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Analytic expressions for relativistic screened Coulomb radial wave functions, including bound-state energy
eigenvalues as well as bound and continuum wave-function shapes and normalizations, are given explicitly as
series in X nZ '". The method employed is a direct generalization of an approach previously used for the
nonrelativistic case. The analytic expansions which we obtain are compared with exact numerical solutions of
the Dirac equation for relativistic Hartree-Slater potentials. Low-, intermediate-, and high-Z cases are
considered for a wide range of energies and angular momenta. In general, excellent agreement is found for
both inner bound states and for relati. vistic continuum states.

I. INTRODUCTION

We have recently considered an analytic per-
turbation theory for the construction of nonrela, -
tivistic screened Coulomb wave functions' which
is based on an expansion of the potential in the
interior of the atom of the form

V(r) = ( a/r) [1+ V,~r+ V, (~r)2 ~ V, Pr)'+ . I,

where a = nZ and X
—= 1.13nZ'~' is a. sma, ll param-

eter characterizing the screening. (n is the fine-
structure constant and Z the nuclear charge. )
Both bound and continuum states are obtained.
Bound-state energy eigenvalues and wave functions
are expressed as series in X with simple analytic
coefficients. For inner shells these wave function. s
are in. good agreement with exact numerical re-
sults throughout the interior of the atom. Since
this includes all of the region in which the wave
function is large, bound-state normalizations for
these cases are also obtained as series in A. Con-
tinuum states may be obtained simply by analytic
continuation from the bound- state case using the
substitution q- —i v= -ia/P, . This requires the
introduction of an additional (Coulomb) energy
parameter which is shifted by a, definite amount
from the physical kinetic energy associated with
the continuum wave function. By considering also
the irregular (Jost) solution we obtain an expansion
for the continuum normalization. In a subsequent
paper' this theory was extended to include the pos
sibility of arbitrary energy shift.

These nonrelativistic screened wave functions
have been applied to the calculation of photoeffeet
cross sections in nonrelativistic dipole approxima-
tion. ' Excellent results are obtained in compari-
son with exact numerical evaluations in the same

I

screened potential. More recently the procedure
has been extended to a systematic study of photo-
effect from atomic ions, 4 to the nonrelativistie
calculation of internal-conversion coefficients
and to the screening corrections to radia-
tive electron capture. ' It is clear, however,
that further progress in these areas requires an
extension of our theory to the relativistic case. '

In the following we present explicit results for
solutions of the Dirac equation for realistic screen-
ed Coulomb potentials which can be represented in
the form (1). The method employed is a, direct
extension of that employed previously and a de-
tailed exposition of the theory can be found in Hefs.
(1)-(3). The modifications of the theory which are
necessary for the relativistic case as well as our
final analytic expressions for both bound and con-
tinuum wave functions are given in Secs. II and III.
In Sec. IV we compare our analytic results with
exact numerical evaluations. In general, we find
very good agreement comparable to that obtained
in the nonrelativistic case.

II. BOUND STATES

The Dirac equation for a central potential can.
be written in. the form

[-io. ~ &+ P —(E —V) j /= 0,
where g= (~~), with &f& and y two-component spinors,
and

t/0 'I t/I o)
(a 0] (0 I)-

We use natural units, 5= c = m, = 1, so that dis-
tances are measured in electron Compton wave-
lengths and energies in units of the electron rest-
mass energy. V(r) is the screened potential and
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E is the energy of the (bound) electron. The regu-
lar solutions of this equation which are simul-
taneous eigenfunctions of H, J', Jz and parity can
be written in the form

1 t/zf „(r)Q„„(r) i

g „(r)Q „(r)j
where the angular functions Q„are simultaneous
eigenfunctions of J', L', S', and Jz K is defined
by

Fina, lly, we set

where the matrix A is given by

1 (1+E,)'" (1+E,)"'
~2 ((I E )"' (I E )'"

(I+a ~ L)~„„=«Em I

so that

-(I+1), j=l+-,'-
K=V (j+ E=

t, j=l ——,
'

Substituting (3) into (2) we obtain the following
coupled ordinary differential equations for the
radial functions f(r) and g(r),

df Kf a
+ ——E,+ 1+ —g= (5E —5V)g,dr

(4)
F, (x) and F, (x) then satisfy the euqations

—1
(5E —5V)(E,F,+F2),

C

d y
&~+ +x dx x———+ E,—1+ —f= —(5E —5V)f,dr r ' r

where V, = a/r and E, is the point-Coulomb
binding energy and 5E=E —E, , 5V= V —V, .

Defining reduced radial functions u(r) and v(r)
such that f(r) =Nr" e ~ u(Er), g(r) =Nr"e ~ v(Er) and
making a change of variable x=2p, r, where y'= K'

—a' and P, = 1 —E, (N is a normalization constant
and will be discussed later), we find the following
equations

d 1 y+K E +1 a

1

2P.
(uE ])V)v,

d 1 y —K E, —1 a

(6E —6V)u .
C

1
, (5E —6V)(F, +E,F,),
C

(9b)

where q = aE, /P„, q' = a/P, = (]I'+a')' ' .
In order to solve these equations (9) we first

rewrite Eq. (9b) in the form

F, (x) = y F,(x)+
d y-n 1

K —q' dx x ' 2p',

x (6E —5 V)(E(x) +E, E( )x]

(10)

We then substitute the right-hand side of Eq. (10)
into the left-hand side of Eq. (9a) whenever F, (x)
appears, obtaining

-x + —1+ 2y+ 1 d y g F (x)Ldx' x dx x

= n„„F,(x)

K
(IIE —II'V)(E,E, (x)+E,(x)1, ——(+

)
(IIE —IIV)(E, (x)+E,E, (x)] . (I()

C C

These equations, (10) and (ll), are the basic
equations which we have to solve. They are the
relativistic analog of Eq. (4) of Ref. 1. In the
bound-state case the boundary conditions on F, (x)

and F,(x) are that the wave function defined by
them be square integrable and that the difference
between the screened and point-Coulomb wave
functions vanish at the origin. (See the discussion
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in Ref. 1 and references therein).
Following the procedure of H.ef. 1 we expand the

solutions of Eqs. (10) and (ll) as series in X of
the form'

x —M (a, b, x) = a [M(a+ 1,b, x) —M(a, b, x)],d

and using the fact that

F,(x) =F', (x)+~'A, (x)+~'A, (x)+ ~ ~,

F,(x) = F,'(x)+ X'B,(x)+ Z'B, (x)+ ~ ~ ~, (12)

&„„M(y—q s, 2y+ 1,x) = sM(y —q —s, 2y+ 1,x) .

