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Calculations are presented of the E1 amplitude expected in forbidden M1 transitions of Cs if parity
conservation is violated in the neutral weak e-X interaction, as proposed in a number of gauge models,
including that of steinberg and Salam. Valence electron wave functions are generated as numerical solutions
of the Dirac equation in a Tietz central potential, and are used to calculate excited-state lifetimes, hfs

splittings, and Stark El transition amplitudes. These are compared with experiment and are in good
agreement. Contributions to the 6'S», g-factor anomaly and to the forbidden 6'S»2-7 S»2 and 6'S»2 8 S»2
transitions from relativistic effects, Breit interaction, interconfiguration interaction, and hfs mixing are
calculated, and it is found that this theoretical description is not entirely adequate. The parity-nonconserving
El amplitude QpN for the 6'S», -7'S», and 6'S», -8'S», transitions is evaluated. The results QpN(6S-
7S) = i3 50 X 10 "

Q)r~p()) and ON{6S-8S) = i148 X 10 "Q)r pa are obtained. With a measured
value of the M1 amplitude ~,„„and the Weinberg value Q~ = —99, we find a circular dichroism
5 = 1 ~ 64 X 10 for the 6 Sl /2 7 Sl 1'2 transition.

I. INTRODUCTION

Existence of a neutral, weak, parity-noncon-
serving electron-nucleon interaction implies that
forbidden Ml transitions in heavy atoms, e.g. ,
O'P», —7'~», in thallium (Tl) and O'S, &,

—7'S,&„
O'S, &,

—O'S, &, in cesium {Cs),should exhibit cir-
cular dichroism. In a previous paper' (hereafter
referred to as I) we presented calculations of the
atomic properties of Tl relevant to the interpre-
tation of observations of circular dichroism in the
thallium transition in terms of the Weinberg-Sal. an1

gauge field model. Here we present analogous cal-
culations for the Cs transitions. In both cases ex-
periments are currently underway to detect the
parity-nonconserving effect.

Our approach is the one-electro& central field
(OECF) approximation. We find numerical solu-
tions to the Dirac equation for the valence electron
in a "Tietz" central potential':

e'(Z —1) e'
v~) =-

r(1+ q~)'

where parameter q is chosen to give agreement
between the observed and calculated O'Sy/2 ener-
gies. The wave functions obtained are used to cal-
culate fine and hyperfine structure splittings, and
allowed (gl) transition rates and excited state
lifetimes. These are compared with experimental
results (see Sec. II). The O'S,

&,
—7'S,&„6'S,&,

—O'S, &, Ml amplitudes and corrections to er (O'S,'&, )
are calculated in Sec. III and compared with ex-
periment. Relativistic contributions to the matrix
elements, as mell as the "Lamb" correction and
corrections due to interconfiguration interaction
and hyperfine mixing, are included. We find that the

present theoretical formulation of these small
effects is not entirely adequate. In Sec. IV we pre-
sent calculations of the parity-nonconserving El
amplitudes gpN(6 St(a —7'St)a), gpN(6 St(a —8 S,~a)
based on the Weinberg-Salam model. ' We find

SpN(OS-7S) =8 5otxlo "q lp., l

and

hp~(OS —8S) =1.48ix10 "q lit

Here l p.n l
=

l e&i/2nt, el and q~ = (1 —4 sin'g~) Z l)I, —
where 0~ is the "Weinberg" angle. Results (2)
and (8) are somewhat smaller than earlier esti-
mates by Bouchiat and Bouchiat' (see Sec. IV).
Finally, in Sec. V we calculate Stark matrix ele-
ments for the transitions O'S, /, —7'Sy/2 in an ex-
ternal electric field, and compare our results to
earlier calculations by Bouchiat and Bouchiat, '
and to the experimental results of Bouchiat and
Pottier. '

II. CESIUM WAVE FUNCTIONS IN THE ONE-ELECTRON

CENTRAL FIELD APPROXIMATION

A. Construction of electronic wave functions

As in I, we solve the Dirac equation for the val-
ence electron in a centrally symmetric potential
V(y). The latter approximates the nucleus and 54
core electrons as a fixed charge distribution. With

)({(~) „,(, ~))

the Dirac equation reduces to the coupled radial
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TABLE I. Energy levels and hyperfine splittings in Cs. (See also Fig. 1.)

