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Within the frame of the in6nite-nuclear-mass approximation a difFerential inequality 'for the square root of
the one-electron density is derived. This linear differential inequality is structured like a one-particle
Schrodinger equation and leads to results on the analytic behavior of the electron density p in the region far
from the nuclei. A domain determined by the potential and the ionization energy is given where p is
subharmonic. For atoms it is shown that the spherically averaged electron density is a convex monotonically
decreasing function outside some sphere whose radius depends on the ionization energy and the electron
nuclear attraction. Furthermore, an upper bound for the electron density is given in terms of Whittaker
functions which decreases exponentially and is exact for the s states of the H atom. It compares favorably
with the results given in the literature.

I. INTRODUCTION

In atomic and molecular quantum mechanics the
only exactly solvable problems are the one-elec-
tron problems, 8, and within the Born-Oppen-
heimer approximation, 8,'. To get deeper in-
sight into the analytical properties of the one-electron
density of many-electron systems, it is desirable
to investigate those features of the one-electron
density of one-electron systems that carry over
to the many-electron case.

Mainly, two results are to be mentioned: the
cusp conditions derived by Kato' and the results
concerning the asymptotic behavior of the electron
density which have been recently obtained by var-
ious authors. ' '

Here we give a differential inequality structured
like a one-electron Schrodinger equation —there-
fore we call it a "Schrddinger inequality" —which
the exact spinless electron density has to satisfy.
This differential inequality leads to new results
about the fall-off of the electron density.

II. THE "SCHRODINGER INEQUALITY"

We consider the electronic Schr5dinger equation
of a molecular system within the infinite-nuclear-
mass approximation,

(2 l)
g(x„... , x„}being the normalized wave function in
the configuration space Its" (spin enters only by
permutation symmetry of g}, E the corresponding
eigenvalue of the Hamiltonian

(2.2)

(2.3)

Thereby Z& and X& denote the respective charge and
location of the j th nucleus and rtt =

i x, —xt i the
interelectronic distance. The origin of the coor-
dinate system is conveniently chosen such that it
is invariant under the symmetry operations of the
molecular symmetry group G.

Since in the subsequent considerations the ioniza-
tion potential e plays a central role, we shall give
a definition of e following partly the work of Ahl-
richs."We first have to consider the permuta-
tional and spatial symmetry properties of g,
which is associated with an irreducible repre-
sentation I' of G. Using the nomenclature of
Wigner, '

g can be classified according to an irre-
ducible representation D~" of the symmetric group
S„where 0(h «[n/2] due to the Pauli principle.
From such a state the system can be ionized only
into (rt —l}-particle states which transform (i)
according to the irreducible representations D~'
with i = h or i =h —l of S„,and (ii) according to an
irreducible representation I" of G, for which an
irreducible representation I'" of G exists such
that in the decomposition of the direct product I'
S I' into irreducible representations, I' occurs,
denoted by I ~ I'S I" in the following. Let
E," ' (8'i'1, I") denote the ground-state energy of
H " ', the Hamiltonian of the ionized system, in
the subspace of functions with the symetry pro-
perties D' ' and l"'. Now we define E'":&»by

t

min 8" ' (D't'~ I") (2 4)r, D f=k, k-l(k) 0 t

r'. rsr' r"
where the right-hand side is minimized over all
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I" for mhich a I'" exists such that I'~1"SI" .
Then the ionization potential e of the state des-
cribedd

by (t) is given by

(2.5)

p(x„x,') =x f p" (x,', x„.. ., x„)

xy(»„. . . , x„)dx,. ..Ck„. (2.6)

In the following~ - indices mill be suppressed if no
confusion is possible.

Theorem 2.

—,'v~[p( )]l/2 [g y( )][p( )]l/~ o.

Proof. Starting from

(2.7)

(2.8)

8 ~(y) ~ Eer, 5
%'e shall prove nom a differential inequality in

the distribution sense for the positive square root
of the one-electron density p(x, ), the diagonal of
the one-electron density matrix

--,'v'p(», x ) j„„,+[~ —v(x)] p(x) o. (2.14)

From (2.14) we shall arrive at (2.V) with the aid
of 'LeQlIQa 2.

