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Vibrational and rotational transitions in lovv-energy electron —diatomic-molecule collisions. ~

I. Close-coupling theory in the moving body-fixed frame
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We present a vibrational-rotational close-coupling formulation of electron —diatomic-molecule scattering in

a body-fixed frame, with the target molecular axis chosen to be the z axis, The resulting coupled
differentia equation is solved in the moving body-fixed frame throughout the entire region of space, The
coupled di:Terential equation and asymptotic boundary conditions are given in terms of definite parity, which

are necessary for reducing the number of coupled channels. Procedures for evaluating cross sections

employing this body-fixed formulation are outlined, thus rendering the present formulation directly applicable
to numerical calculations. We discuss the advantages of the body-fixed formulation over a space-fixed

formulation for introducing approximation schemes, for studying resonance scattering of vibrational

transition, and for electron-heavy-molecule collisions. Aside from the formal equivalence between the two

formulatior. ,s, conditions are also discussed for obtaining identical results from them when a (finite) truncated

basic set is used.

I. INTRODUCTION

The electron impact vibrational and rotational
excitations of diatomic molecules are basic pro-
cesses occurring in many gas discharge lasers
providing the pumping mechanism directly and in-
directly. ' The vibrational and rotational transi-
tions (excitation and deexcitation) in electron-
diatomic-molecule collisions have also received
much more attention in both atmospheric' physics
and astrophysics. ' Laboratory experimental data
on electron-molecule collision cross sections are
rather extensive~' and much more developed than
its theoretical counterpart.

Among the various theoretical approaches' that
have been applied in the past are the classical
binary encounter theory of Gryzinski, ' plane-wave
Born approximation (PWBA), ' Glauber theory, '
distorted-wave Born approximation (DWBA), '
close-coupling theory, ' ' fixed-" and adiabatic-
nuclei theory, "and hybrid theory. " For resonance
scattering, a Boomerang model" derived from the
8 matrix approach and the Feshbach approach"
were suggested. At low energies, however, the
classical theory and the Glauber theory are not
appropriate. Only at very low energies close to
threshold, PNBA is accurate because the scatter-
ing depends on the quadrupole moment interaction
potential. It is also extremely difficult to obtain
rigorous solutions of R matrix and Feshbach ap-
proaches. Therefore, they must be considered
more or less phenomenological approaches for the
interpretation of experimental measurements.

The most general approach, from ab initio point
of view, for studying the vibrationaL-rotational
transitions of low-energy electron-diatomic-

molecule collisions is the close-coupling theory
which couples dynamically both the vibrational and

the rotational state of the target molecule. Con-
ventionally, this vibrational-rotational close-cou-
pling theory is formulated in the space-fixed frame
and is a natural extension of the well-known formu-
lation of Arthurs and Dalgarno" for rotational
close-coupling only.

In the space-fixed frame approach, one must
include a large number of target state channels
in the coupled differential equation when several
vibrational states are considered. This situation
becomes even worse for heavy target molecules
due to the large number of rotational states in each
vibrational manifold. Thus, most calculations
performed on the electron-molecule collision cross
sections with close-coupling approach, in the
space-fixed frame, were limited to pure rotational
transitions of light molecules. ' Developments of
reasonable approximation schemes within close-
coupling theory which reduces the number of target
state channels to a manageable level are both nec-
essary and desirable.

The vibrational- rotational close-coupling theory
can also be formulated in the moving body-fixed co-
ordinate system, where the internuclear axis of the
target molecule is chosen tobe the z ax'is, and there
appears several distinct advantages in such a for-
mulation. First, while it is formally equivalent to
that in the space-fixed coordinate system, the
body-fixed formulation is more tractable than
space-fixed formulation for introducing approxi-
mation schemes within the close-coupling the-
ory."' Second, in the body-fixed formulation,
the projections of incident electronic angular mo-
mentum onto the internuclear axis of target mole-
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cule are used instead of the rotational quantum
numbers, 'arid they are useful for describing the
resonance 'electron-molecule scattering of vibra-
tional tr6&f6ons. Moreover, the body-fixed for-
mulation has an advantage over that of space-fixed
frame for electron-heavy-diatomic-molecule
scattering as will be discussed later.