State

Ionization
energy

(calculated)
(nz~c~= 1)

Ionization
energy

(measured) 6

Hyperf inc
energy

splitting
(calculated)

6Hz

Hyperfine
energy

splitting
(observed)

GHz

6S(/2
7$]/2
8Sg/2

6+ i/2
6P3/2
7Pi/~
»3/2

8P3/

9 P3/2

7.62024x 10 6

3.1232 x 10- '
1.7201 x10 6

1.0839x10 6

4.9081 x10 6

4.7732 x10"6

2.3392 x 10"6

2.2953 x10 6

1.3824 x 10"6

1.3624 x10"6

0.9146 xl0 6

0.9037 x 10 6

7.62024xl0 6

3.1229x10 6

1.7117x 10- '
1.0909x 10"6

4.9622 x 10"6

4.7713 xl0 6

2.3301xl0 6

2.2715 xl0 "

1.37llx 10 ~

1.3450xl0 6

0.9064xl0 6

0.8924 x 10 6

9.212
2.346
0.935
0.468
1.642
0.723
0.498
0.224
0.220
0.100
0.117
0.054

9.193+ & Q.QQ1

2.185 + 0.012"
0.876+ 0.006"
0.438 + 0.008
1.168 & 0.001'
0 611+0 006
0.377 + & 0.001~
0.199+ 0.001c

0.0916+Q.Q002e

0.093

J. Abele, M. Baumann, and W. Hartmann, Phys. Lett. A 49, 205 (1974).
"H. Gupta, W. Happer, L. K. Lam, and S. Svanberg, Phys. Hev. A 8, 2792 (1973).

K. M. Kallas, G. Markova, G. IZhvotenko, and M. Chaika, Opt. Spektrosk 19, 173 (303)
(1965).

dD. Feiertag, A. Sahm, and G. zu Putlitz, Z. Phys. 255, 93 (1972).
'H. Bucka and G. von Oppen, Ann. Phys. 10, ll9 (1962).
~ P. Tsekaris, J. Farley, and B. Gupta, Fifth International Conf. on Atomic Physics, Ab-

stract J13, 250 (1976).

equations:

=Iz+ v(r)]f+ —g.

Our units are h = rn, =g =1, g is the ionization en-
ergy, and other notation is defined in I. The pa-
rameter q of the potential of Eq. (1) is found to be

q ——355.12 X ' = 2.5914g 0
' (5)

by requiring agreement between observed and cal-
culated O'S, /, energies. The wave functions are
calculated by integrating Eqs. (4) stepwise from
the nuclear radius R, =0.016& as described in de-
tail in I. Table I presents calculated S,/„P, /2p P3/2
energies along with the observed values (obtained
from the tables of Moore' ).

B. Hyperfine splittings

In first-order perturbation theory the hyperfine
energy is given by7

leading to p' = 4, 3 for J = —,
' states and I' = 5, 4, 3, 2

for J =-,' states. Hyperfine splittings &p are cal-
culated between the highest and lowest F levels.
These are related to the usual hfs interaction con-
stants P by &Ez,/, =4&,/, and ~&~,/, = 12A, ,/, . The
results are presented in Table I, and compared
with experimental values. Agreement is reason-
ably good.

C. Allowed E1 transition rates

For Qg/ —S / and P /2
-S

/ E1 transitions the
Einstein A coefficient is

In Table II we present radial integrals and tran-
sition rates for p / S / Q / S / transitions.
These numerical values are required for compu-
tation of gpN and Stark amplitudes (Secs. IV and V).

To judge the accuracy of these transition rates,
we calculate values of Cs excited state lifetimes.
The lifetime of a state

~
I. )is ~given by

(6)

For "'Cs (the only stable isotope), I = —,', g„= 5.16,'

where the sum is over all states ~L~,) with energy
less than that of ~I.~). Table III compares avail-
able measurements of Cs lifetimes with our cal-
culated values; agreement is, again, reasonably
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TABLE II. & coefficients in Cs. TABLE III. Lifetimes of Cs states.

