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The hybrid theory for low-energy electron-diatomic-molecule scattering, proposed by Chandra and

Temkin, is systematically reformulated. It is shown that the hybrid theory can be equivalently derived from

the vibrational-rotational (V-R) close-coupling theory when the depen4ences on the rotational quantum

numbers are neglected in both the energy levels and the radial parts of V-R wave functions of target
molecule. The expressions of scattering amplitude, differential, integral, and momentum-transfer cross
sections of hybrid theory for the simultaneous V-R transition of target molecules obtained in our formulation

are thus in the same form as those of V-R close-coupling theory. Distorted-wave Born approximation

expressions for the cross sections of hybrid theory are also presented. It is pointed out that the neglect of
rotational quantum number dependence in the radial part of wave functions is required to obtain fixed-nuclei

approximation or hybrid theory, where the internuclear axis components of incident electron angular

momentum I, are conserved. An I, -conserving close-coupling approximation is proposed which is derived

from the V-R close-coupling formulation in the moving body-fixed frame. This approach has a nature and

simplicity similar to the original hybrid theory in that the I, conservation is satisfied, but the rotational

motions of target molecule are partly taken into account.

I. INIODUCTION

In the preceding paper (hereafter referred to as
I), we have reviewed the vibrational-rotational
(V —R) close-coupling theory for low-energy elec-
tron-diatomic- molecule collisions in syace- fixed
frame and presented a new formulation in a moving
body-fixed frame. ' The vibrational-rotational
close-couyling theory, whether in space or body-
fixed frame, are the most general and realistic ap-
proach in the sense that they can, in principle,
produce accurate V- R transition cross sections
when sufficiently large number of basis states are
included. However, even with the capability of yre-
sent-day computers, calculations become difficult
if many vibrational states (say -10) are con-
sidered, due to the large number of rotational
states within each vibrational manifold. Therefore,
it is both desirable and necessary to develop other
ayyroaches to keep the computational efforts within
manageable level. On the other hand, the ab initio
approach of the vibrational-rotational close-coup-
ling theory must serve as a basic standard to which
other approaches should be compared. ' "

Among the more efficient approaches, from the
practical computational point of view, is the hybrid
theory recently proposed by Chandra and Temkin. '
Based on physical arguments, they suggested that
the vibrational states of the target molecule be
couyled dynamically through close-coupling theory
while the rotational state transitions, because of
their long time scale, are treated with adiabatic-

l

nuclei approximation. The internuclear axis com-
ponent of the incident electronic angular momentum

I; is conserved in the fixed-nuclei approximation4;
the Hamiltonian of the system is invariant under
rotation of the incident electron around this axis.
Because of the l; conservation, the coupled dif-
ferential equation, the asymptotic boundary con-
dition, and the number of the coupled channels are
considerably reduced. However, because of the
way the hybrid theory was derived, its relationship
and connection with the vibrational-rotational
close-coupling theory was not at all transparent.

In this payer, we present a reformulation of the
hybrid theory of Chandra and Temkin' and obtain
the expression of scattering amplitude and formula
of differential, integral, and momentum transfer
cross sections for the simultaneous V —R tran-
sitions of hybrid theory in the same forms as those
of V- R close-coupling theory. Distorted-wave
Born ayproximation (DWBA) expressions of cross
sections of hybrid theory are also presented. We
show that the hybrid theory can be derived from
V- R close-coupling theory in body-fixed and
syace-fixed frame when the dependence on the ro-
tational quantum numbers are neglected in both en-
ergy levels and the radial parts of V —R wave func-
tions of target molecule. That is, our approxi-
mation is entirely equivalent to the synthesis of
fixed and adiabatic-nuclei approaches as proposed
by Chandra and Temkin.

Based on the relation between the hybrid and the
close-coupling theory, an improvement scheme,
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the l; -conserving close-coupling approximation de-
rived from body-fixed formulation of I, is proposed.
This approach has a similar nature and simplicity
as the hybrid theory in that the interriuclear axis
components of incident electronic angular momen-
tum, /;, are conserved, but the rotationa1 motion
of the target molecule is partly taken into account,
that is, the fixed-nuclei assumption is relaxed to a
certain extent.

