & cos2P & 1. Further details are published else-
where. "

Fortunately, the case of the 'Il resonance in CO,
provides an excellent illustration of the present
theory. The data there' ' are sufficiently accurate
to determine cos2P, and an excellent fit of the
theory to experiment has been found. "

Returning to Eq. (21), we note that it gives the
individual rotational-vibrational cross sections in
terms of still only one parameter. The differential
cross sections with 6j= even are given by the first
three terms only, and those with L3 j =odd by the
last two only. Now these expressions are no longer
symmetric about 90', as is evident from the en-
tries with odd powers of cos6) -in Table II, which
correspond to the third and last terms of (21). In
Appendix B, we prove that the last term is positive
definite when 8 =0' (and negative when 8 =180').
Therefore, differential cross sections with 4j
=odd will peak in the backward direction with a
corresponding dip in the forward direction. For
the bj= even differential cross section, we show in
Appendix B that the elastic transition (n j = 0}will
always have a forward peak and backward dip.
However, the situation for other transitions (bj
=even &0) is less clear in general. We know that
all rotationally elastic cross sections have forward
peaks, and all rotationally inelastic ones examined
have backward peaks. It is conjectured that in fact
all inelastic cross sections have backward peaks.
Experimental data with resolution of some rota-
tional levels will be most useful in confirming this
aspect of the present theory.

Next, we examine the integrated cross sections
given by"

c~ „,. (6j even) = g (j0,j0 ) j0)' [(l A, I, —A (jO)'(1 + cos2p)'+(l, + 1A, I, + 1 —A ) j~0)'(1 —cos2 p)']
eV 1 gt

(26a)

. & (&i odd) = g ( j,O, j,0 ( j0)'(I, + 1A, l, —A
~ j,0}'2sin'2P.

o

The first CQ coefficients are simply given by"

(26b)

(2'7)0 0 0 (2j+1)(j.+ii -j)ioi+j -i.).(i +i.-A ). k(i +ii+j.).
(i.+i +i+()' l(i. +i i)'.'()i+i i)' '(i+i. i-)')-'---

The others have already appeared in Tables I and
II for Eo «3.

An interesting relation can be derived from Eqs.
(26) for the sums of the two types of cross sec-
tions. Summing over j, the first squared CG co-
efficients in both Eqs. (26a) and (26b) become unity
by the usual sum rule. Further summation over
j& gives a value of & for each remaining squared
CG coefficient, using the half-sum rule derived in
Appendix C. Thus,

and

„(t)j even) =2(1+cos2p)'+ ~(l —cos2p)'

c„„,(t),j odd) = sin'2p.

(28a)

(28b)

Finally, the ratio of Eqs. (28a) to (28b} is

v(Aj even)/()'(t) j odd) =1+2 cot'2p ~1. (29)

Equation (29) states that the ratio of the sum of
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these two kinds of cross sections must exceed uni-
ty. The minimum value 1 corresponds to P= 4n

which may be approached in highly polar mole-
cules. Qn the other hand, the other limit is
reached when the denominator vanishes, as P be-
comes 0 or &m in homopolar molecules.

V. CONCLUSIONS

We have derived the angular distributions for
electrons scattered by resonant angular distribu-
tions by a diatomic in the 2" state. Results are
also presented in tabular form for convenient
usage, without having to read through the details of
the theory and to look up the requisite coupling co-
efficients. For homonuclear diatomic molecules,
Table I suffices for this purpose as long as (l, A

~3). However, for heteronuclear molecules, one
needs both Tables I and II in conjunction with the
one-parameter expression in Eq. (23).

From a theoretical viewpoint, our results are
derived with conservation of angular momentum
and parity. Our expressions contain only parity-
favored contributions, while those of others may
contain parity-unfavored contributions. For the
homonuclear case, these parity-unfavored contri-
butions cancel out upon addition of certain squared
CG coefficients, and all results become identical.
Since our theory does not assume that the molecu-
lar axis is held fixed during the lifetime of the res-
onance as in other theories, it might be argued that
correction for the rotation of the axis' is super-
fluous. For the heteronuclear case, our results
are different from those of Read' in that expres-
sions contain only one parameter while his contain
two parameters. Further, -we show that each vi-
brational-rotational cross section can be obtained
using the value of the parameter fitted to the vi-
brational data. Finally we prove a relation on
these vibrational-rotational cross sections.

The present theory is limited to diatomic target
molecules in the E' state. It also assumes that
rotational and vibrational states of the resonance
are not resolved although the initial and the final
states may well be resolved. In practice, the vi-
brational states of the resonance are usually re-
solved, "this has no effect on the angular distri-
bution, but further work is required in the present
framework to understand the resultant structures
in the energy dependence of the cross section, un-
derstood in terms of the boomerang model. " In
some high-resolution experiment" on H„even the
rotation levels in the resonant state are resolved.
The corresponding angular distributions can be
found by extending this work. Future extensions
of the present theory are considered for electronic
excitation of the target and for polyatomic mole-
cule s.

Notes added in Proof

(a) I am grateful to P. G. Burke for clarifying
the assumption embodied in Eqs. (20) in the more
familiar formalism of W. Brenig and R. Haag,
[Fortschr. Phys. 7, 183 (1959)]. Accordingly,

S=S'I I- sF& x
z-z +~rr 2

where S, is assumed to be the unit matrix, i.e. ,
no background scattering in the present work.
Hence my C is the matrix which diagonalizes
y~x y yielding (,",). Consequently, the resonance
is described by only one eigenphase; my P, given
by Eq. (19), is energy independent; and the angu-
lar distributions are constant within the broad
resonance in accordance with observations.