(17)

where F;(x) and F;(x) are the point-Coulomb solu-
tions. Explicitly,

S/2
F', (x) = (y - q ), — M(y 7i+ 1, 2y+ 1,x)

7/ —K

Although the algebra is considerably more in-
volved in the relativistic case, the essential fea-
tures are the same as outlined in Ref. 1. We find,
then, that A„(x) and B„(x) have the form

=(y q)e ~M(y- q+1, 2y+1, x),
j./z

F', (x) = (y+ q), M(y —q, 2y+ 1,x)'g'+ K

= (y+ q)e'M(y q, 2y-+ l, x),

(13) A„(x) = P n", (P„v) M(y q+1 s, 2y+ 1,x),
S= -n

(18)
n

B„(x)= P P,"(P, , v)M(y q s, 2y+ l, x),
S= Tf

E = E,+ XE, + X'E + X'E + ~ ~ ~, (14)

where E„ the point-Coulomb binding energy for
the state described by the quantum numbers n,
K, ls given by

E,=[i+a'g(~ ix i+y)']- ~ . (15)

As in the nonrelativistic case, the requirement
of square integrability determines the coeffic-
ients E„.

Finally, employing an expansion of the potential
(1) we can obtain analytic expressions for the co-
efficients A„(x) and B„(x) by expanding the right-
hand sides of Eqs. (10) and (11) in terms of con-
tiguous CHF according to the relations

xM(a, b, x) = aM(a+ 1, b, x) + (b —2a)M(a, b, x)

+ (a —b)M(a —1,b, x),

x —1 M(a, b, x)
X

= (a —b) [M(a, b, x) —M(a —1, b, x)], (16)

where M(a, b, Z) is a regular confluent hypergeo-
metric function (CHF) and for bound states, 7l- y
= 0 =n —

i
v

i
= 0, 1, 2, . . . . The boundary conditions

require that the coefficients A„(x) and B„(x)de-
fining the solutions (12) satisfy the conditions A„(0)
= B„(0)= 0.

We also expand the bound- state energy eigen-
value as a series in X,

with

p,"(p, , ~) = ".n,(-p„~) . (19)

E = E, —ViA.a+ 2 X V2(E c + g —37ig')

+ (aA.'V, /2p,')[(2E,'+ 1)z'+ 3E,z —47'' q" 1] .

(20)

This analytic expansion of the bound-state wave
functions gives a good represen. tation of the exact
screened Dirac wave fun. ction in the interior re-
gion (cf. Figs. 1-4).

Since the wave functions defined by (12) and (18)
are square integrable, the determination of the
normalization constant N is straightforward. We
require

(We note that P, --P, implies q--r(, p'-
and g- —g. ) Explicit results for these coefficients
n", for n = 2, 3 are given in Table I. We note that in
the bound- state case n", = 0 unless y- q + 1 —s
= integer ~0 and P", =0 unless y —q —s= integer ~0.
Hence, the relativistic bound-state functions de-
fined by (12) and (18) will be polynomials to any
finite order in X. At the same time, the bound-
state energy eigenvalue, to third-order in A. , is
found to be equal to

[f'(r) + g '(r) ] dr = 1 = (2 P,)
"' x'" "[F',(x)+ F,'(x) + 2E, F,(x)F,(x)] dx,

which implies

N=N, (l X'(2q') '[p', e~ n', e ~+E,(n'„e~ p' ,e ')] —X'(2q'.) '[p,'e~ n', e ~+E,(n'„e~ —-p'. ,e ~)]].

=N (1 —A, y2 —X~y + ),
(22)
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TABLE I. Coefficients Q. s (p„K) which appear in our expansion of the screening corrections to the relativistic wave
function, Eq. (18).

Q. 2 (P, f()

'2'4&P
Q.,3 (P,g)
a V3/SP~4

—,&(V-n)(&—n+1)(&-n+ 2)e '
—(7—8)(7—8+ 1)e ~j2g' +Ec(EcK + K)—g(g+2)]

(y+q}e'j[E~{g+q')+1][E~K + I(—'g ('g—1)]

-S'(y+q+1)(y-q —1)-q'(y q)e 2-'[K+q'+E~] j

--g'(p+g)(y+g+1)e~[E (g+q')+2]

no(P„I()=- 'Q. 2(P„K)=-(Q 22+Q ~ f+Q f+Q 2)
S=

—f p —g)y—g+1) y—g+ 2)(y—g+3)e ~E,

—&(V—n)(V—@+1)(V-n+2)e ' l2n'+E, (4n —6)]

—(y-g}{ y q+ l—)e ~(E,[{4E, 1)~ +—6E, z 4q —10@—+4]
—2z —5q'+ 9qq'}

(y+q)e~([E~(z+q')+1] [(4E~+2)z +6E~ z-8g2

-2n' -2—('v+8+1) (7—n—1) + (2n+ 1) -('V -8 ) ]

,-(y-g-1) (y+g+1) f 4(g+1)+E~(K+'g )]