In this paper, we present a detailed vibrational-
rotational (V-R) close-coupling formulation of
electron-diatomic-molecule scattering in which
the resulting coupled differential equation is solved
in the body-fixed frame throughout the whole re-
gion. The coupled differential equation and asymp-
totic boundary conditions in the body-fixed frame
are given for each parity. Considerations of parity
are necessary for reducing the number of close-
coupling channels. Procedures for the evaluation
of V-R transition cross sections from the body-
fixed transition and reactance matrix elements are
also outlined, making this formulation directly
amenable to numerical calculations. Since space-
fixed and body-fixed formulation of close-coupling
theory have their own merits depending on various
circumstapges, the conditions of obtaining identical
results frory both formulations when a finite trun-
cated basis set is used are also discussed.

In the su/sequent paper, the relation between
the vibrational-rotational close-coupling theory
and the hybrid theory of Chandra and Temkin will
be studied. , Within the framework of the body-fixed
formulatioq. developed in this paper, an improved
approximation scheme is derived.

The arrangement of this paper is as follows.
For clarity of explanation, we briefly review the
V-R close-coupling theory of electron-molecule
scattering in the space-fixed frame in Sec. IIA.
The V-R close-coupling formulation in the body-
fixed frame is presented in Sec. IIB. The dis-
cussions are given in Sec. III. Finally, a sum-
mary is made in Sec. IV.

II. FORMULATION

A. Review of V-R close-coupling theory in space-fixed frame

The total wave function and the Hamiltonian of
the scattering system, i.e., the incident electron
plus the target molecular system, are given by

=4(r,',R)4~;,.'„(r,R),
k2

H, =H,(r,', R) — V„'

FIG. 1. Geometry of the scattering between an elec-
tron and a diatomic molecule.

Z 2

1r+EM„/(M„+M,)j R1
(4)

n is the number of electrons in the target molecule,
and Z„e,Z~e are the nuclear charges of nuclei A
and B (cf. Fig. 1). H, (r, ,R) is the Hamiltonian of
the target molecule-with the nuclei fixed at a dis-
tance R apart, and C ( r,'. ,R) is the MO-LCAO solu-
tion, that is,

a,(r,',R) e (r,' ,R) = (eR) C (.r R),~ (5)

-2(M M

A2

A+ 8 4Aj
" "2

the initial vibrational-rotational. quantum numbers
and the projection of rotational quantum number,
respectively, r, r,. are the position vectors of the
incident and the target electrons measured from
the center of mass of the target nuclei. 8 is the
internuclear vector and the prime denotes the
coordinates with respect to a coordinate system
in which the internuclear axis is chosen to be the z
axis. p,, and p, „arethe appropriate reduced
masses:

m(M„+M), M„M
Pe= M +M +m

-— j I"E= M +MA B A

M„,M~, and m are the masses of nucleiA and B
and the electron, respectively. V~ is given by

ZAe

1r-EMs/(M„+M )]Rl

after the center- of- mass coordinates of the whole
system have been separated out. Here, vjm, . are of the ground electronic state of the target molecule. "
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[In the present paper, we confine ourselves to 'g
state of the target molecule. The cross V' terms
in Eqs. (2) and (5') are usually neglected. ]
satisfies the Schrodinger equation,

&r+roym, =E+roj ~, ~ (t}

E is the total energy of the system. Multiplying
the above equation by C *(r,',R) on the left an. d in-
tegrating over target electronic coordinates r,',
we have

(7)

using the Born-Oppenheimer approximation,

[V„'@(r,',R)]+'„)„(r,R) =o,

V~C (r!,R) V„y'„',.' (r, R)=0.

Here,

V„- Vs + V(r }R,y) +co(R)
2p, g

V(r, R, y) =(C IV, I~),, (Q)

The subscripts, indicates the integration over r„
and cosy =r ~ 8/rR.