In Sec. IIA, the hybrid theory is reformulated;
and relations between close-coupling and hybrid
theory are treated in Sec, II B. Distorted-wave
Born ayyroximation (DWBA) expression of hybrid
theory is given in Sec. IIC. The l;-conserving
close-coupling approximation is described in Sec.
IID. Brief summary of the present work and dis-
cussions are made in Sec. III. In this paper, no-
tations the same as I will be used throughout and

Eq. (I —n) denotes Eq. (n) of I.

II. HYBRID AND CLOSE-COUPLING THEORY

sentation, with the resulting expressions different
from those given by Chandra and Temkin but di-
rectly amenable to comparison with the V-H close-
coupling theory result of I.

In hybrid theory proposed by Chandra and Tem-
kin, the V —R transition cross sections are ob-
tained from a synthesis of close-coupling theory
for vibrational states with fixed-nuclei approxi-
mation, ' and adiabatic-nuclei theory' for rotational
states. The rotational angular momentum of target
molecule is neglected in H, that is,

@2

2p, 2p. R eR BR

, (HxV„)'
2~ R2 8

2pN R2 9R BR

The radial wave function and energy level, (t)„(R)
and &„, are obtained from

A. Reformulation of hybrid theory for V-R transitions

In this section we present a reformulation of the
hybrid theory which was first proposed by Chandra
and Temkin. ' Our reformulation follows the same
physical argument as given by those authors but
differs in the sequence of the derivation. Further,
our derivation is formulated in the total J repre-

„R' „+~,(R) y„(R)=~„y„(R).
e

~N

(2)

For vibrational transitions, the angular parts of
p —R wave functions of the target molecule are not
considered in hybrid theory and thus the scattering
wave function qg„"(r,8) is given as

e& )(r, H)= P@&~;)„(r)y„,(R)I,,„,(r')D„'+„(R)F+„(a„)—e'""y (R)+P " f„.„(R,r)y„,(R).
v lie, Vmm'

Here, k'„= (2p.,/5')(E —z „) and r' denotes the yolar angles of r" with resyect to a coordinate system in which
the internuclear axis R is chosen. to be the z axis. D„'„,(R) = D„'„,(p „,8„,0) is the rotation matrix element. " R
is treated as yarameters in the fixed-nuclei ayyroximation or hybrid theory. From Eqs. (I-V), (I), (2), and
(3), we have

(
d' l' l'+ I

+g~)g("„", (~) ;g v,'g ';„(r=)g';j,„(r)„. (.)», )', )"- ~"m'~)
s v

(4)

x/z

g (P„.',„(r) ~ i' " [5,.,5„.„E;„.(r)+ T(P),„(Grg(r)+ iE;„(r))].

Here,

V'r";,'r'(r) = (-I) g2Z I [(2i'+I)(2l" +I)]"'&I'oi"o~Xo)(l'm'l" —m'~Ao)V"„.„-(r),

V„„(r)= R'dR Q„.(R)V„(r,R)p„-(R),

F;„(r)= k„.rjg. ()g,„gr),

G, „(r)= —k„rn, ,(k„,r).
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It is seen that m', the internuclear axis component
of the incident eirectronic angular momentum (which
is also that component of the total electronic an-
gular momentum of electron plus target molecular
compound system}, is conserved in hybrid theory
or in fixed-nuclei approximation. Thus the coupled
differential equation is solved separately for each
m' and it is sufficient to consider non-negative m',
since

T,',„.',„is the vibrational transition matrix element
of hybrid theory. Following the same procedures
as in obtaining Eq. (I-19), we have scattering am-
plitude

f;,.(It, 8, 0)

The differential, integral, and momentum transfer
cross sections of the vibrational transitions in the
hybrid theory are then given by

v~v' (8) ()

dQ k„4m

P (-1)"(2I+ I)' '(l'p lo
I
A(L()(l'm'I —m' Xo) Tz+&'&„I",, (8, $)

v Xp, l'lm'

, +II„(g-g')P„(cos8),
k'„

dg do ' 4~ g ~r 4~ T(m, ) 2

v v l'lm'

o d ~ cos~ " " ~ =
2 ~0 ~, ~ 3~» ~ 'U ~

Here,

II (z z)) g [(2I'+ I)(2I '+1)(2I+ 1)(2l + 1)]' '(I'oE'o I&o)(lol o IXo)
/ j'yn
7Fre'

x(I'm'l' —m' Xm' —m')(Im'I —m'I&m' —m')&I ' ) & ".- .l'v, lv ) vr gv' (12)