~q{y q)e —2t [E, + ~+ q']}

2(y+q)(y+q+l)e~((y q 2-){y-+g+2) 4(q+-1)[E (K+'g +2]

+(y g)e 2'[2-E~+ g+q']}

g(p+p)(p+rf+1) p'+z+2)e~[E, (K+/ )+3]

Qy(}(P/ g) Qs(P g) (Q 3+Q 2+Q f+Q+ f +Q.+2+ Q.+3)
3 ' 3 3 3 3 3 3 3

S=

where N, is the point-Coulomb normalization

(23)

function, etc. are quite complicated in the relativ-
istic case, for the ground state (n =1,x= —1) con-
siderable simplification results. We find

Although the general expressions for the wave
F,(x) = ~ y'~'x[A, + As(y+1+ 2x)],
F,(x)=2y' '(1 —4A, x(2y +y-2 —2 yx)

4 A, x[(y+ 1)(2y'+ y-2)
+4x-$yx ]) (24)

where A„= V„(X/a)" and y= (1—a')'~'. The ground-

0 20 40
~ ~~ ~ ~

80

FIG. 1. Upper component fz„(r) (unnormalized) for
the 1$'fg2 state of aluminum {Z=13). The unbroken line
is the numerical shape obtained for the KS potential,
while the dashed curve gives the analytic result. The
dotted line is the point-Coulomb shape for the same
state. Distances are in electron-Compton wavelengths.

I I I I I I [ I

0 20 40 60 80
FIG. 2. Lower component g~ (r) (unnormalized) for

the 1$fy2 state of Al. Otherwise the same as Fig. 1.
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state binding energy is given by

E = a' [ /a' —A, ——,
'

A, (2y+ 1)

—2 A, (y+1)(2y+1)], (25)

and the normalization. constant is just

(2s)'Y+1 / 2

[I'(2y+ 1)] '/'

&&[1+-,
'

A, (y + 1)(2y+ 1)(y —2

+ —' A (y + 1)(2y + 1)(4y' —6y —9
12

(28)
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——(Z +1+ —g=(5Z —5V)g,dr r-—+ —— E,+ +—

—1+—f = —(5E —5V)f,r

(27)

d 1 y E,E+1 a
( 2 2ik xc

(5E —5V)v,2ik,

c
d 1 y —K E,—1 a

dx 2 x

dr

~ 1 and E„ the Coulomb energy, is a
hich will be considere a

ikr"e""ur), gr = red fin f( )=N
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k'-E2 1% f da norma iza il' tion constant 3nd k, =

III. CONTINUUM STATES

A. Regular solution
(5E —5V)u .2ik, (28)

ns to the screened Dirac equa-
m case, we wi otion in the cont

of Ref. (1). Thus, e rep o
tion is obtained from the bound-s a e s

Finally, we write

kvt'
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1 )/ (E,+ l)x/2 (E + 1)x/a

(g(B 1)~/2 j(E 1)~/2 j
This yields

(29)

where v =aE,/k„v'= a/k, = (v' —a')'/'. '

Prom (30b)
we find

2 (5E —5V)(E,E,+E2), (30a)2k2

~
p

E,+ + E~= „, (6E —5V)(E,+EQ,),
(30b)

1—
2~, (I Ilv)[E, (x)+E,E,(x)]I .

C

(31)

Substituting the right-hand side of (31) into the left-
hand side of (30a) wherever E,(x) appears, we ob-
tain

-x, + -1+ — E,(x) =- S,„„E,(x)
2++ 1 d y+gv

+, (6E —6V)[E,E,(x)+E,(x)]

+ —1+ 6E —5V F, x+8 x

We now define E, such that it is given by the ex-
pression for the bound-state energy (20) with the
substitution P, -ik„. that is,

= —XV~a+ g X Va.($~ K + /c+ 3 vv )

uX3V
2k,

—[(2E',+ l)x'+ 3E,z+ 4v'+ v" 1] .
C

It is evident that 5E wi11 be real for real E,. %'e
note further that the right-hand side of (33) de-
pends on the quantum number z so that for any
given energy E the corresponding value of E, will
be different for each partial wave.

With this choice (33) for the energy shift we see
immediately that E(ls. (32) and (33) are identical
to the corresponding E(ls. (10) and (ll) for the
bound state with the substitution P, -ik, . More-
over, the boundary condition that the wave func-
tion be regular at the origin is the same in each
case. ' It then follows' that the continuum solution
can be obtained from the bound-state solution with
the substitution p, -ik, {which implies also g-—iv, q'- —iv', &- —i) =arg[(iv y)/(iv'+ K)]'/'}.
Hence, we have for the continuum solution

l/2
F', (x) = (y+iv) . , M(y+iv+1, 2y+ 1,x)gV'+ K

= (y+iv)e ~M(y+iv+ 1,2y+ 1;x),
1/2

E,'(x) = (y-iv) . , M(y i+v2y l+, x)

=(y-iv)e "M(y+iv, 2y+ 1,x), (35)

and the coefficients A„(x) and B„(x) have the form
1

n

A„(x)= g n,"(ik„z)M(y+iv+I- s, 2y+ 1,x),

P", (ik„z) = [n", (ik„x)] (37)

which follows from E(I. (19). We note that the
screened continuum Dirac wave functio'n is real.
This follows from (37) and

[e '~()"M(y +i v —s, 2y + l, x)]*

=e ' c)"
M( yi+v+1 +,s2y+1, x.)

n

B„(x)= g P",(ik, , K)M(y+iv- s, 2y+ l, x). (36)
S tf

In (36), the coefficients n",(ik„x) are obtained from
Table I by means of the substitution P,- ik„while
P", (ik, , K) may be determined by means of the re-
lation

E,(x) = E', (x) + X'A, (x) + X'A~(x) + ~ , ~ ~

E,(x) = E,'(x)+ X'B,(x) + X'B,(x)+ ~ ~

where the Coulomb functions are given by

(34)
Although our analytic expansion of the continuum

wave function gives a good representation of the
exact screened Dirac wave function in the interior
region, (cf. Figs. 5-8 and Sec. IV), at sufficiently
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FIG. 5. Upper component (unnormalized) of 10 keV$&/2
continuum wave function for aluminum (Z = 13). The
solid curve is the numerical shape obtained for the KS
potential, the dashed curve gives our analytic result,
and the dotted curve is the plaint-Coulomb shape for
this case. Distances are in electron-Compton wave-
lengths.