We would like to mention about our notation of
electronic wave function 4(rt, R) of target mole-
cule. If one defines the wave function C(r„R)in

thespace-fixed coordinate system from @(ri,R)
=C (r„R),then the meaning of V~I&(r„P)is clear
But in a specific primed coordinate system defined
by Euler angles ($„,8s, 0),

gg AR

for Z state (I.;,'=0). This is not trivial. Here L&'
is the total electronic angular momentum of target
molecule and thus, for example,

1(e) @i

x'. — -y'.

(g„,ys) —= (R) are the polar angles of 8 in the space-
fixed coordinate system. The reason why we use
the present notation of wave functions is that MO-
LCAO wave functions are essentiaQy given in the
primed coordinate system.

So far we have neglected the antisymmetry of
the incident and the target electrons, i.e., the
coordinates r and r,. in +~„& . In practice, one
takes into account of this exchange effect by in-
cluding an appropriate local exchange potential in
V(r, R, y) One a. lso includes an additional polari-
zation potential due to induced polarizabilities in
V(r, R, y).

The close-coupling formulation is concerned with
solving Eq. (7), where q!&~„(r,R) is given by"

g!z)„(r,R) = g g„..., , „,, (r){tl,eie(R) Yi~l'(P, R)(lM -m, . jm,.

IMAM)

F,*„()t,„,.)
vier OPS. Igtl

JAf

e'". ' (( )RF, ((() e $ —e""""{„,, ((()l;{}()j. „,(e,}., „.. ,

Here, k„,. is the incident electron momentum and

2 LIL~, (Z-e„,, ).

(10)

(j}„,i, (R) and e„,&, are the radial part of V-8 wave function [p„...(R) F&,„,(R)] and V-8 energy'level of the target
molecule, respectively. E is the incident electronic angular momentum relative to the center of mass of
the target molecule and g is that of the (total) electron plus target molecule, and

(12)

( +k„,i, g„...,
„

(ri) = ~, ~ V„,...e „,,„,„(rlg„„,„,„„,,(r).dv &ii& ii
g

ii

I' „''i(liRr) = g (I'm, j'm,
~ JM)y;, (r)y;. ,„(R).

lily F2

(I'mj 'm, I JM) is the Clebsch-Gordan coefficient. 2'

Substituting the first part of Eq. (10) into Eq. (7) projected onto appropriate target molecular basis and
from the last part of Eq. (10), we have

~„u„,.
g}}ei~ l oil(re) ~ l

y [5vev f55ileel Foeiele(r) +T e'le, oil (G+eie(e(r) +lF el( el)e)]r
+oo 1 Iyi
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Here,

=(-I)j"j"'~[(2l'+l)(2l" +1)(2j'+1)(2j"+1)]' '

(j oj o~ Xo)(l ol o~ko) V I ~ e tt( ) ~

II'j' J
2A. +I 'E/l

(15)

l' j'g
' 1l gtf

is the 6-j symbol" and

V„'...„„j„(r)= j R2dRy„.j.(R)V, (~,R)y„„j„(R).

0„&„,.i= dQ "' " ' 8

vj j J'l 'g

0'„~ „aqua= QQ ~ —cosO 8

(21)

(22)

V(r, R, y) =+V (j',R)P (cosy) (17)

V~(r, R) is the 1th harmonic component of V(r, R, y),
l.e.)

It is known that the parity (-1) '" is conserved,
( I) J'+ (+j ( 1)J'+ I' j'+( I) J+ l~'+ j"

(14) and (15) and that, from the symmetry of reac-
tance matrix, we obtain" I'~,j„,„»= (-1) ' + '

& T~„„..., . Therefore, the principle of detailed
balance

F„i,, , (r) =k„.-j.rj, , (k„.j.j'),
G„,,„,(r) = -k„...rn„(k„...~),

with j,, and n, , being the spherical Bessel and

Neumann functions, respectively.
7„..., , ... is the transition matrix element in

the total angular momentum representation. One
would employ (real) reactance matrix boundary
condition and obtain transition matrix from reac-
tance matrix [see Sec. IIBJ. f„... , ., (j') is the
scatteringamplitude when k„;is chosen to be the z
axis and one substitutes the scattering angles 8, p
for x. Then,

(2j +1)k„j(j„j„...= (2j ' +1)k2.j.o„.j.
is satisfied in the above formulation.

