Sternheimer antishielding factors for core electrons in metals: Comparison with free-ion results

K. D. Sen and P. T. Narasimhan

Department of Chemistry, Indian Institute of Technology, Kanpur-208016, India (Received 16 June 1976; revised manuscript received 17 March 1977)

The Sternheimer antishielding factor γ_{∞} has been calculated using nonrelativistic Hartree-Fock-Slater coreelectron wave functions for several metallic elements in the third, fourth, and fifth rows of the Periodic Table assuming the ground-state electronic configuration for the transition-metal atoms to be $3d^n 4s^1$, $4d^n 5s^1$, and $5d^n 6s^2$, respectively. These values have been compared with the available γ_{∞} values based on the free-ionic-core-electron wave functions. For the elements in the intermediate region of each row, the presently calculated γ_{∞} values are found to be significantly different from the frequently used free-ion values corresponding to the core-electron configuration.

I. INTRODUCTION

The electric field gradient (EFG) in metals and alloys has been traditionally interpreted as

$$eq = (1 - \gamma_{\infty})eq_{1att} + (1 - R)eq_{cond}$$
(1)

where eq_{1att} and eq_{cond} are the contributions to the EFG due to the lattice charges and conduction electrons, respectively. The Sternheimer shieldingantishielding factors,¹ γ_{∞} and R, arise due to the quadrupolar polarization of the core electrons. Values of $1 - \gamma_{\infty}$ have so far been calculated generally using free-ion wave functions and are found to be ~ 10-100. The calculated values of 1 - R are also generally based on wave functions of free atoms and ions and are found to be ~ 1.

Recently, Raghavan *et al.*,² have analyzed the available experimental data on the EFG in metallic systems and shown that, in general, the anti-shielding-corrected lattice field gradient is linearly related to the conduction-electron contribution. In light of such a universal correlation, it appears that the shielding-antishielding-corrected conduction-electron field gradient in metallic systems is not fully understood at present.

In their first-principles calculations of the EFG in Zn and Cd metals, Das and co-workers³ have shown that, whereas the field gradient due to the tight-binding component of the conduction-electron density is shielded by the traditional valence shielding factor 1 - R, the plane-wave component is "antishielded" by a factor closer to $1 - \gamma_{\infty}$. In particular, the plane-wave component is found to have an antishielding of 64% and 62% for Zn and Cd metal, respectively.

From the above considerations it becomes essential to have a knowledge of accurate theoretical values of the first term in Eq. (1). The eq_{1att} values are often computed fairly accurately by standard lattice summation methods.^{4,5} For γ_{∞} , however, values calculated⁶ for free ions have been frequently employed.³

On the basis of rigorous band-structural calculations,⁷ atoms in the third, fourth, and fifth rows, transition metals, are commonly represented by $(Ar)3d^n4s^1$, $(Kr)4d^n5s^1$, and $(Xe)5d^n6s^2$ configurations, respectively. The free-ionic values of γ_{∞} are less accurate since they do not incorporate the shielding effects of conduction electrons on the core. A more accurate value of γ_{∞} to be used in Eq. (1) can be calculated by using the core-electron wave functions corresponding to the neutral atom in the electronic configuration appropriate to the metal. The purpose of this paper is to report the results of our calculation of γ_{∞} values for a large number of cases using Hartree-Fock-Slater⁸ (HFS) wave functions corresponding to the ground-state neutral-atom configuration which leads to a more realistic potential experienced by the core electrons in actual metals as compared to the closed-shell free-ionic cases. A quantitative estimate of the repercussions of the conduction-electron shielding effects on γ_{∞} in several cases has also been obtained by comparing the presently calculated values of γ_{∞} with the free-ionic γ_{∞} values available in the literature.