L,emma 2.

j
vp'/' j' - n~jv, q j'dx, . ..dx„. (2.15)

P~oof. Obviously
'

2

f&; 1 () I
'«, . ..«„

easily seen that the functions g'; transform ac-
cording to the reducible representation 8'~
8D'~~ '~ of S„,. lf we insert (2.12) into
fg*H~" '~|C) dx, . ..dx„and use the orthogonality re-
latjons between functions belonging to different ir-
reducible representations, then the variation prin-
ciple together with the definition (2.4) of E„'"&I»
leads to inequality (2.10).

Combining (2.5) and (2.10) and neglecting the
positive interelectronic repulsion term in (2.9),
me obtain

and integrating this expression over the coordi-
nates x, to x„ leads to

-(I/2n)v'p(x, x') j„=y -(I/n) [E+ t/(x)] p(x)

d~2 ~ ~ d

and by the Cauchy-Schwarz inequality me get

(2.16)

n

+Q r, jyj'dx, . . .dx„=o, (2.9)
5=2

where H " ' acts on the coordinates of electrons
2 ton.
I.emma

jvpj' 4np jv, y j'dx, . . .dx„.

Equation (2.17) together with

Ivp" I'= jvp j'/4p

proves Lemma 2.
It is easy to see that

(2.17)

(2.18)

*H" ' de. . .dg„~E'":,', ]. n p g . 2.IO

Proof. According to Carlson and Keller, "
mi(»1) ' j x)))

1
Z',."F, (x, )G,.(x„.. . , x„), (2.11)

n

where

ql/2 r dr fr r
n~~'

rc r'g r»

dr»» pF pf

r.'

(2.12)

(2.13)

with f, and g, normalized to 1. Further it is

where I', and G; axe the natural orbitals corre-
sponding to the 1- and (n —1)-reduced electron
density matrices which both have the same eigen-
values X,. Obviously g can be represented as

--,'V'p(x, x') j,.~
=--*'x*p(x)+xf I A'I' x,. . .««(&.)Il)

Using Lemma 2 me have

p(» «p)
j

) l pl/RVRpl/S (2.20)

Equation (2.21) also holds for the square root of
the spherically averaged electron density

Combining (2.14) with this inequality completes the
proof of Theorem 1.

Inequality (2.V) holds in the domain

D =[«E-8 j6 —V(x)-0, [p( )]' 'to)
in the classical sense. Hence p'~' is subharmonic
in D. Since p' ' is nonconstant, the maximum
principle" implies that p' ' cannot attain a local
maximum at any interior point of D.

Especially for atoms, inequality (2.7) reads

--'v'[p(x)]' '+ (e —Zr ')[p(x)]'™~ 0. (2.21)
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1
p,„(r}=4

0
p(r, 8, P) sin8d8dg. (2.22)

The proof is straightforward by observing -V'
& p'„(p„being the radial momentum) and

where

c= v,r, [ Wxi(2 )1/2(4Z/(2e)' '}] ',

v, o max [p(x)]" (3 2)

f ~[p,„(r)]~i2 f2

--,'u" +(e —Zr ')u ~0. (2.24)

From (2.24), elementary considerations show that

rpav y pav v r p and pav are convex and mono-
tonically decreasing for r & Z/e.

The analogous result to Theorem 1 for the
k-electron density

PA( lt ' ' ~ xk)

'dg~„~ ~ ~ dx„, k & n 2.25

is
k

--,.'v', ',~'+,. —V(,)+gr;,.' p,'2 ~0, (2.26)

e, denoting the ionization potential of the (i —1}-
fold ionized state obtained from g. For k = n this
inequality becomes

(2.27)

which can be also deduced by Kato's inequality. "
The proof of (2.26) runs just the same way as

before. In the following we shall deal only with
the one-electron density, and therefore we shall
not discuss (2.26) any further.

III. ASYMPTOTIC BEHAVIOR OF THE ELECTRON DENSITY

In this section the existence of upper bounds to
the electron density p of an atom decaying like

'~ e ' " " wi].l be shown and an ana-
logous result for molecular systems will be
given. This improves the results so far known' '
that p(x) ~ Ce '""with ct & (2e)' ' and C a constant.