This is an extension of the Arthurs-Dalgarno formu-
lation, "who first proposed a similar formulation
as above for pure rotational transitions of atom-
diatom scattering with the assumption that the tar-
get molecule is a rigid rotator. The above formu-
lation, in principle, gives convergent cross sec-
tions for V-R transitions when one includes asuf-
ficiently large number of V-8 basis states. The
number of channels in the coupled differential
equations [Eq. (13)] for a given J' is large in that
case.

B. V-R close-coupling theory in body-fixed frame

4~
Q (2I +I)'j'&I'mj mj j'm,' )Jm, — .

~Vy~V'I'

x(logm i
j'm ~ )7 j j

x Y;, „,(e, y).

In this section, we present the formulation of the
V-R close-coupling theory in the body-fixed co-
ordinate system directly amenable to numerical
calculations.

We define the body fixed (x'y'z') coordinate sys-
tem moving with electron-diatomic-molecular
plane as follows":

The differential, integral, and momentum trans-
fer cross sections for the transition vj-v'j' are
given by

d(T()j e))~j~-
dQ

If, j„.,„,, (8, p)l', (2o)

z' =R/R, i)' =(Bx r)/~Hx r~, x' =y'xz'. (24)

%e note that this coordinate system is different
from the "body-fixed" coordinate system custom-
arily used in the study of atom-diatom scattering
where Z' =r/j . Thus the coupled differential equa-
tion and the asymptotic boundary conditions of the
present formulation are different, again, from
those of atom-molecule scattering. '4 "
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The formulation of V-H close-coupling theory in
the body-fixed frame is obtained from that of the
space-fixed frame by changing the angular basis
functions Yz'„''(r",R) of Sec. IIAto

) I I tt(R) = g U& t&f)&tgt(R) U&t
jt

yf,". (5„,)=U,.'„'(lM-m, l.m, ~ZM)y;*, „,(u„,). . (33)

2g+S &~2

DJ&&( R& 4R& y& x) 4v

D:*.(y. , 8., x)y,.(,o). (»)
D~~ (p„,8~, X) is the rotation matrix element~ and

(j)~, 8~, X are the Euler angles of rotation from
space-fixed frame to body-fixed frame (cosy =8 ~ r/
Rr). From the followingpropertyof the rotation ma-
trix,

Substituting Eq. (30) into the Schrbdinger equation
[Eq. (7)] and projecting onto appropriate basis
functions, we have

2je m r —J
I V &tlIt&Ill & It ) II It)It (r ) 5& IIIII '5

&
I

&
II

I'Ig(i' R) =QD' (gz&8s X)yg'(r"' R')

we have

yes( R)=QU;"DzÃ ~ 0g y x)

(26)

(27)

with

f~b —M rr y
t j ~

with

2j + I
U,.'„'= (lmj0~ Jm) . (28)

@2 6 vt ltmt mtt ~ uj t mt ~Vtj t uj tmtt yjt

( lm 'I -«I', lm "I -I", I&~ I -l, lm'I, lm "I, l&~ I - J) .

(36)

Here, primes indicate the polar angles with re-
spect to the body-fixed frame. It is seen that

In deriving Eq. (34), we have used the following
relations:

~ ~ ~
Jl J'l

Uj'mUjm =5~tjy

~ ~
~

J'l J'l
Uj tV; =5

j
The angular basis functions of space-fixed and
body-fixed frame are the eigenfunctions of j ' and
8 ~ 1/R =8 ~ J/R, respectively, in addition to 1',
J, and J,. j' and m' are incompatible quantum
numbers, since [ j ', 8 ~ 1/R]g0. Notice that j =(8'/
i) Bx Vs, 1 =(k/i) rx V„and J=l+j. Using Eqs.
(27)-(29), g~+&~ in Eq (10) can n. ow be rewritten asvjmj

vtl'rm
mtm" m

x D,"„""(8„,y„y,X) I,",".".(j„,) .
(30)

Here,

(31)

2J R2 aR 9R
'

2P R2

xy„.; (R) =~. ; P. ;;(R) (37)