II. METHOD OF CALCULATION

The method of calculation adopted in the present work is same as that described in our previous work.⁹ Thus, for the unperturbed state we have used 441-point-mesh HFS wave functions corresponding to the neutral atoms using a modified version of the Herman-Skillman program.⁸ As mentioned earlier, the transition-metal atoms of the third, fourth, and fifth row in the Periodic Table have been assumed to be in $(Ar)3d^n4s^1$, $(Kr)4d^n5s^1$, and $(Xe)5d^n6s^2$ configurations, respectively. The nuclear quadrupole moment-perturbed radial wave functions $u'_1(nl - l')$ have been obtained by directly solving the first-order

16

1786

		Contribution	Contribution					Contribution	
		per 3d			per 4d			per 5 <i>d</i>	
Ion	Core (Ar)	electron	Ion	Core (Kr)	electron	Ion	Core (Xe)	electron	
к	-17.86	•••	Rb	-49.34	•••	Cs	-99.65	•••	
Ca	-13.67	• • •	\mathbf{Sr}	-38.93		Ва	-81.07	•••	
Sc	-13.37	-4.57	Yt	-36.00	-9.12	La	-72.66	-5.42	
Ti	-12.21	-2.93	\mathbf{Zr}	-32.51	-5.54	Hf	-61.50	-5.11	
v	-11.29	-2.21	Nb	-29.75	-3.97	. Ta	-56.9	-4.92	
Cr	-10.53	-1.80	Мо	-27.57	-3.09	W	-52.83	-4.15	
Mn	-9.90	-1.53	Te	-25.65	-2.56	Re	-49.60	-3.52	
Fe	-9.34	-1.38	Ru	-24.10	-2.20	Os	-46.83	-3.09	
Co	-8.85	-1.27	Rh	-22.59	-1.93	Ir	-44.29	-2.77	
Ni	-8.43	-1.17	Pd	-21.55	-1.73	\mathbf{Pt}	-42.23	-2.51	
Cu	-8.04	-1.10	Ag	-20.52	-1.57	Au	-40.28	-2.30	
Zn	-7.33	-0.58	Cd	-18.98	-1.07	Hg	-38.52	-2.13	
Ga	-6.64	-0.31	In	-17.28	-0.79	Tl	-35.22	-1.66	
Ge	-6.03	-0.27	Sn	-16.18	-0.63	Pb	-33.27	-1.32	
As	-5.51	-0.21	Sb	-14.76	-0.52	Bi	-31.03	-1.12	
Se	-5.06	-0.17	Те	-13.70	-0.45	Po	-29.14	-0.96	

TABLE I. Sternheimer antishielding factor γ_{∞} corresponding to the closed shells and γ_{∞} per *d* electron in the elements of third, fourth, and fifth row of the Periodic Table. The transition-metal elements have been assumed to have $3d^{n}4s^{1}$, $4d^{n}5s^{1}$, and $5d^{n}6s^{2}$ electron configurations, respectively.

Schrödinger equation

$$\begin{bmatrix} -\frac{d^2}{dr^2} + \frac{l(l'+1)}{r^2} + V_0(r) - E_0 \end{bmatrix} u_1'(nl+l') \\ = u_0'(nl) \begin{bmatrix} \frac{1}{r^3} - \left\langle \frac{1}{r^3} \right\rangle_{nl} \delta_{ll'} \end{bmatrix}.$$
 (2)

An iterative computer code for solving Eq. (2) via the difference equation has been developed in our laboratory. γ_{∞} is obtained as

$$\gamma_{\infty} = \sum_{nl} c(nl + l') \int_0^{\infty} u'_1 u'_0 \, r^2 dr \,, \qquad (3)$$

where the constants c(nl+l') have been tabulated by Sternheimer.¹⁰ In the cases of atoms with incomplete d shells, c(nl+l') values have been multiplied by 0.1, and the values of γ_{∞} per d electron have been obtained by summing the contributions from nd + s, nd + g, and nd + d perturbations. All integrals have been evaluated by using the formula for integration through adjacent intervals including fourth-order differences.¹¹

III. RESULTS AND CONCLUSIONS

In Table I, we have presented the results of our calculations of γ_{∞} corresponding to the core and the single *d* electron for the cases of third-, fourth-, and fifth-row elements in the Periodic Table. The core configurations in these three cases correspond to the ground-state electronic configurations of Ar, Kr, and Xe, respectively. The combined screening effects of the valence electrons are expected to give rise to more external core-electron wave functions as compared

to the free ions. This means that $|\gamma_{\infty}|$, using neutral-atom wave functions, should be larger than the corresponding free-ionic value, and the difference should increase with the increase in ionic charge. We note here that calculations of γ_{∞} using neutral-atom HFS wave functions have been reported by Sternheimer¹² in the cases of In, Bi, and Am. Our calculations¹³ using ionic HFS wave functions for In³⁺, Bi³⁺, Bi⁵⁺, and Am²⁺ show, as expected, that the use of neutral-atom wave functions increase $|\gamma_{\infty}|$ by ~5–10%. Das³ has recently arrived at similar conclusions in the cases of Be, Mg, Zn, and Cd.