Transition
(x)~ rad ial

integral (Xj2 m)

g coefficient
(106 sec i)

State

Measured
lifetime
(nsec)

Calculated
lifetime
(nsec)

7Pi/2-6$i /2
SPi /2-6$i /2

.9Pi/2 6$i /2

6P3/2-6$i/2
7P3/2-6$i /2

8P3/2-6$i /2

9P3/2-6Si /2
6Pi /2-7$i /2

6 3/2 7$i /2

7P3/2-7Si
SP3/2-7$i/2
9P3/2 7$i /2

6Pi/2-8Si /2

7Pi /2-8Si /2
8Pi/2-8$

6P3/2-8$i/2
7P3/2-8$i /2

8P3/2-8$i/2
9P3/2 8$i /2

—861.4
—80.4
-30.8
-18.0

-846.8
—104.0
—46.6
-28.6
747 ~ 3

-1777 ~ 3
-181.8
—73.9
830.3

-1730.0
—230.3
—101.9

184.8
1605.4

—3016.4
-322.8

186.8
1750.9

-2919.4
—396.6

37+3
2.40
0.582
0.245

41.82
4.11
1.34
0.623
8 ~ 00
3.83
4.39
0.148
7.80
4.27
0.729
0.286
2.79
1.54
0.883
0.137
2.50
1.47
0.983
0.217

6Pi/2
6P3/2
7Pi/2
»3/2
SP i/
SP3/2
SSi/

34.0 + 0.6~

29.7+0 2"
158+5
135+1"
307 +14
274+ 12d

87+ 9'

26.8
23.9

149.0
113.0
351.0
270.0
82.0

~J. K. Link, J. Opt. Soc. Am. 56, 1195 (1966).
S. Svanberg and S. Hydberg, Z. Phys. 227, 216 (1969).

'D. W. pace and J. B. Atkinson, Can. J. phys. 53, 937
(1975) .

d J. Marek and K. Niemax, J. Phys, B 9, L483 (1976).'J. Marek, Phys. Lett. A 60, 190 (1977).

Bessel function, and k and (d are the wave number
and angular frequency of the absorbed photon,
respectively. The formula for nP, /, -n'P, /, M &

transitions {as in thallium) was derived in I and is
identical to Eq. (8) except for sign. We use our
OECF radial wave functions to compute the numeri-
cal results

good. These lifetime calculations include cal-
culated values of Q I ~ ) I~,).

III. MAGNETIC DIPOLE TRANSITION RATES

5ii„, (6S —7S) =9.05x10 '
i p~i,

8R„„(6S—8S) =5.68x10 'ipse . (10)

The relativistic contribution to the 6S —7S or
6S -88 M1 transition amplitude is

g, (kr)= e (f gy +gg fy) d1'

whereg, (kx) =(m/2k')'~'Z, &,(kx) is a spherical

(8)

These results and additional corrections are sum-
marized in Table IV. The Lamb correction, dis-
cussed in I, arises from the interaction between
valence electron spin and core electron orbits.
For S,/, -S,/2 transitions this is given by

6tt'~ =-—,e'(W)g~ .

TABLE IV. Summary of contributions to the M1 transition rates. The poor agreement
indicates that we do not fully understand the small (10+-10 ~, up to fourth order) effects con-
tributing to the M1 amplitudes. These do not affect the calculation of $p@ since that calcula-
tion depends on large, first-order amplitudes such as (F1)&I, and $, p(r —0). The small size
of ppN is determined only by the small size of the Fermi coupling constant Q.