In deriving the last part of Eq. (9), we have used the well-known relations,

p &j,m, j,m,
Ij,m, +mg &j,'m, + m, j~m —m2 I jsm) + m& &j,m, j4m —m, I j6m)

J» jg' j5-
( 1)~) ~2 &3.4[(2j,+1)(2j,+1)]' '(j,m, j,m If3m)™)] (I&)

j4 ~3 j6

]j|j2 j5
Q [(2j + 1)(2j + 1)] ~ (j m j m Ij m + m )(j,m, j,m, + , j,
46 j3 26,

= ( 1) i' 2"3"~(j,m, j,m, j,m, +mg(j, m, +m2j4m~I j,m3). (14)

When solving the coupled differential equation [Eq. (4)], the real (rather than complex) wave functions

f&p&),„(r), with following real boundary condition

»/2
ft;„,"„(r) (

" [6rA„)rrr(r)rt(P.",„Gr„(r)],

are more convenient to use.
Introducing square matrices g(~'(r), f ' '(r), I'&" ', E'"', I, and A as
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g&m)(~) (g(m, ) (~))

f&m'&(~) (f&m,'& (~))

T(m) (Z(m,') )t

f„~ ., „;„,(8, 4)
Z/2

Q(2l+ I)'~'(1'm~ ™~j™~I'~)k„k

x(lcm~ Jm )T.
~. ',

~(m) (g(pn,') )

I=(i' 5&,,5„,„),

A=(kg"5&, &5„.„),
we obtain

with

x F&,„.„,(8, y)

t(2i'+ 1)(2j+1)l' '
T„,)., „yl 24 1

xp(l. ;.,IJ }T;) (1;,IJ .
&

(23)

g(m'&(y) f(m')(y. )g)(m')

g (m')

T =I(m) (18)

As can be seen from Egs. (7) and (24),

( I)/+&'+z
( ])j+)+z

(24)

{25)

with

D&"'=IA '(1+iT("')A. (19)

E' ' is the reactance matrix and it is real, sym-
t

metric, i.e. , Kr™d',l E l, l" Thus 7
=(-1)' 'T,'"",. ~ and the principle of detailed balancelv0l v

2.
kazoo o' = k„o.v'-v

is satisfied.
The (partial) cross section

(20)

.-; —p Z IT;, .I
v l'l

(21)

is used for studying the resonance scattering cross
sections.

In hybrid theory, the scattering amplitude

f'~ ~ „&„(8,g) for the simultaneous V- R tran-
sition (vjm, .) —(v'j 'm&) is obtained from close-coup-
ling scattering amplitude of vibrational transition,
f„„(R,8, $), given by Eq. (8) as follows:

In deriving Eq. (23), we have expressed
'&.„(R),&z„(R) in terms of rotation matrix ele
ments. Next, the Clebsch-Gordan series for each
yairD'', D~ and D', D~, and the orthogonalities of
the rotation matrix elements have been used. It
is instructive to compare Eg. (23) with Eq.
(I-19). Then, it is seen that T', , „» of hybrid
theory corresponds to TJ.~.l. „~l, the tra sltlon
matrix element, in total angular momentum re-
presentation, of the close-coupling theory de-
scribed in Sec. II A of I. Furthermore, the par-
ity (-I)~ ' is known to be conserved in that
theory. Therefore, the above correspondence
provides us with a detailed comparison between
V- R' close-coupling and hybrid theory, not only
cross sections but also transition matrix ele-
ments, for electron-diatomic-molecule scat-
tering. The differential cross section of V- H
transition vj -v'j' in the hybrid theory is then given
by

f„,. „,.(8, y)= ~y,*..„.(R)

xf„.„(R,8, $)Y'&„(R)~ (22)
— Q R,(vj- jv')P, (c os)8

This is the adiabatic-nuclei approach. ' Carrying
A

out the integration over 8, we have with

(26)

B„(vj -v'j ') = (-I)&"' Q (2J'+ 1)(2J' + 1)[(21'+ l)(2l ' + 1)(2l + 1)(2l + I)]'"
ll'J

x(l'ol'OIXo){loloIXo)' (~ T;g.
& y, r', g, f, g&.