FIG. 7. Upper component (unnormalized) of 25 keVP3/2
continuum wave function for zinc (g = 30) assuming a
Yukawa .potential V (r) = —{a/r)e "",where V is the
Thomas-Fermi radius. The unbroken curve is the exact
numerical shape, the dashed curve is our analytic re-
sult, and thedotted curve the point-Coulomb shape for
this case. Distances are in electron-Compton wave-
lengths.

large distances this approximation breaks down. In
order to obtain the continuum normalization, then,
we consider the irregular solutions of the Dirac
equation. As shown in Ref. 1 this procedure offers
a method to extract expansions for the Jost func-
tion and hence the continuum normalization.

B. Irregular solutions

As in the nonrelativistic case we will determine
the Jost function. by decomposing the regular solu-
tion as a sum of irregular solutions which are
asymptotically either purely incoming or purely
outgoing. The coefficients in this expansion can
then be identified with the Jost functions. "

Let

( k )
(4', (sk, r) l

(4,(+k, r) j

be two linearly independent solutions of Eq. (27)
which behave asymptotically as either incoming

or outgoing spherical waves. The Jost solutions

f„(+k,r) are then defined by the relation

f„(+k,r) = r@„(+k,~) . (39)

U'sing the normalization we have adopted, "the
phase of f„(+k,r) is fixed conventionally by the re-
quirement that

f (k )
1. ( (E+1) ~ +gQr

2 (+i(E 1)"2
Given the Jost solutions, the Jost functions f„(ak)
may be obtained by means of the relation

(40)

f„(ak) = r'[4 „(+k,~)ks'„(r) —4'„'(+ k, r)4s„(r)], (41)

where 4z„(r) is the regular radial solution and the
prime indicates differentiation with respect to r
and 4'= 4"&, . It follows from Eqs. (39)—(41) that
the regular solution of the Dirac equation can be
written in the form

0 20 40 80 24
I

48

FIG. 6. Lower component {unnormalized) of 10 keV'$ f/2
continuum wave function for Al. Otherwise the same as
Fig. 5.

FIG. 8. Lower component (unnormalized) of 25 keV&3/2
continuum wave function for 7n. Otherwise the same as
Fig. 7.
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N 'rC „(r)= (- 1/2ik) [f„(-k)f„(k,r)

(42) (k r) — xy e~ (y+ iv)e

Ivor real k,f„(-k,r) =f„*(k,r) and f„(-k)=f„*(k).
It is evident, using (42) and (40), that the con-

tinuum normalization is given by

N (k) =E ' '
~fs(k)

~

' (43)

while the Dirac phase shift is just

6„(k) = arg f„(k)+ s vl . (44)

+ x'f, (k„r)+ ~ ~ ~ ], (45)

and the corresponding Jost function is given by

f (k) = e's (k/k, )'~'[ f,(k,) + X'f, (k,) + X'f, (k,) + ~ ~ ~ ] .

(46)

The factor (k/k, )' ' is introduced so that, after
substitution into (42), the leading term of the reg-
ular solution will be the correct point-Coulomb
wave function of shifted energy. The arbitrary
phase P(k,) =-P(-k, ) allows for the fact that
screened and point-Coulomb phase shifts do not
coincide in the limit X- 0. Its magnitude must be
determined from the asymptotic condition (40).
f,(k, , r) is the point-Coulomb Jost solution and
is given by f, (k, , r) = r4, (k, , r), where

(47)

(I is the angular momentum of the upper compo-
nent. )

%e now assume the screened Jost solution can be
written in the form (we omit the angular momentum
quantum number for simplicity)

f(k, r) = e's (k/k, )'~'[f, (k, , r) + X2f, (k, , r)

x (j)(y+ i v+ 1, 2y+ 1,x),

C(k, , r) =x"e "~'e ~'(j(y +iv, 2y +I, x). (48)

In (48), p(a., b, x) is an irregular solution of the
confluent hypergeometric equation. and is discussed
in Ref. 1. From this result we find the Coulomb-
Jost function,

f,(k,)=(Zk, )-" - ~'
I (y+iv) (49)

Substituting the expressions (45) and (46) into
Eq. (42) and separating our expansion of the regu-
lar solution into incoming and outgoing parts by
means of the identity.

M(a, b, x) =
b

e "(j)(a,b, x)
r(b)

1, 1"(y- iv)I'(y+iv)
2,. I'(y- iv+ s)I'(y +iv+ 1-s)

xe" c((ik„k). (51)

The corresponding correction to the Jost solution
f„(k„r) is given by

e""s'e*g(b- a b x) (50)
r(b
r( ) t t t

we obtain, after some algebra, an analytic expan-
sion for the screened Dirac- Jost function f(k,).
Defining f„(k,) =f,(ks)y„(k, ) we find the particular
solution for n = 2, 3:

s r(y -lv+s) se~~'( I)'e"a"-x"e *~'(j)(y+iv+1 s, 2y+1,x)
f„(k„r)= y„( k, )f,(k, , r)+A

1 I"(y- iv+ 1) e (-)) e ei) "e"e * t(y+ie —e, Ry+), e) jy —iv I'(y —iv+ I+ s)

(52)

The screened continuum normalization which is
found using (46) and (50) in (43) is given by

N(k, z) =N, (k, , z)(k, E/kE)" '

x [1—X'Regs(k, ) —X' Rey, (k, ) ~ ~ ~ ],
(53)

where N, is the point-Coulomb normalization.
This result (52) confirms a conjecture made by
Pratt and Tseng'2 based on empirical observations
that theproduct (kE)'~'N, compared to the cor-

responding point-Coulomb quantity of shifted en-
ergy, is essentially independent of screening ex-
cept at very low energy. Thus, our results allow
analytic corrections to the normalization screen-
ing theory of processes such as photoeffect, etc.