Relativistic
Lamb
Inte rconf iguration

interaction
Hyperfine mixing
Observed value

6Si/2
g-factor anomaly

(g=ge+ 4)

+1.75 x 10-'
+6.2 x10-'

8.3 x106

+ 9.05 x 10
+2.87x 10 6

7.0 x10-'

~ ~ e 8 36x 10 6 (+
1.181+ 0.002 x 10 ~ —4.24 a 0.34 x 10 ~"

6Si/2 —SSi/2

+5.68x 10 6

+1.78x 10 6

5.9 x106

4.02x 10 6 (y'-y'I)

P. A. Vanden Bout et p/. , Phys. Rev. 165, 88 (1968).
M. A. Bouchiat and L. Pottier, J. Phys. Lett. {Paris) 37, L-79 (1976).
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Here

Cesium Z =55
Ionization Iirnit

8 SI
72p
72P

2

(W) = f F(r, )[ f p(r, )r, dr, ]F'(r, )r', dr„
0 7

where F,Fr are the nonrelativistic 6S, 7S(BS) radial
wave functions, respectively, and p( r2) is a spher
ically symmetric core electron density, as in I.
The "orbit-orbit" correction vanishes for Sy/2 Sy/2
transitions.

The relativistic and Lamb contributions to the
g-factor anomaly for the 6'S,/, state may be com-
puted in the same way. As previously noted by
Perl and by Phillips, ' the calculation of rela-
tivistic effects leads to ag-factor anomaly which
is too small and of the wrong sign when compared
with experimental results. It has been suggested
by a number of authors that interconfiguration
interaction ' "might be responsible for the dis-
crepancy. As discussed in I, electrostatic inter-
action of the outer electron with excited core states
does not by itself affect M1 transition amplitudes
or the g-factor anomaly since it mixes only those
configurations which have the same total angular
momentum and spin (2S,I2). However, in second
order, spin-orbit coupling allows an admixture. of
different L -S states (such as 2P,I„'P,I2 in (.'s)
which can give rise to finite contributions to M1
transitions or g-anomalies. Our detailed non-
relativistic calculation of this effect is similar to
that presented for thallium in I, and differs only
slightly from the work of Phillips. " The ground
cpnfjguratipn. pf Cs is 1g ~ ~ ~ 5p 6s. Fpr fjrst-
order excited configurations, we take 1s'* ~ ~ Sp36s6p
or ls2 ~ ~ ~ Sp37s6p. The outer s and excited p elec-

trons can form 'p or 'p states which we:label by
g", , g, respectively (where n corresponds to the
nS valence electron). Thus the perturbed 6$, 7S

states are written

I6S& =I6S&+~.0'+~24'+fl. 0'+fl20' (12)

(13)
I 7S& =

I 7S) + y1 41+ y242+6141+52(1)2 ~

I.S coupling mixes the 'S('P) states with 'P('p)
states, and also mixes 2S(3P) states with 2P('P)
and P('p) states. Thus we obtain in second order:

I6S) = I6S) + +&,W, (2y3) +&,Z, ('y3)

+~.& '.('y', ) +fl, B,('y,')

+P.B.('y.') +P,B.'('yl),

I 7S& =
I 7S) + ~ ~ ~ + y, C, (2y3, ) + y2C2(2y33)

+ y 2C 2( 43) +51 1( 41)

52D2( P3) 52D2( P3) '

(14)

(15)

W, = (v 6/2)(F, +G, )/~E, (16)
qJ

where I", and Q, are the direct and exch@age elec-
trostatic integra, ls and ~E is the perturbation en-
ergy denominator.

The second-order coefficients n, , p„y, , 5,. are
determined by fine-structure matrix clem'ents of
the 5p electron state, as computed by Phillips.
For example, n, = ]/W2b, E, where ] is the spin-
orbit parameter of the 5p hole. Our value of $/I3E
=0.07 calculated with OECF wave functions differs
slightly from Phillips' estimate $/DE=0. 10. The
coefficients are evaluated numerically using OECF
wave functions and contribute as follows to the 6S
—7S M1 a,mplitude:

K ~ (6S —7S)

The g are P('P) states with s-electron radial
quantum number n. The A, , B„C'„D,, are. deter-
mined by the electrostatic interaction between outer
electrons. The expressions for this interaction
are as presented by Phillips except that we find a
result &6 times larger from antisymmetrfzing in-
itial and final states. For example,

4 I I 2 6 p~
22

6 P,
2

=( .&.y.C "&,B,5, D, ) [g('P) -g('S)]/2

+(n2&2y2C2+a242y2C2 +P2B252D2+P2B252D2)

~.[g('P) -g ('S)] /2. (17)
5595A

I

FIG. 1. Low-lying S and P levels of the Cs atom. Fine
structure is enlarged and hyperfine structure is not re-
solved. The forbidden M1 transitions at 5395 and 4112 A

are shown.