(t jt EP)l~~j E ~
" " " ~ ~

Here, we have used Eqs. (13) and (25). The integral and momentum transfer cross sections for the trans-
ition, vj -v'j', in the hybrid theory are given by
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Ovj ~ vsjs — dQ 8

4m

P„(2j+1)

fPI2' l% M ( ) I u'1'l' upi
vE j+ ) lJsJ

0„'~j' „,j, = dn 1 —cose "j "" 8

4m= ~,(2. 1) [B,(vj - v j )

--'B,(vj -v'j')]

The principle of detailed balance

&'„(2j + 1)o'„) „.~.= k'„.(2j'+ 1)(r„.~.

(28)

(29)

(30)

/

monic expansion as above [Eq. (27)] with T~,~, „»
replaced by T~,j,, „». So far, we have derived the
formulas for differential, integral, arid momentum
transfer cross sections of hybrid theqgy, , for the si-
multaneous V —R transitions, which have different
forms from the original expressions given by Chan-
dra and Temkin. Since the underlying physical con-
cepts are the same in the present and their treat-
ment of hybrid theory, both (present and their) for-
mulas will give identical results for V —8 tran-
sition cross sections. But the correspondence be-
tween the hybrid and V- R close-coupling theory is
transparent in the present formula while not so in
theirs, because they did not use the total angular
momentum (J= T+ I ) representation.

B. Relationship between the V-R close-coupling theory

and hybrid theory

is satisfied, since T~,~,, „»=(-1)'"T~»„,,
From Eqs. (9)-(11),(26), (28), and (29), it is seen
that

@4-v (g) g "ov~-v~
(g)d (31)

0'v v'- 0'vj-v'j' ~ (32)

(~)
~v. ~vs: ~Pvj~v'j' & (33)

by applying the closure property of spherical har-
monics to Eq. (22). In fact, one can show that

B„(v-v') = . g B~(vj v'j')-
2j+1 j. x (34)

using Eg. (14).
The right-hand sides of Eqs. (31)-(33)are inde-

pendent of the initial rotational quantum number j.
This is a property of hybrid theory. It is not so in
(accurate) V- 8 close-coupling theory of Sec. II A

in I. It should also be noted that, comparing Eq.
(I-19) with Eg. (2S), the differential cross section
of V- 8 transitions of close-coupling theory in that
section of I [Eq. (I-20)] will have the same har-

In this section we discuss the derivation of hybrid
theory as a direct approximation of the V- R
close-coupling theory given in I. The for'mal de-
rivation is obtained in the body-fixed frame for-
mulation as it is much simpler than in the space-
fixed frame. The relationship between. these two
theories is of course the same in the space-fixed
frame.

We have seen that the internuclear axis (R) com-
ponent of incident electronic angular momentum w. '
is conserved in fixed-nuclei approximation or hy-
brid theory but it is not so in close-coupling theory
of body-fixed frame in I. The difference between
the equations of motion of incident electron in fixed
nuclear frame and moving body-fixed frame is
clear in the classical picture. In body-fixed frame,
we have effective forces exerted on the electron
which includes "Coriolis force, " in addition to the
(external) force due to the interaction between elec-
tron and target molecule. Thus the off-diagonal
elements in e „,„,„„(i.e. , e „,„, with m'wm")
may be called "Coriolis m-coupling energy. " The
off-diagonal elements of V „,„,„,„„„(r)for m in-
dices also originate from the inertial nature of in-
teraction potential viewed from moving frame. If
we first neglect j' dependence in P„,&,(R), in other
words, if we replace P„,,(R) by P„,(R) in the body-
fixed formulation of I, then we obtain

r „, . „,„. (r) =fR dR y„.(R)y„„(s)

sin6) ~siny d8„dy d ~ dy

xD'z~ *(ez 4z»»v(~» &)D'™

(36)
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"v'l'm' m" "m'm""v' (36)

from Eqs. (I-36), (I-42), and (I-43). Inderiving Eqs.
(35)-(36), we have also used Eqs. (I-27)-(I-29). It
is seen that m' is conserved in the body-fixed cou-
pled differential equation [Eq. (I-34)] in this case.
Moreover, the solution of that equation is indepen-
dent of total angular momentum J. Thus from the
asymptotic boundary condition [Eq. (I-40)], we ob-
tain

v'l'm', vlm m'm l'v', lv&

(37)