We consider the quantum-mechanical system
given by (2.2). The following theorem holds:

Theo~em 2. Let

zg z, , p= max fx f,
j=r y~j~m

and let r, & Z/e+p; then

[p(x)]'i' ~ cr 'Wxi&„& ~&2, &, (2(r —P)/(2e)'i')

for fxf=r&r, , (3.1)

dx. . .dx sin8d8dg (2.23)
n 8$
4w Br 7

where (2.23) is implied by Lemma 2.
Denoting r[p„(r)]' ' by u(r), we see that

and Wz/(2 ) &/2 y/2 denotes the Whittaker function. "
Theorem 2 generalizes the results of Bazley

and Fox" (BF) on the electron density of one-el-
ectron molecular systems to many-e1ectron sys-
tems. The only difference is the occurrence of
the ionization energy e rather than the corre-
sponding energy of the one-electron system.

The proof of Theorem 2 is—with minor modi-
fications —parallel to the method of demonstra-
tion used by BF and will -therefore be only
sketched.

Sketch of ike Proof. According to Theorem 1,
p' ' satisfies inequality (2.7) which can be written
as an inhomogenous differential equation:

--.'v'[P( )l" [.—V( )]I:P( )]"
= q(x) with q(x) ~ 0. (3.3)

Let f be the radially symmetric function de-
fined by

f (r) = e- z(r —p) ' . (3.4)

Then obviously

0 &f (r) ~ e —V(x) for
f
x

f

& r, . (3.5)

It can be shown' that the differential boundary-
value problem,

——,-'V'v +fv = 0, f
x

f

& r, , (3 6)

v square-integrable for fx f&r„v(x) =v, for
fx f=r» v, max ~„~ „[p(x)]'i', has the unique
radially symmetric solution

(3.7)v =cr '
Wx&&„&&i, (2(r —P)/(2e)' '),

c given by (3.2).
Now p'~' & v for fx f

&r, has to be shown. For
this purpose we define w by u (x) = v(x) —[p(x)]' ',
which satisfies

——,V'se +(e —V)w= —q+(e —V-f )v,

u (x}-0 for fx f
=r,

(3 6)

according to (3.3) and (3.6). Then we consider
the functional

Q(g) = [.—I
vlf'+(e —V)g'

lx t

—2[(e —V-f )v —q]g] dx,

(3.9)g~r
where r denotes the class of real functions g being
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(
g p'/2

P dx ~ 2T,
3

(3.10)

T being the kinetic energy. Thereby, the last in-
equality is an immediate consequence of Lcm~a
2.

In exactly the same way as BF, it can be shown
now that Q is minimized uniquely by I and that

Q(~w )) ~ Q(w), which implies the positivity of w.
For large argument f, W~ ~@,~ ~/2, /, (f }has the

asymptotic expansion

W i/~ (f) =f i"i e '/'[I+0(t ')]
r

Hence for sufficiently large r, there is a constant
k(e, Z, p, ro) such that

(3.11)

[p(x))1/2 (~ 1(r p)z/(2f) e (2E) (r&)-

bounded and continuous, with bounded piecewise-
continuous partial derivatives of first order, with
g(x}=w(x) for ~x

~
=r„and for which the occurring

integrals in Q exist. It is easy to see that (3.8) is
the Euler equation corresponding to Q.

In order to prove w& 0 for
f x) -ro, w, fr f

c: I"

has to be shown. But this follows easily from the
properties of v and p'/' together with (3.3) and

[p(x))' ' ~y+/' 'i 'e "' " (x(~r, .(3.13)

%e note that for s states of one-electron atoms,
(3.1) becomes optimal.

However, one should expect on physical grounds
that [p(x)]' ' behaves asymptotically like

yr-t (r P)z */(2e) -y e-(as) (r-I ) Zw —Z

This conjecture" follows from a simple physical
picture. One places one electron far away from
the nuclei and the other electrons near the nuclei.
Then the electron certainly "sees" an effective
charge Z*. To prove this conjecture an adequate
handling of the electron repulsion is necessary,
which we have not achieved so far. Therefore our
rigorous upper bounds —though assumingly showing
the correct exponential decrease —are not quite
satisfactory concerning the Z dependence of the
pr e- exponential factor.

Since (p,„,)' ' satisfies inequality (2.21), the
estimates (3.1) and (3.13) are valid also for (p,„)'/'.
In order to compute (3.1) an upper bound to
[p,„(r,)]' ' is needed. For this purpose the bounds
given by Hoffmann-Ostenhof ' or by Redei" may be
used.

a result which has been already conjectured by
Ahlrichs. '

For atoms P =0 and the last inequality reads
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