R dRP„I,I (R)&j)„t~t(R) =G„t„tt, (38)

sin8&) slny d8&) dy d(t)s dX

xDr&&*(8R& Az&y&X)1'Dr&& (8R 4'z&y X)

Q j(i +1)UJ') Uz& (39)

The right-hand side of Eq. (39) is known to vanish
unless m -m' =0, ~1 and it should be noted that
P~... ,„„,„„„(r)is not diagonal with respect to m
indices due to the j dependences in (j)„,-(R). ""

Equation (34) is the coupled differential equation
in the body-fixed frame and g ~ .. .„,(r) has the
following asymptotic behavior:

g,'„., „,(r) I" Pa„,'..., „ I&„,„&...&'„'„.. .( )
m ym2

or
m3

(40)
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m»

i' QA, ,t.. . ..t. .t. .F'„',,„(t) tp[G '„... (t)+iF't„,„,,(r)„]Ft...„„,}. (41)
rheo m& m3

Here,

(42)

pent
t I F t' vtl l(t)

( ) f ttmtt

(43)

Av'l'm' m» ~j'm' v'j' ~j 'm» t
j

~J(+) —&fr J y ~J"v'l'm', vlm ~L v'l'm', vlm Tv'l'-m', vlm

V tvttmv l "vm" ( ) vl. " v'l'm'
~
v" r" m" (+)

V„v i l r mi v» l "m» L~

-J(.)v'l'm', m» 21~v'ltmt m» 6 v'l'-m',
A -J(&) —j fA -J . yA -J

v'l'm', m» ~L" v'l'm', m» " v'l'-m m»

(47)

~ v l'm', vfm ~j'm v'j l', vjl~jm '
j j

(44) G v'l'm' m" (+) &IG 'l' '
~

"( ) ~ 'l'- ' "( )] '

g'„,„,„,(r) is seen to be a solution of the coupled
differential equation [Eq. (34)] again.

Tv, , „,is considered as the transition matrix
element in the body-fixed frame and TJ,
=(-1)' "' T~t„„,t Since the parity (-1)~+t 't is
conserved in the space-fixed close-coupling theory,
we have

Then, they have the following properties:
—

p J(a) ( 5 -y —IJ(&) I
gv ~ ttmt, vtm(+) gv'!'-m'

~ tmv( t gv'I'm', vl-m(

g J(&) —yg J(&) -gg J(&)
v'l'm', vlm v'l'-m', vlm ~ v'l'm', vl-m &

Y tl I tll t(Y) t.V ll t tlltt ll(Y)
v v

-y tr J(&)" v'l'm' v"!"-m"(-J(~) + -J(~) ~ -J(~)v'l'm', m» ~ v'l'-m', m» ~ v'l'm', -m" ~

(48)

—J —Jgv't'm', vtm& t gv'l'-m', vl-m( (45)

~J ~Jv'l'm' v lm Tv'-l'-m', vl-m &

—J —J~ v'l'm', m" ~ v'l'-m', -m» &

-A &J
'"v'l'm', m» " v'l'-m', -m» t

&' r, (~) =&„'.
t ~;(r),

(46)

We now define the parity wave function,
gt~t~,'), „t„(r),and other related quantities as
follows

from Eqs. (35), (31), and (44).
Even without parity considerations, we obtain

—IJ I 5 ——iJ(+) I 3 —rJ(-)
gv'l'm', vtm& t gvt!'m', vtm& t gvtttm', vtm(+) t

~J g J(+) +g J(-)
v'l'm', vlm "v'l'm', vlm + v'l'm', vlm &

(49)
vr J(-)+ t v'l'm' v" t"m" (P) tI

~J —J(+) -J(-)~v'l'm', m» v'l'm', m» ~v'l'm', m» '

and G~~,", , „(t')as c„~t~t",'„, „ in Eqs. (48) and (49).
From Eqs. (31), (35), (36), (42), (43), »d (44),

one infers that (~), bere, corresponds to the parity
(-1)~' '""=(+) of space-fixed close-coupling
formulations of Sec. II A. Tbe parity wave func-
tion, g„'...",„t„(t'),is again a solution of the coupled
differential equation [Eq. (34)] as seen from Eqs.
(45) and (46), but it is convenient to rewrite that
equation as