Equations (I-34), (I-40), and (I-53) are then re-
duced to Eqs. (4), (5), and (24) of hybrid theory of
Sec. IIA, respectively [cf. Eq. (I-28)], and thus the
scattering amplitude and all cross sections for the
V —R transitions of body-fixed close-coupling for-
mulation are given by Eqs. (23) and (26)-(29) of
that section. By the same arguments as above,

v'l'm', vlm m 'm l'v', lv~
(38)f.' ~,. ( )=~ „f';„:,' „( ),

when the substitutions P, , (R) -P„,(R), e„,&, - e„,
are made in the body-fixed formulation of I. Equa-
tions (I-61) and (I-66) are then reduced to the Eqs.
(15) and (18), respectively. From the above dis-
cussions, we have seen that the hybrid theory is
entirely equivalent to the V —R close-coupling the-
ory in the body-fixed frame when j dependences in

Q„&(R) and k„& (or e„&) are neglected in the latter.
Thus one derives, alternatively, all the formulas of
cross sections and equations of hybrid theory sim-
ply by replacing Q„.(R) and 0„& by p„(R) and k„ in the
V —H close-coupling formulation of body-fixed
frame, without using the synthesis of fixed and
adiabatic-nuclei approach [Eq. (22)] originally pro-
posed by Chandra and Temkin.

The V- R close-coupling formulation of the body-
fixed frame is equivalent to that of the space-fixed
frame. One- to- one correspondence exists between
the quantities defined in the body- f ixed and space-
fixed frames. Thus we have found a very interesting
fact: The hybrid theory is also equivalent to the V- R
close-coupling formulation of the space-fixed frame of

from Eqs. (I-15) and (I-35).
Next, if we neglect j' dependence in 4„... (or

e„.&, ), that is, if the replacement k„,, k„, is made
in that formulation of I, then

2p, 2
2 ~ v'l'm' m m'm" v' ~t

Sec. IIA in I when the replacements $„,&,(R)1', . .(R)
-y„,(R)I', ,„,(R), p„,, , -k„, (or &„...-e„,) are made
there. More specifically, if one substitutes p„.(R)
and k„, for P„,, (R) and k„,... respectively, in the
space-fixed coupled differential equation [Eq.
(I-13)], asymptotic boundary condition [Eq. (I-14)]
and other equations defining potential coupling
terms, and computes all the cross sections from
space-fixed transition matrix element, T„, , „»,
by solving the above coupled differential equation,
one will get the same cross sections as obtained
from hybrid theory. Even more explicitly, when
the above substitutions are made into V —R close-
coupling formulation of space-fixed frame, one will
get the same formula of all cross sections of hy-
brid theory. The proof of this statement entirely
relies on the equivalence relation between space-
fixed and body-fixed frame [Eq. (I-29)]. The j' de-
pendence is significant not only in &„,... but also in

Q, , (R) for sufficiently large j', although it may not
be so for low j'." Therefore, if one neglects j' de-
pendence in e„... only (in the close-coupling the-
ory), as in a work of Bottcher" for pure rotational
transitions, one will not get Eqs. (35), (37), and

(38), and thus neither fixed-nuclei approximation
nor hybrid theory can be obtained. The reason is
that, as mentioned earlier, hybrid theory (or adia-
batic-nuclei procedure [Eq. (22)] is based on the
fixed- nuclei approximation where rn is conserved.
(In the fixed-nuclei approximation, the rotational
motion of target molecule is completely ignored
and the Hamiltonian is invariant under the ro-
tation of incident electron around internuclear axis.
Thus the internuclear axis component of incident
electronic angular momentum should be con-
served. ) Similar coupled differential equation and
transition matrix elements obtained by him are
those of neither (moving) body-fixed formulation of
I nor fixed-nuclei approximation, but they are in-
termediate forms between the two of above, be-
cause they are independent of J, while m' is not
conserved in them.