For a few cases of the atoms in the intermediate region of the transition-metal elements in the Periodic Table, we have earlier calculated¹⁴ γ_{∞} using ionic HFS wave functions. In the cases of Sc, Yt, and La, the use of ionic wave functions underestimates $|\gamma_{\infty}|$ by ~20%, 14%, and 10%. Comparing the $|\gamma_{\infty}|$ values corresponding to the metal cores of M^{4+} , M^{5+} , and M^{6+} , having 3d and 4d electrons with the present values, we find that for Ti⁴⁺ and Zr⁴⁺, the underestimation is ~28% and 20%, respectively, while for V ⁵⁺ and Nb⁵⁺ it is 34% and 25%, respectively, and for Cr⁶⁺ and Mo⁶⁺ 39% and 30%, respectively.

In view of such significant differences observed in the cases of these metals and in absence of the calculations of γ_{∞} including the screening effects due to the conduction electrons on the core in general, we recommend the use of the presently calculated γ_{∞} values in interpreting the EFG data on metallic systems. Our present results should also be useful in ascertaining the net relativistic effects on γ_{∞} when calculations of γ_{∞} using relativistic HFS wave functions corresponding to the neutral atoms become available. The calculations of *r*-dependent antishielding factors for the atomic systems considered here are in progress.

ACKNOWLEDGMENT

We thank the staff of IBM 7044/1401 computer system at the Indian Institute of Technology, Kanpur for their cooperation.

- ¹R. M. Sternheimer, Phys. Rev. <u>80</u>, 102 (1950); <u>84</u>, 244 (1951); <u>86</u>, 316 (1952); <u>164</u>, 10 (1967).
- ²R. S. Raghavan, E. N. Kaufmann, and P. Raghavan,
- Phys. Rev. Lett. <u>34</u>, 1280 (1975); P. Raghavan, E. N. Kaufmann, R. S. Raghavan, E. J. Ansaldo, and R. A. Naumann, Phys. Rev. B <u>13</u>, 2835 (1976).
- ³T. P. Das, Phys. Scr. <u>11</u>, 121 (1975); N. C. Mohapatra, P. C. Patnaik, M. D. Thompson, and T. P. Das, Bull. Am. Phys. Soc. <u>27</u>, 105 (1976); P. C. Patnaik, M. D. Thompson, and T. D. Das, *ibid*. 21, 240 (1976).
- ⁴F. de Wette, Phys. Rev. <u>123</u>, 103 (1961); F. de Wette and G. E. Schacher, *ibid*. <u>137</u>, A92 (1965).
- ⁵T. P. Das and M. Pomerantz, Phys. Rev. <u>123</u>, 2070 (1961).
- ⁶F. D. Feiock and W. R. Johnson, Phys. Rev. <u>187</u>, 39 (1969).
- ⁷See, for example, K. J. Duff and T. P. Das, Phys. Rev.

- B <u>3</u>, 192 (1970); O. Jepsen, O. K. Andersen, and A. R. Mackintosh, Phys. Rev. B 12, 3084 (1975).
- ⁸F. Herman and S. Skillman, *Atomic Structure Calculations* (Prentice-Hall, Englewood Cliffs, N.J., 1963).
- ⁹K. D. Sen and P. T. Narasimhan, Phys. Rev. A <u>14</u>, 539 (1976).
- ¹⁰R. M. Sternheimer, M. Blume, and R. F. Peierls, Phys. Rev. <u>173</u>, 376 (1968).
- ¹¹D. R. Hartree, *The Calculation of Atomic Structures* (Wiley, New York, 1957), Chap. IV.
- ¹²R. M. Sternheimer, Phys. Rev. <u>159</u>, 226 (1967).
- ¹³K. D. Sen and P. T. Narasimhan, Phys. Rev. A <u>14</u>, 880 (1976); K. D. Sen and P. T. Narasimhan (unpublished).
- ¹⁴K. D. Sen and P. T. Narasimhan, Phys. Rev. B <u>15</u>, 95 (1977).