The results for
K & (6S —7S) and similar corrections

for the 6S —8S M1 amplitude and the 6S g-factor
anomaly are presented in Table IV. Similar cor-
rections due to the (5p'6p5d) configuration have
been calculated; however, these are smaller [-25%
of that obtained from Eq. (17)]. The overall un-
certainty in the interconfiguration interaction cor-
rection could be as much as a factor of 2 or
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3. However, as can be seen from Table IV,
this calculated correction is too small to account
for the observed 68 g factor and 6S —VS M1 amp-
litude by an order of magnitude. This discrepancy
is not reduced much by including contributions of
5p'n'pns ( n' &6) or Sp'n'pnd (n'&6, n&s) configura-
tions since their contributions diminish rapidly as
n, n' increase. Our conclusion, consistent with that
of Phillips, is that the observed anomalies are not
due to interconfiguration interaction of this type.

An appreciable correction to the M1 amplitude
arises from hyperfine mixing. The size of this
effect can be derived from Eil. (I-59), as modified
for Cs 'S», states. Ne find

((n'S, FIH~, [6S,F) -(6 SF'I H„;, InS, F'&)

(u„„FI~IInS„„F&
~OS ~aS

The amplitude vanishes for E =F'; thus unlike the
other amplitudes it only affects F = 3-F' =4 or
F = 4-I' = 3 transitions. The hyperfine integrals
are evaluated numerically, and we employ

(nS,y,F'I~llnS, q, F& =-ee(F'~r'l 0IF,~e&- (19)

The numerical results are summarized in Table
IV. An observation of the 3-4 and 4-3 transitions
with the same accuracy that Bouchiat and Pottier'
reported for the 4-4 and 3-3 components of the
6S —VS transitions would clearly reveal the hyper-
fine correction.

IV. CALCULATION OF PARITY-VIOLATING E1
AMPLITUDE

According to the %einberg-Salam model, the
parity-nonconserving electron-nucleus interaction
provides the following interaction matrix element
(I-64):

(y, lH, „I),& =-
2

ye(x) y, q, (x)
GQw

(x=0)

This mixes S states with opposite parity P states,
as follows:

n'P H nS

g

TABLE V. Calculation of gpN for the 6$~y2 —7$~g2 transition.

Method 2:

Intermediate
P state

Im»

I8P&

I9P)

Total

e &7SIrlnP&i2& &nPgi2IHpNI6$&

Eeg- E~

i7.883 x 10-"qwIi eI
+ i5.259
+ i0.303
+ i0.084

-i2.18

e &7SlaxelnP&i2& &nP&i, IrISS)
~78-~~

+ i6.912
-i0.809
-i0.093
—i0.031

+ i5.98

Method 2:
-i1.75

=i3.80x 10 QwIpeI

= i3.50 x 10 up wIPe I

+ i5.24

Method 2:

Calculation of ppN for the 6$~g2 8$~g2 transition

Interxnediate
P state

I8P)

Total

e &8SIrInPqi2) &nPg(2IHpNI6S)

Ees-E~

-j1.935 x 10 @wIweI
-i4.751
+ i5.027
+ i0.366

-i1.29

e &8S IGNI nP rid & &nP t/2 I
r I 68)

3 Es~—E~

+ i2.445
+ i0.647
-i0.303
-i0.054

+ i2.74

Method &:

—i0.81

= il.44 x 10 Q wI pe I

=il 48 x 10 QwIg. eI

+ i2.29
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Thus Eq. (20) can be reduced to

. .G@w
( 'P, /, llfp, lnS, /, &

= 6~ (f,g, -f,g, )
r=o

E F1ELD,
v

The x =0 symbol indicates that the expression is
averaged overs the nuclear volume, and we assumed
a constant nucleon density for r &0.0164. An al-
ternative procedure would bh to assume a point-
like nucleus and evaluate &HpN& at the nuclear ra-
dius; this produces a value 2% larger.