At this point, we would like to discuss hetero-
nuclear target molecule with strong permanent di-
pole moment (polar molecule). From Eqs. (I-4)
and (I-9), the static interaction potential is given by

U""(x,R, y) = P U'""(x R)P, (cosX) (39)

with

V'„'"(s,R)=s'{2s s"ds'sisd'dd'

xp(~ (, g', R)r', P, (cosg )
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for close shell target molecule (and thus 'Z state).
Here,

p(r', O', R) = g p (r', O', R)

the larger or

the smaller of
(r, aR)

(r, bR)

(41)

a =M„/(M„+Ms), b =Ms/(M„+M~).

P (r', R) =P (r', O', Q', R) is the single centered
molecular orbital wave function and O', Q' are polar
angles of target e].ectronic coordinate with respect
to R. Z is the summation over all occupied or-
bitals. It is seen that

C. DWBA expression of hybrid theory

We brieQy discuss the DWBA for electron-dia-
tomic-molecule scattering, since the calculation of
V- R transition cross sections with DWBA are
much simpler to carry out than those of either hy-
brid theory or V- R close-coupling theory. More-
over, it is useful for rough, but quick estimation of
collision cross sections considering the fact that
the agreements on the pure rotational excitation
cross sections for electron-diatomic- molecule
scattering between DWBA and close-coupling theory
are within 40/o in many cases. ' By direct calcu-
lations, it is seen that the scattering amplitude for
V- R transitions employing DWBA is expressed by
the form of Eq. (23) with T~,&,, „» replaced by
T„,j, vj, given as follows:

Z J ~e (k k )~l2;~-~ e~(6r'+6, )
v j l»vjl g'2 v j vj

y'dgRl, k„.j., y'

V""(r,R y)„—,cosy.ep, R
(42) x V„,, „»,(r)R, (k„),r) . (46)

Here

g((o=' —e 2tr fr dr' sin9"'d6'p(r', 8', ())

(Z„M —Z M~

}A+ B

(48)

is the permanent dipole moment of target molecule
and thus

(m')
I I (44)

J
vr J I 4 ~ I v'j'l'»v "j"l"
F v»j»li v» j»»l»»P"J r~~-t 2. (45)

[The meaning of (L( ~,&,, „~„,„can be inferred again
from Eq. (1-15)]. However, careful calculation'~
and mathematical examination" show that the
close-coupling cross sections of electron-polar
molecule scattering are finite due to the finite en-
ergy separation between j states which are neg-
lected in fixed-nuclei theory.

The meaning of p, ,',"„,',„„„is clear from Eq. (6) and
(I'I"1) satisfies the triangular relation. If the mag-
nitude of p, (R) is significantly large, we have a
somewhat ambiguous situation when defining as-
ymptotic (scattering) boundary conditions because
of 1/r' dependence in Eq. (44) which is the same as
in the centrifugal potential I(l+ I)/r'. A similar
problem is encountered for close-coupling theory
of space-fixed or moving body-fixed frame of I.
For example, if one includes the above static po-
tential in V(r, R, y),

Here, R, (k„j,r) and R,,(k„,&, , r) are the incident and
scattered partial waves of the electron, distor ted by
the appropriate (central) potential between electron
and molecule. They have the following asymptotic
behaviors:

(k )
sin(k qr 2 Iv+6()

l Vj& r~oo
vj

sin(k„,~,r —» I'm+ 5',.)
l & v»j &+~r

K j V

(47)

From Eqs. (I-15), (6), and (13), one can show that

[(2j'+1)(2j+1)P'
24+1

q J
v'j'P, vjl

with

&& g (I 'm'j 'o Jm') TI",„", ,„(lm'jo
~

Jm')
m'

(48)

r(m ) pe
(k k )'~'i' 'e*"-

l'v', lv g2 v v'

r' dr R,.(k„,, r) V', ,"„,',„(r)R,(k„,r) . (49)

Here, we have neglected again the j dependences in

k„& and Q„&(R). Then TI."„,),„is the DWBA expres-
sion for vibrational transition matrix element of
hybrid theory.