IV. COMPARISON OF ANALYTIC AND NUMERICAL RESULTS

In the preceding sections we have given analytic
expressions for screened Dirac radial wave func-
tions, including bound-state energy eigenvalues
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and bound and continuum normalizations. In order
to assess the accuracy of these expressions we
use numerical methods to obtain "exact" results
in various relativistic screened potentials. In
Figs. 1-8 we have shown comparisons between our
analytic results and numerical calculations for
the wave- function shapes.

We have made these comparisons primarily for
the Yukawa potential V(r) = (a/r)e "and for the
self- consistent Kohn-Sham potential (KS), often
utilized in relativistic calculations. We will wish
to ask how these relativistic results differ from
our previous nonrelativistic compar isons. While
relativistic and nonrelativistic potentials may dif-
fer, this is not true for the usua. l Yukawa potential;
it is true for the self- consistent potentials. The self-
consistent potential used here was generated by a
modification of the code developed by I iberman et al."
This potential does reduce to the corresponding non-
relativistic potential in the small Z limit (as-
suming the same exchange term is used).

We find a similar accuracy of our analytic ap-
proximation in both the relativistic and nonrela-
tivistic case assuming the Yukawa, potential. We
do not find a corresponding result in comparing
relativistic Kohn-Sham results with our previously
presented nonrelativistic Slater results. This is
primarily due to the difference in potentials re-
sulting from the difference in exchange terms, We
have verified that similar results are obtained in
the relativistic and nonrelativistic cases if the
same choice of exchange is made.

The difference between these two self-consistent
potentials is to be understood from the fact that at
intermediate distances the exchange term is tending
to cancel the screening corrections to a point-
Coulomb shape. The larger exchange term of the
Slater case results in a total potential closer to
point Coulomb, for which the perturbation theory
converges faster. This effect is particularly pro-
nounced for low Z, where exchange (and correla-
tions also) are most important, and the potential-
expansion coefficients V„are sensitive to the type
of exchange term used. This consideration, and
the poor convergence of the analytic theory for
low Z, are reasons that, if Coulomb predictions
are not adequate, one cannot have great confidence
in the analytic predictions for low-Z screening
corrections.

Although the accuracies of relativistic and non-
relativistic wave functions in the same potential
are similar, it is important to realize that the
dependence of wave functions on screening is dif-
ferent in the two cases. This can be seen in the
analytic theory where, in the relativistic case,
there is a term, linear in r, absent in the nonrela-
tivistic case. Qne sees in the numerical data,

TABLE II. Potential expansion coefficients from a
third-order polynomial least-squares fit to the KS poten-
tial with A, =1.13 «' . We also give values for the
Yukawa potential obtained by a Taylor series expansion
about ~ =0.

8
13
30
47
50
62
73
74
79
80
82
92

Yukawa

-0.95
—1.04
—1.13
-1.17
—1.17
-1.19
-1.21
-1.21
—1.23
-1.23
—1.23
—1.24
-1.00

0.63
0.74
0.91
0.98
0.99
1.03
1.06
1.06
1.08
1.08
1.09
1.13
0.50

—0.21
—0.25
—0.35
-0.38
—0.39
—0.41
-0.43
—0.43
—0.44
-0.44
—0.45
—0.47
—0.17

Figs. 5-8, large deviations from point-Coulomb
shapes at small x which are not present in the
nonrelativistic case.

In order to apply our perturbation theory it is
necessary to determine the potential coefficients
V~ which appear in our expansion of the potential,
Eq. (1). For the KS potential we employ a pro
cedure described elsewhere, 4 which requires only
a simple least-squares fit to the numerical po-
tential with a polynomial in r of the same order as
the order of perturbation theory retained. The
range of the fit is chosen to be 0&r & X ', which in-
cludes essentially all of the region occupied by
the K and L shells, but only part of the higher
shells. This procedure for obtaining the V„, while
somewhat unstable with respect to variations in the
order or range considered, is considerably simpler
than that employed in Ref. 1 and, moreover, yields
consistent results for potential coefficients even
for highly ionized systems. Typical results for
these fits including terms of third order in X are
given in Table II. In the Yukawa case the potential
coefficients were obtained from a simp1e power-
series expansion of V(r).

We have made rather extensive comparisons of
our analytic expressions for relativistic screened
Coulomb wave functions with exact numerical re-
sults. We present here a summary of these com-
parisons for three elements, Al (Z= 13), Zn
(Z= 30), and W (Z= 74) which show typical re-
sults for low, intermediate, and high Z. For each
case data are given for both the Yukawa and KS
potentials. For the Yukawa case, somewhat
better results for wave functions may. be achieved
using the same procedure to determine the V, 's
as in the KS case.
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TABLE III. Bound-state wave-function shapes (upper/lower components) for the Yukawa and KS potentials as a func-
tion of n, f(:, and &. &max(&), as defined in the text, is the radial distance at which the relative error & first achieves
the specified value. All distances are in electron-Compton wavelengths.