(
2 I I.", —" '", ' g„„,, „,(r,'=, ~~ ( „„,„,„:,„„,'t l-"„.„."t.t ~„,. „)g„'-,„,„,(t')

v» l»m»

Here,

2 ~ (~) —J (~) —J(~) -a'(~)
(Vvtl l mt vtt! ttmll (0 ) 6vtvtt 6) t ltd Evt !tmt mtl)gvntt! ll mtt vlm(P) ( )50

v»l»m»
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Ia(;)a", +2 Q A'„'!,4')„ for (+) parity
~(t:) &(t) ~ m"&O

m" m"
m'

8 ', for (-) parity.
m") O

The asymptotic boundary condition is proved to be

(t') ~ t'
' QA„l j5„„t)t tl'„I (t')+g [G„l (&) +t'&„I, (r)] T„l ~

1
)

1
m 3

(~)

m1 t m3

(51)

(52)

v'j'l', vj l ~ ~ j'm v l'm', vlm~ jm
ml m

(53)

which is the inversion of Eq. (44). Since T„,
=0 when {-I)"'""g(-I) ~+'+ t, defining T„',(.;I, „,,

=T„..., „»with (-1)~+"+"=(-1)~+'+t=(+), we ob-
v g l, vjl

tain

From Eqs. (48)-(52), it is sufficient to consider
the non-negative and positive m' indices of rows
and columns in the quantities defined above for (+)
and (-) parity, respectively. Therefore, if one
employs the parity wave function, g„'~t~,'), „t„(t),
the number of channels of the coupled differential
equation is considerably reduced.

In the present body-fixed formulation, we solve
the coupled differential equation of the body-fixed
frame [Eq. (50)] up to the asymptotic region where
the interaction potential between the incident electron
and the target molecule is negligible and match the
solution with the asymptotic boundary condition of
Eq. (52) in that region, evaluating T~f,'), „,„

for
m', m~0 or m', m)0 depending on (+) parity, by
appropriate numerical procedures. We then find
the body-fixed transition matrix elements,
T„,„,„,, from the second of Eq. (49). Since we
have already obtained the expressions of all cross
sections in terms of space-fixed transition matrix
elements, T J ..., „,.

„

it is simpler to evaluate the
cross sections through these matrix elements with-
out further analysis. They are obtained from the

body-fixed transition matrix elements as follows:

computed from Eqs. (19)-(22) of Sec. IIA.
One can equivalently describe the present formu-

lation in terms of the real wave functions. The
real solution, f ~,

&, t. „»(r),of the space-fixed
coupled differential equation [Eq. (13)] satisfies
the following asymptotic boundary condition:

1/2 ")
J v' j'l', vjl k„,j,

'rB
+Z„',, „„G„,,:,, (~)]. (55)

v» is the reactance matrix elena'ent of space'-
fixed frame and it is real, symmetric (K„~ t,»
=E~,

t „.&,„).It is known that"

J' J'

gu�est't

', vent ( M fv' j't ', v" t'"l" (~) v" l l",v jt &

v" j"l"

(5 ~ -5' -5t ~ l-- &-. ;~ l ~ ":-l-)V V yv
vuja lu

l lrJ ~J
tt "v't'9" vent

fv't' ', m(vt) mg t'm'f v'J't', vlt ( )Rim ~ (59)

1/2

v'j't', vtt )'t
( v v 2 t l t+ v' 'l't, vj )'t

VI jl
(53)

From Eqs. (27)-(29), one can show that the real
functions, f„... .„t„(r)and f„'f, „t„(r),defined
as

~ J(a) ~ TT Jl'(W) g J(+) yPJl(a)v'j'l', vj l ~ ~j'rn' v'l'rn', vlm ~ j m

f„', , „t„(r)=g f„,„.„r (r)A
mtt

(60)

j T
(a) (a)

rr Jl'(&) ~ J(&) I y J&(&)~ j m' v'l'm', vlm ~ jm
m' m

(54)

are the real solutions of body-fixed coupled differ-
ential equation [Eq. (34)] and

f.'l ., (~)