(b) It has been br ought to my attention that Eq. (25)
has been explicitly derived by F. Fiquet-Fayard
[J. Phys. B 8, 2880 (1975)]with a different formal-
ism but similar assumptions. The thrust of her
paper is on target molecules not in the 'Z' state.

APPENDIX A

We derive here several formulas based on Racah algebra in the text. The fundamental equation is found

in Rotenberg et al. ', Eq. (2.19), which is

(i, j, j, '/, , j, '
I g,....,... 2, ,1 j j j, (,~ ~ ~ ~ ~ ~ ~

~ (A1)

I et j, =l, =I, j, =I, =l, j, =k, I, =j„m,=n, =A, and m, =n =-A. Equation (Al} becomes

0 1 g( I)&+/g+2A(2 + I )
0 ' 0

&A -A of t, t j, (A-AOj
(A2)

Equation (A2} is the same as Eq. (18a) if one notes that (-1)'"=1 and that columns of the 8-j symbol may
be inverted.
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Next, we return to (Al) and let j, =l, =l„j,=l, =l, j, =k, l, =j„m, =m, =A, and n, =n, = A. We obtain

k '} (E.
(A A -2AI (-A -A 2A) '~ l, l j, I-A A 01(A -A Oj

Equation (AS) is identical to Eq. (18b) if we make use of the well-known property of S-j symbols:

(A4)

APPENDIX 8

In Eq. (21), the first, second, and fourth terms are symmetric about 90', however the third and the last
are not. %e will show that the last term is positive definite when 8=0', and so is the third when j =j,.
With the aid of Eq. (E), we write the last term a,s

o „'„,(A) (j,p, j,p!jp)'2sin'2P(l, A, j,p!lA)(lA, j,p!E,A)(-1)~ (2j, +1)
o dgt

E l A'

x (2Eo+1)'L'(2E + I)'L'Q . (lp, l 0!kp)(l,p, Ep!kp)P„(1),
k p jt

with P~(1) = 1. Making use of (Al), we obtain from (81),
2

F„'„(A) g (j,p, j,p!jp)'2sin'2P(l, A, j,p!EA)'(2E, +1)(2j, +1)!
odd yt jpppj

(81)

(82)

In (82), every quantity is positive definite, therefore the entire expression is positive definite. This im-
plies that for L =l, +1 and Aj;-odd transitions, the differential cross sections will havea forward dip (and a
backward peak}, taking into account of the negative sign in Eq. (21).

Clearly, the third term must largely behave in the opposite manner so that it will cancel the asymmetry
about 90' produced by the last term when summed. The third term is

o'.,(A) g (jop jÃljp)'2(1-cos'2p)(L, A, j,plE, A)(EA j&OIEA)
even ,t

E Eo0
x (-1)~&(2j,+1)(2l, +I)'L'(Pl +1)' 'g . (E,p, Ep!kp)'P, (1).

k 0 jt
Using (Al), the sum in k may be performed, and we have

v,'„(A)2 sin'2P P ( j,p, j,p!jp)'(l, A, j,p!E,A)(EA, j,p!lA)(l,p,j,p!l,p)(lp, j,p! lp) .
cvcll jt

(BS)

(84)

In contrast to (82), quantities in (84) are not nec-
essarily positive, and (84) need not be positive
definite for all values of j and j, (subject to the
condition j-j, =even). However, the first term in
(84) with j, =0 is simply &„z, and is clearly the
dominating term when j =j,. Therefore, the rota-
tionally elastic differential cross section is ex-
pected to have a large forward peak. For the in-
elastic process, the situation is less clear, since
we need the examine terms in (84) with j, =2, 4,
etc. In the case of a H resonance as in CO, we
have shown"b that (84) is negative for j, =2. There-
fore the angular distributions for the rotational
ti.ansition j =j,+2 will have a backward peak.

APPENDIX C

Q( jm, j, —m! j,p)'=1

is composed of two equal half-sum rules when
rn +0, namely,

(G1)

g (j,m, j, -m!j,p)'
even j3

= g (j,m, j, —m!j,p}'= —,'. (G2)
odd 23

We wish to show that the mell-known sum rule for
CG coefficients
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Equation (C2) holds for both integral and half-inte-
gral values of j& and j2.

Defining a new coefficient

only alternate values of j, contribute, as is evident
from the square bracket. Indeed the first term in

.(C5) sums to one by (Cl), and the second vanishes
since

(C3) g( j,m, j, -m (j,O)( j, -m, j~]j,O) =0,
J3

(C6)

where m=+1; and using (A4), one finds

C»»'s =2 '~'[1 +n(-1 }»"~"s]
Sl ~lt

x(j,m, j, -m]j, O).
/

Clearly, C~~~'" vanishes whenever I and (-1)»'~"~'
have opposite signs. In other words, for fixed val-
ues of ~, j„and j„only alternate values of j,
yield a nonvanishing result for C~j~~~~. Thus, in
the sum

except when m =0. Therefore, we have shown that

(C'l }

g 4(i,m, i. -ml j.O)'=1,
ever) f3

and if n=(-1)»+"", then

(C8)

(Q»&s~a)s = 1+s()

For m &0, {C5}and {CV) show that if n ={-1)"'~',
then

(C~~„'s")' =,'- g[2+2n{-1)»"&"&]

x (jm, j -mojo)'), (C5)

g 4(j,m, j, mlj-sO)2 =1. (C9)
(Mkl /3

Equations (C8) and (C9)are clearly equivalent to
Eq. (2) which is referred as the half-sum rule.
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