~max(&) for Yukawa &max(E) for KS
&=0.01 (U/L) a=0.02 (U/I) @=0.01 (U/L) &=0.02 (U'/L)

First Bohr Thomas- Fermi
Orbit (a ~) Radius P, ~)

SO 1 —1
2 -1

1
—2

74 1 —1
2 -1

1
—2

36/50

27/SS
24/1v
16/12

o/o

2o/
16/23
1S/1S
o/o

43/50

35/41
27/22
21/16
27/3

21/27
1g/15
26/30

s6/5o

15/20
9/18

12/9
12/32

5/v
s/5
4/3
4/9

43/64

22/2V
31/23
17/12
17/35

8/1O
13/21
6/4
7/11

10.5

1.8

51.6

39.0

28.9

We first consider bound states. In Table DI we
compare numerical and analytic wave-function
shapes for both Yukawa and KS potentials. In order
to characterize the results simply we give, as in
our nonrelativistic work', the values of the radial
distapces R,„(e) (inComptonwavelenghts) at which
the relative error & of our theoretical shapes com-
pared to the envelope of exact numerical results
reaches 1.0%%up and 2. 0%%up for both upper and lower
components (upper/lower). Our data at the 0.1%
level is appreciably poorer than in. the nonrela-
tivistic case because we have directly used the
numerical-potential data rather than a smoothed

fit as in our previous work. In Table III we also
give values in t.ompton wavelengths for the first
Bohr radius (=a ') and the Thomas-Fermi radius
of the atom (= X. '). We see that in general our
analytic shapes reproduce the numerical results to
an accuracy of better than 1%%upover nearly the en-
tire interior of the atom in the case of inner shells
of intermediate- and high-Z elements and for the
K shell of all but the lowest-Z elements. The ex-
cellent agreement of our analytic wave- function
shapes with numerical values explains why we
are able to obtain expressions for bound-state
normalizations which are also accurate in these

TABLE lV. Relativistic binding energies (in keV) for the Yukawa and KS potentials as a
function of n, ~, and &. For comparisons we also give the point-Coulomb results.

Potential Z g
Binding energies (keV)

Numerical Analytic Coulomb
Fractional error

Analytic C oulomb

Yukawa

KS

30 1 -1
2 —1

1
-2

74 1 -1
2 -1

1
-2

30 1 -1
2 -1

1
-2

74 1 -1
2 -1

1
—2

1.493(0)

9.758(0)
1,045(0)
9.377(—1)
9.096(-1)

7.1V5(1)
1.254(1)
1.23O(1)
1.077(1)

1.505(0)

9.506(0)
1.157(0)
1.021(0)
9.969(—1)

6.934(1)
1.196(1)
1.144(1)
1.00g(1)

1.489

9.758
9.647(—1)
8.740
8.442

7.175
1.250
1.226
1.073

1.503

9.552
1.099
9.547(-1)
9.299

7.014
1.194
l.146
1.005

2.305

1.240(1)
3.108(0)
3.108(0)
3.071(0)

8.091
2.064
2.064
1.898

2.305

1.240(1)
3.108
3.108
3.071(0)

8.911
2.064
2.064
1.898

0.003

0.0
0.08
0.07
0.07

0.0
0.003
0.003
0.004

0.001

0.005
0.05
0.07
0.07

0.01
0.002
0.002
0.004

0.5
0.3
2.0
2.3
2.4

0.13
0.7
0.7
0.8

0.5
0.3
1.7
2.0
2.1

0.3
0.7
0.8
0.9



McENNAN-, BOTTO, PRATT, BUNACIU, AND FLORESCU 16

TABLE V. Bound-state normalizations for the Yukawa and KS potentials as a function of
n, x, and &. For.comparison we also give the point-Coulomb results.

Potential & n

Bound-state normalizations Fractional error
Numerical Analytic Coulomb Analytic Coulomb

Yukawa 13 1 -1 2 885(—2) 2.893 2.963 0.003 0.03

30 1 -1
2 -1

1
—2

1.071(—1)
3.435(-2)
3.282{-2)
1.074(—3)

4.840(—1}
1.842(—1)
1.822(-1)
1.312(-2)

1.072
3.590
3.428
1.047

4.881
1.852
1.833
1.240

1.082
3.888
3.888
1.190

4.894
1.911
1.911
1.303

0.0008
0.05
0.04
0.03

0.002
0.006
0.006
0.06

0.01
0.1
0.2
0.1

0.005
0.04
0.05
0.007

KS 13 1 -1 2 854(-2) 2.861 2.963 0.002

30 1 -1
2 -1

1
-2

74 1 -1
2 -1

1
-2

1.062(-1)
3.312(—2)
3.003(-2)
9.163(-4)

4.848(-1)
1.700(-1)
1.703 (—1)
1.143(-2)

1.065
3.431
3.113
9.555

4.866
1.795
1.754
1.177

1.082
3.888
3.888
1.190(-3)

4.894
1,911
1.911
1.303

0.003
0.04
0.04
0.04

0.004
0.01
0.03
0.03

0.02
0.2
0.3
G.3

O.G1
0.08
0.1
0.1

circumstances. These results for shapes go soxne-
what beyond the work of Pratt and Tseng, so that by
using our perturbation theory in the relativistic
case we can considerably exten'd the range of

validity of the normalization screening theory.
In Table IV we give our results for atomic bind-

ing energies. The difference between analytic and
numerical results for the E shell is generally less

TABLE VI. Continuum wave-function shapes (upper/lower components) for the Yukawa and KS potentials as a function
of T, the kinetic energy =E-1, w, and &. &max(&), as defined in the text, is the radial distance at which the relative
error & 5rst achieves the specified value. Distances are in electron-Compton wavelengths.