Here, U, ,'(,' =U,. ", , with (-1) +' " =(+). The use
of Eq. (54) is more convenient than that of Eq. (53).
The scattering amplitude and all cross sections of
V-R transitions by electron impact, then, are

u'l'm' m v'v t'l v'l'm m1 1' 2
mlm2

J p+ J+Z. G, l .„.,(&)If. l ~.„.l., ~.t~..
m3
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with

m~

+Q 0:, „u)Z;,„,„,), (62)
3

Ovj~v' Jvj~vt jt .

From Eqs. (21), (29), and (53), we obtain

~ (mt)
+vj v' ~ ~vj v' (69)

VJ U
J'f

vtltmt vlm ~ j'm' v' j'lt v jl jm '
j'j (63) with

E„,, „,is the reactance matrix element in the
body-fixed frame and it is real, symmetric again
gt. t.„,„t„=K„'t„„,t „,). From Eqs. (56)-(60), we

obtain

( )L)Jgv')tmt v&m& ~ ~ J v' )'m' v" g "m ~ s&i v" ) "m" v)m &t u tv" l "m"

(64)

I J ( 4 M TIJ ( 'iin «i v ~ m, v" ~-m-~ ~-v")"m",v$m &

vll ) tl mtt

(65)

2

+vj~v' y2 2. +] ' ' ~ v'l'm', vlm~ jm

(VO)

The internuclear axis component of scattered
electronic angular momentum m' is also that com-
ponent of the total electronic angular momentum
of electron plus molecular compound system when
the target molecule is in Z' state, and thus the par-
tial cross sections +~j ~„,may be used to study the
resonance scattering. For comparison with ex-
perimental data on vibrational transitions, the fol-
lowing averaged cross section is frequently used.

v" l"m"
v'u"' l't" m'm" v' t'm', v"!"m")~5

~v~v' Q Pvj +vt'~v' Q Pvt' '

J ~J
v" t "m" utm Luv't'm' vlm ' (66)

(+) l (+) . J(a)
v'u" t'l" m', m" ~ t' vv mt "m")

vtt ) ttmtt

y '$~-lq J(+)
v» ) «m", v1m

g J(+)
v' f'm', vlm

with ~„",'„„=-,'(&„. .. +& . „„),is important.

(67)

III. DISCUSSIONS

In this section, we make some general comments
and discuss the merits of the present body-fixed
formulation.

The vibrational transition cross section is de-
fined as

easily understood. If one defines f„',"„',„,„(r)and

same way as Eq. (47), then they have the proper-
ties expressed in Eqs. (48) and (49). Furthermore,
f„'ft',„,„(r)isa so, lution of both Eqs. (34) and (50)
and satisfies an asymptotic boundary condition
which contains K„,",,', „,The detailed discussions
of the calculational procedures will be deferred
gntil the numerical results are reported. It is
sufficient to note here that the following relation,

p, (+) VJ(s)v'v" t't" m'm" 2'uv't'm'
~
v" t"m")

) tt m tl

y .l"-lv J(+)Tv" ) "m",v)m

Here, p,j is the equilibrium distribution of V-R
states f target molecule.

In the resent body-fixed close-coupling theory
approach, the coupled differential equation are
solved entirely in the body-fixed frame throughout
the whole region, obtaining transition matrix in
that frame; and one evaluates the cross sections
as described above. Thus, it differs from the
"frame transformation theory" of Chang and Pano"
in which they considered the body-fixed and space-
fixed frame in internal and external region, re-
spectively. We want to emphasize that present
close-coupling formulation of body-fixed frame is
entirely equivalent to that of space-fixed frame in
Sec. IIA (more specifically for each Z). The chan-
nel index (v'l'j') of space-fixed frame corresponds
to (v'l'm') of body-fixed frame for given Z.