D. I,»-conserving close-coupling formu1ation

For each m'~0, the number of channels N needed
to solve the coupled differential equation [Eq. (4)j
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of hybrid theory is seen to be

N= (I' —m'+1) && (number of vibrational
states coupled) (50) u'I'm' m'[»'» vl »'rw' w'(r)g-oO t

for heteronuclear target molecule. For homonu-
clear target molecule, the number of channels is
about half of the number given by the above equa-
tion [Eq. (50)] for each r parity (-1)'. These num
bers are considerably smaller than those of V —8
close-couyling theory in either space-fixed or
body-fixed frame of I when many vibrational states
are coupled. For example, the number of channels

¹ in the couyled differential equation of body-fixed
frame [Eq. (I-50)], for given Z and when m' values
are not truncated, is given as

¹

= [number of (I'm') with

'I~ —~™Im'~0and J'~m'j
max

&& (number of vibrational states coupled)

(51)

for heteronuclear target molecule and (+) parity.
In this section, we yresent a scheme which has a
similar nature and simplicity as hybrid theory,
that is, m' is conserved in that scheme, but the ro-
tational motion of target molecule is also partly
taken into account. %e have seen that hybrid the-
ory is equivalent to j independence in &„j and

P„z(R). We now relax this condition, retaining j in
dices [in &„& and p„&(R)], and follow the V- R close
coupling formulation of body-fixed frame in I. But
we neglect off-diagonal elements of all quantities
defined there. More specifically, we yut

V vsp~t vNgN %p/ 0p 6 i)r r n= 0,.- ip i a= 0
f s

E ~,„, (r)=0, G ~, „, (r) =0 for m'gm».

(52}

Then m' is conserved in the body-fixed coupled dif-
ferential equation [Eq. (1-34)]and thus, from the
asymptotic boundary condition [Eq. (I-40)], we ob-
tain

T~, „, =0, g~, „.„,„(r)=0 whenm'em.

(58)
Equations (1-34) and (I-40) of close-coupling for-
mulation of moving body-fixed frame are then re-
duced to

(
d' I'(I'+ 1) 2p, ,+ „, ~ „,„,„, g „,„,„,„.(r)y' Pl s

g2' M»'I'm', » I"m'( }g»"1"m' »fm'(
v agar

(I, I', P - ~m'
~
) (54)

+ (C ', „,„,(r) + iE ', „,„.(r))
v'Pta ', vga '„vga', yc'&

respectively, and above Eqs. (54) and (55) are of
the similar forms as those of hybrid theory [Eqs.
(4) and (5)], except they depend on both m' and J,
the total angular momentum. Therefore, one has
to solve the coupled differential equation for each
m' and J' with 4 ~ m' ~ 0, separately, but the num-
ber of channels is equal to that of hybrid theory
given by Eq. (50) and the equation below. It is seen
that the procedures of evaluating V- R transition
cross sections are the same as those in hybrid the-
ory, replacing &',,v", » by &,,, ~, »~„after solutions
of coupled differential equation are obtained. The
vibrational transition cross section of the present
scheme is

~vj ~v' Ovj ~v'jjt

(21+1)
vj j+ J'$'tm'

x
I U,"., r „'„,„.„,„.~', (56)

which has s1ightly different form from that of hy-
brid theory [Eq. (10)] and depends on the initial ro
tational quantum number. If the reactance matrix
boundary condition is used, we have

~» vm;» =0, f „,„,»„(r)=Q whenm'am,

by the same argument as above. T 'r ' r obtained
from E„,;„„,„through Eq. (I-66}have the prop-
erty of Eq. (53). This scheme requires a little
more work than the original hybrid theory, yet it
is much simpler to perform close-coupling calcu-
lation in this approach than in the (exact} V- 8
close- coupling formulation of syace-fixed and body-
fixed frame. %hile the internuclear axis com-
ponent of incident electronic angular momentum is
conserved in the present approach, the rotational
emotions of target mo1ecule are also partly taken in-
to consideration as seen from J = 6+ i and Je I', in
general, obtaining j W 0. Vfe propose this l, ,-con-
serving clos e-coupling formulation for calculation
of V - R transition cross sections by low- energy
electron- molecule collisions. It should be pointed
out that another method of including the j depen-
dence of the radial part of the V- R wave function
P„~(R) has been given by Temkin and Sullivan' de-
rived from fixed-nuclei theory as a function of R.
Voile the vibrational states are not dynamically
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coupled in their method, it is simpler than the pre-
sent scheme proposed in this section.