&~„(&) for Yukawa ~max{&) for KS First Bohr Thomas-Fermi de Broglie
Z &(keV) z e = 0.1 (U/L) t.'=0.02 {U/L) &=0.01 (U/L) &=0.02 (U/L) Orbit (a ) Radius (& ) %wavelength

30

30 —1
~3

6
7

30 -1
2

7

100 -1

6
8

74 100 -1
2

—3
6

42/35
2S/22

63/58-
29/36
2S/3V

vs/ve
4V/S1
ao/18
19/26

42/39
2S/23
25/29
1S/14

49/51
34/36
12/11
12/11

21/23
1V/16
1V/15
10/9

45/4o
29/26

ve/v3
44/53
2V/38

86/90
65/69
22/20
22/2v

4S/48
34/31
34/31
1V/2S

58/60
44/46
14/13
14/12

26/28
aa/ao
22/ao
11/1O

23/31
2O/&V

4V/S3
23/32
21/1V

V3/VO

36/4O
1V/16
1V/2S

32/29
14/14
13/18
11/7

38/40
23/26
1O/9
10/9

s/v
5/4
5/v
v/6

40/34
23/ao

61/69
av/3S
24/as

84/88
46/so
19/18
19/26

33/3V
23/21
23/2O
13/11

48/50
33/31
11/1O
11/15

2O/18
12/1S
12/14

8/V

l0.5

1.8

51.6

39.0

28.9

58.0

31.8

18.3

18.3

10.0
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TABLE VE. Continuum normalizations for the Yukawa and KS potentials as a function of
T, the kinetic energy =&-1, K, and ~. For comparison we also give the point-Coulomb
results.

Potential & T (keV)
Continuum normalizations

Numerical Analytic Coulomb
Fractional error

Analytic Coulomb

30

10

30

10

30

100

50

100

—1

6
—7

1.190(0)
1.245(0)
2.595(—2)

8.95V(-1)
8.238(—4)
2.926(-7)

7.219(-1)
1.965(-3)
6.001(-8)
1.305(-9)

1.397{0)

1.-058(0)
7.048 (-2)
3.222(-3)
1.991(-9)

7.903(—1)
7.834(-3)
1.5v v(-6)
6.585(-8)

1.V31(O)

1.414(0)
1.985(—1)
1.767(-2)
3.488(-6)

1.190
1.247
2.-598-

8.956
8.240
2.881

7.218
1.965
5.886
1.279

1.397

1.058
7.048
3.222
1.860

7.903
7.833
1.565
6.528

1.731

1.414
1.985
1.767
3.394

1.192
1.912
2.853

8.994
8.964
3.437

V.243
2.031
6.199
1.422

1.400.

1.062
7.224
3.497
2.531

7.928
8.086
1.658
7.171

1.739

1.421
2.046
1.921
4.115

0.000 01
0.001
0.001

0.0002
0.0003
0.02

0.000 05
0.000 06
0.02
0.02

0.000 002

0.000 007
0.00006
0.000 08
0.07

0.00001
0.000 02
0.007
0.009

0.000 04

0.000 02
0.000 01
0.00006
0.03

0.002
0.04
0.1

0.004
0.09
0.2

0.003
0.03
0.03
0.09

0.002

0.004
O.OQ

0.09
0.3

0.03
0.03
0.05
0.09

0.004

0.005
0.03
0.09
0.2

30

30

10

30

100

50

1
—2

-1
2

—3
6

1.191(0)
1.290{0)
2.587{-2)

8.959(—1)
8.228{—4)
l.912(-5)
2.938(-7)

7.220(-1)
1.964(-3)
6.130(-8)
1.307(-9)

1.398(0)

1.058(0)
7.088(—2)
3.189(-3)
1.985(-9)

7.900(-1)
7.798(-3)
1.598(—6)
6.547(—8)

1.729(0)

1.412(0)
1.973(-1)
1.726 (—2)
3.630(-6)

1.190
1.295
2.597

8.953
8.232
1.849
2.840

7.217
1.964
5.885
1.252

1.397

1.058
7.105
3.196
1.590

7.899
7.807
1.562
6.377

1-731

1.413
1.990
1.741
3.231

1.192
1.192
2.853

8.994
8.964.
1.932
3.437

7.243
2.031
6.199
1.422

1.400

1.062
7.224
3.497
2.531

7.928
8.086
1.658
7.171

1.739

1.421
2.046
1.921
4.115

0.001
o.oo4
0.004

0.0006
0.000 6
0.03
0.03

0.0004 .

0.00008
0.04
0.04

0.0004

0.000 1
0.002,
0.002
0.2
0.000 09
0.001
0.02
0.03

0.000 9

0.001
0.001
0.008
0.1

0.001
0.08
0.1

0.004
0.09
0.01
0.2

0.003
0.03
0.01
0.09

0.002

0.004
O.og
0.1
0.3

0.004
0.04
0.04
0.1

0.006

0.006
0.04
0.1
Q.l
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than 1%%uo even for low Z and the agreement tends to
become better as Z increases. For the L shell at
low Z the relative errors may be quite large. For
intermediate and high Z, however, the agreement
is generally better than 5% and improves with
increasing Z. We also note that the M shell binding
energies for W are accurate to within 5-10%%uo al-
though the exyected value of the radial distance
{r) for M-shell electrons is greater than X '.

A comparison of our expression for relativistic
bound-state normalizations with exact numerical
results is given in Table V. The states considered
are the same as in Table IV. In general we see
that the behavior of the normalization as a func-
tion of n, K, Z, and the potential essentially paral
leis that of the binding energy so that the same
remarks are applicable.

In the continuum case our results are summa-
rized in Tables VI and VII. Again, we consider
Z= 13, 30, an.d 74 to cover the range of low to
high atomic numbers for both the Yukawa and KS
potentials.