However, one should consider the above equiva-
lence with caution in practical situations where
truncated basis are used. Let us assume that the
number of vibrational states are the same for both
space-fixed and body-fixed coupled differential
equation. In space-fixed close-coupling theory, it
is customary to truncate the rotational states up to
j',„(v')in each vibrational manifold. '" " In this
case, one cannot guarantee that both space-fixed
and body-fixed close-coupling theory would give
identical results on the cross sections. In order
that the results from both theory to be the same
in actual computation, one should not put any defi-
nite upper limits in j' and rn' values, except they
are restricted as follows:
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g & m', f' o m' with m' ~ 0(+) or m' &0(-) (for body-fixed theory)

for given J, $', but put the same upper limit $',„on
l' value. The number of channels of corresponding
parity of both space-fixed and body-fixed coupled diff-
erential equation is equal to each other in that case.

However, there are many circumstances in which
the truncations of j' values in space-fixed formu-
lation or m' values in body-fixed formulation of
close-coupling theory are inevitable in order to
keep the number of channels in a manageable size.
Then the results from both formulations may not
be identical.

In the electrori-diatomic-molecule scattering
with heavy target (in particular, heteronuclear)
molecule, many terms of harmonic components of
potential are usually needed. The rotational levels
are closely spaced in such target molecules and
the contributions of rotational states up to j',

„

=14-16 to the cross sections are more or less
equally significant. In body-fixed formulation, all
rotational states are taken into account to a cer-
tain extent, however one may truncate the m'
values. Rather than considering all those rotation-
al states in the space-fixed close-coupling formu-
lation which is practically difficult, it will be ef-
ficient to use body-fixed formulation with rn' val-
ues truncated appropriately; and m' is a better
quantum number in a heavier target molecule than in
lighter one. Therefore, one is encouraged to use
the present body-fixed formulation in this situation.

The internuclear axis (8) component of incident
electronic angular momentum, m', is not con-
served in the present (moving) body-fixed formu-
lation, while it is so in those of fixed-nuclei ap-
proximation or hybrid theory as will be discussed
in the following paper (Form. ulations of Secs.
IIA and 8 can be generalized to non-g electronic
states of target molecule replacing 4Y; . by
[(2j +1/16m')]'~2 (C z D'„*.

A
+ C A

D'* z), where ~A. j

corresponds to p, w, ~, . . . , states. j ' in V'~ should
also be modified accordingly. }

IV. SUMMARY REMARKS

%e have presented in this paper a V-R close-
coupling formulation in a moving body-fixed frame.

The resulting coupled differential equation is solved
throughout the entire region of interaction between
incident electron and target molecule up to the
asymptotic region. The coupled differentiaL equa-
tion and asymptotic boundary conditions in the
body-fixed frame were given in terms of definite
parity which are needed for reducing the number
of channels [the method of enumerating channels
of body-fixed coupled differential equation for
given g and parity is clear from Eq. (72)j. Pro-
cedures of evaluating cross sections from body-
fixed transition and reactance matrix elements
were outlined. Thus the present formulation is
directly amenable to numerical calculation.

awhile there is formal equivalence between space-
fixed and body-fixed close-coupling approach, con-
ditions for obtaining identical results from them
when (finite) truncated basis set is used are not
easily satisfied. Thus when one uses body-fixed
and space-fixed formulation of close-coupling
theory in internal and external region, respective-
ly, and truncates either j' or m' values, or both,
in their respective region, the two solutions can-
not be matched accurately on the boundary unless
one introduces further approximations.

It should be emphasized that both body-fixed and
space-fixed formulation have their own merits.
For studying resonance scattering of vibrational
transitions and electron-heavy-target-molecule
scattering, the body-fixed formulation wi11 be
more efficient, and the study of such an applica-
tion is presently being carried out. For electron-
light-target-molecule scattering where rotational
levels are widely separated, the space-fixed for-
mulation seems to be more convenient. However,
all present results indicate that body-fixed treat-
ment will be advantageous even for the lightest
molecule (H, ), except for very low energies close
to threshoM where PWBA is accurate (for rotation-
al transition). ' The body-fixed formulation is also
a convenient framework to develop further approxi-
mation schemes. In the next paper, an l,, -conserv-
ing close-coupling approximation is derived within
the body-fixed formulation.
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