III. SUMMARY AND DISCUSSIONS

We have presented a reformulation of hybrid the-
ory for V- R transitions of electron —diatomic-mol-
ecule collisions, first proposed by Chandra and
Temkin. ' We obtained the expressions of scattering
amplitude, differential, integral, and momentum
transfer cross sections of hybrid theory for the si-
multaneous V- R transitions in corresponding
forms as those of V- R close-coupling theory, ex-
cept the transition matrix elements, T~,

g f g), of
total angular momentum representation are re-
placed by T~,&,, „» given by Eq. (24). Thus the
transition matrix elements of both V- R close-cou-
yling and hybrid theory can be comyared with each
other in addition to corresponding cross sections.
DWBA expression of vibrational transition matrix
elements of hybrid theory has also been presented.

We have further shown that the V- R close-cou-
pling theory is equivalent to the hybrid theory in
both body-fixed and space-fixed frame when j de-
pendences in Q„~(R) and e„, are neglected. That is,
results of hybrid theory can be obtained by simple
substitutions P „&(R)- Q „(R),& „J- q „ into the V - 8
close-coupling formulation of a body-fixed frame
of I; these substitutions turn out to correspond to
the synthesis of vibrational close-couyling theory
with fixed-nuclei apyroximation and rotationally
adiabatic-nuclei approach [Eq. (22)). We point out
that the neglect of j dependence in P„&(R) is also re-
quired to obtain fixed-nuclei approximation or hy-
brid theory, where the internuclear axis com-
ponent of incident electronic angular momentum is
conserved, from close-coupling theory.

We point out here also that, in the V- R close-
couyling theory, if one neglects rotational quantum
number dependences for the energy levels only, as
in a work of Bottcher" for pure rotational tran-
sitions, one will get neither fixed-nuclei approxi-
mation nor hybrid theory where internuclear axis
components of incident electronic angular mo-
mentum are conserved. The reason is that the ef-
fects of rotational quantum numbers are also ap-
preciable in the radial parts of target molecular
wave functions when those quantum numbers are
sufficiently large.

In the expressions for the V —R transition cross
section of hybrid theory given by Chandra and Temkin,
the relations between hybrid and close-coupling theory
in both space-f ized and body-fixed frame presented
above are not transparent, because they did not use
the total angular momentum representation in their
formulation. It is now clear that the discrepancies be-

tween the result of the hybrid theory and the V —R
close-coupling theory originate from the assumption
ofj independence in g, (R) and e„,. It is known, how-
ever, that the effects ofj indices are significant even
in V„, „, (r). in Eq. (I-16) for v Wv' due to j de-
pendence in g, (R)."

An l, , -conserving close-coupling formulation,
derived from V- R close-coupling formulation in
the moving body-fixed frame of I, has also been
presented. This formulation has a similar nature
and simplicity to hybrid theory in that m is con-
served, but the rotational motions of target mol-
ecule are also partly taken into consideration dur-
ng the collision process. In other words, the

fixed-nuclei assumption is relaxed to a certain ex-
tent. It is interesting to see the above formulation
in the classical yicture again. In the fixed-nuclei
approach, the incident electron keeps precessing
around the (space) fixed internuclear axis; but in
our formulation, it keeps precessing around "mov-
ing" internuclear axis when the appropriate initial
conditions are set up. In the (exact) V —R close-
coupling formulation of either body-fixed or space-
fixed frame, the electron will not keep precessing
around the internuclear axis whatever the initial
conditions may be. Therefore, one might call it
"E,, —conserving close-coupling approximation. "

A final remark about hybrid theory and the
present scheme will be added here. The m'
(or /, ) conservation plays a fundamental role
for reducing the dimension (or the number of
channels) of coupled differential equation in both the
original hybrid theory and the present approxi-
mation scheme. In comparison with the original
hybrid theory, the appearance of the total angular
momentum J in our scheme does not increase the
dimension of the coupled equation, while it does re-
quire solving the coupled differential equation more
often. Thus when the exchange and polarization po-
tentials are correctly included, the original hybrid
approach becomes much simpler than the yresent
one and it could be an enormous gain. We simply
want to point out that the present scheme is also
tractable in that case.

The approximation scheme proposed in Sec. IID
is being tested by direct numerical calculations.
The results of the calculation using our l, , -con-
serving close-coupling approximation as well as
the V- 8 close-coupling formulation in the body-
fixed frame of I and that of the hybrid theory will
be reported in a later publication.
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