In Table VI we give results for continuum shapes
with R,„(e) defined as in the bound-state case.
We find that for energies on the order of the K-
shell binding energy above threshold, our analytic
expression for continuum radial wave-function
shape is accurate to better than 1% over the entire
interior of the atom and improves with increasing
energy. For fixed energy the value of 8 {z) de-
creases somewhat as

~
K

~
increases. However,

even for relatively high angular momenta our re-
sults remain very good. It is interesting to note
that in the relativistic case the detailed shape of
the upper/lower component differs from the cor-
responding point-Coulomb result. (See Figs. 5-8.)
In the nonrelativistic limit these changes combine
to give only a phase difference in first approxima-
tion. At sufficiently large r near the edge of the
atom the amplitude of our analytic expansion be
gins to deviate significantly from the numerical value.
This is due to the fact that the asymptotic behavior
of our result is not correct~dditional positive
powers of x appear in the asymptotic form —and
may be traced to the failure of our expansion of the
potential at large distances. It is for this reason
that we are unable to obtain an analytic expression
for the screened phase shift. For reference we
also give in Table VI the values in Compton wave-
lengths of the Bohr radius (a '), the Thomas-Fermi
radius of the atom (X '), and the de Broglie wave-
length of the electron(k ').

Finally, in Table VII we compare continuum
normalizations in our theory with exact numerical
results and with the corresponding point-Coulomb
values for the same Z. At energies on the order
of the K-shell binding energy above threshold and

APPENDIX

For many applications of our theory it may be
convenient to employ analytic continuum wave func-
tions in which the energy shift 5E = E —E, is, in-
itially, essentially arbitrary. In this way the final
choice of 5E may be determined by the physical
situation. In the following we will indicate the
modifications which are necessary in the relativ-
istic case to accomodate this additional degree of
freedom. The argument parallels that of Ref. 2

so that only the final results are given here.
We will assume as in Ref. 2 that E,=-V,a,

since in this case the first-order correction to the
wave function vanishes. For most applications of
our theory this is the correct physical choice.
The method can, of course. be generalized to ar-
bitrary E, but the resulting expression for the
wave function will be considerably more compli-
cated. In this case we have

E- E,=- t/', ra+ Z'E, + X'E, + ~ ", (A1)

where the E, are now arbitrary. We find that the
screened radial functions E,(x) and E,(x) again
have the form

E,(x) = E', (x) + A. 'A, (x) + A g, (x) + ~ ~ ~,
E,(x) =E,'(x) + «'B (x)+ X'B,(x)+ ~ ~ ~

(A2)

where E', (x) and E2 (x) are the point-Coulomb solu-
tions of shifted energy E,. The coefficients A„
and 8„, however, now have the form

n

A„(x) = P n", (ik„«)M(y +iv+ 1-s, 2y+ 1,x)

8
+ao(ik, K) . M(y+iv+ 1,2y+ 1,x),9iv

n

B„(x)= g P",(ik„«)M(y+iv —s, 2y+ l, x)

9
+ho(ik, «') . , M(y+iv, 2y+ 1,x).

9 'LV)

(A3)

In (A3), the coefficients P"„bo are given in terms
of the n,", ao by means of the relations

p", (ik, , «) =[o.",(ik, , «)]* (A4)

higher and for
~

«
~

& 8, we find that our results in
general are accurate to better than I%%uo and improve
with increasing energy. For a given element at
fixed energy, tQe accuracy of our results decreases
as

~

«
~

increases. Even for these higher partial
waves, however, we see that our analytic expres-
sion for the relativistic screened continuum nor-
malization represents a considerable improve-
ment over the point- C oulomb values.



ANALYTIC PERTURBATION THEORY FOR SCREENED. . . . 1781

TABLE VIII. The independent a", and &~.

a() ={V2/2k )i v'(&+ iv)e' (E I(" + K+ 3vv'-2d2), d2=E2/V2.

u2
&

——(V2/2k~2) (y+ iv) (y+ iv+1)e' i (d2E~ + iv' [iv'+ E,(1+iv) ] j,
n, i ———(V2/4k, )(y-iv)e ' ([E, (K iv')+—1] [2d2 iv'(1 ——2iv)]

+iv'(y-iv+1)(y+iv —1) +iv'(y+iv)e2'i I~ iv—'+E,]},
n~ =-(e 2+ o. &+ m &+ o, ).2 2 2 2 2

s= —2

ao = —(a V&/2k, )iv' (y + iv)e' [d3 + (2E, +1)K + 3E,K + 4v + v' —1], d3 ——2k, E3/aV3,

n
&

= (a V3/8k~ )(p+ iv)(y+iv +1)e'&[E~(2d3+ 3y~+ 7v —v'

—10i,v —6) + 3~ —5iv'+ 9vv'],

a+& ——-(aV3/8k, )(y-iv)e ' ([E (K-iv') +1] [2d3+ (y iv —+l)(y+iv —1)—(2iv —1) +{y + v )]

-(p + iv —1) (p+ iv +1)t4iv —4 —E~(K —iv')]

—4 iv(y+ iv)e2' & [g + ~ iv']), —
3

3 I 3 3 3 3 3 3 3(X~ =—(G 3+ D 2+ Q g+ CX+g+ (2+2+6', +3),s- -3

and

bo(ik, , s) = —[a",(ik„s)]+ . (A5)

We also have, for ~s ~&1,

a.",(ik„v) = e", (ik„s), (A6)

where the n", have the same form as those de-
termined from Table I. Explicit values of the in-
dependent K", and a", are given in Table VIII.

By considering the irregular solution we also
obtain an expression for the Jost function for arb-
itrary energy shift. If we write, as before,

X
(y+iv) } I'(y+iv) ]2 (A8)

f(k) =e'e(k!k )'I'f (k )

x [1+1.'X, (k,)+x')(,(k, )+ ~ "], (A7)

then we find the particular solutions for n=2, 3:

I ~, I'(y - i v) I'(y+i v)

2 ~ I'(y- iv+s)1 (y+iv+ I s)

x e ' ni", (ik„v) +— e ' a', (ik, Ii)

a
x

)
1(y+a v)('e
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