An gl transition amplitude is riow possible be-
tween the perturbed S states. Its value is given by

S,„=& S„.IEII68,/, &

((ns„,lssln p, „&
&n PI/Ill pNI 681/2&

n' es n~

+ "* '" " '": (e'p, (. I sl ssys.));
n$ n'

where

&nSI/2IE lln'P, /, &
= e &nS, /, l e ' rln'Pl/2&

(24)

/

and the last expression is derived for the particu-
lar case n, =m~ = --,', q =e,. The numerical re-.
sults are summarized in Table V, where EII. (23)
has been evaluated by two methods: (1) A finite
sum over the nearest four intermediate P states;
(2) The use of the Dirac Green's function.
The Green's function automatically includes all in-
termediate states, including continuum and auto-
ionizing states as shown in I. The boo methods
give similar results, as shown in Table V. The
Green's function method is considered more ac-
curate, since it is more complete.

In the Weinberg model, with sin'8~ =0.30 as sug-
gested by the experiment of Heines et al. ,'~

Q~ =-[(4sin ()~- 1)Z +N] =-99

LASER BEAv,
X

FIG. 2. Coordinate system and orientations of electric
field E, photon beam, and polarization. Detectors are
placed as in the experiment on Tl of Chu et al. (Ref. 13).

for '"Cs. This leads to a value of gp„=-i3.4V

x10 'l)lel for the 68,/, —78,/, transition. This cor-
responds to a circular polarization (circular di-
chroism) of

lm(PN) 1 64 1() (26)
exp

Bouchiat and Bouchiat, 4 using nonrelativistic
wave functions with a relativistic correction factor
for &HpN&s a modified Bates-Damgaard method for
e(e ~ I'&, and a fllllte slllll ovel' the Ileax'est folll' P
states, obtained a somewhat higher estimate of
i4 'Vx-10. 'l)lel for gp„ in this transition, and a

similarly higher result for the 6S -68 transition
Using our analysis of hyperfine structure and

excited states decay rates, we can form an esti-
mate of errors. Our hyperfine structure and fine
structure calculations indicate that the magnitudes
of the &-state wave functions as r -0 are ™10%%u&

lower than physically accurate. However, decay
rate comparisons indicate that our &El& matrix
elements are too large by -F0~0. These errors
canceI in the evaluation of gp„and our g» erroi
should not be greater than -10/, .

V. CALCULATION OF THE STARK EFFECT E1
TRANSITIONS

In actual experimental practice (see Bouchiat and
Pottier) 3R and gp„are measured in interference
with the g1 transition induced by an external elec-
tric field. 6g and gp„are not directly measured

TABLE VI. Stark effect 81 amplitudes.

A. (7S[Z1[0S}
en

[10 l
f)sel (v/em) lj

e2 P
[10 l[)se[ (V/cm) I]

Finite sum method:
Green's function:
Experimental value:

B. (()SlZI [0S)

Finite sum method:
Green's function:

-2.043
-1.972

-3.132
—3.166

-1.78
-1.96

-3.71
-3.97

11.5
10.06

8.8+0.4

8.45
7.86
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but are compared to the induced Stark effect amp-
litude g~, which is calculated. Therefore, it is
important to calculate a reliable value of g, .

The coordinate system used in the calculation is
illustrated in Fig. 2, and is the same used in I.
An electric field E'oe, is perpendicular to the pho-
ton propagation vector e„. The photon has polari-
zation g = cosine, +sin8q„and the 'S, /, states are
mixed with P,/„P, /2 states by Stark effect.

(nP/ I«rlnS/)
l

/ AEq/2

(n P3/2 l eEo rlnS, /, )+ ln'Ps/2 (2 "/)
np ~Es/2

mg(
1

+
2

1
+

2

1
2

o. cosg
+ 9gcosg
—~pNs'ng

—jP' sing
—ilt, sing
—$$pNcos g

—ip' sing
+ iSRsing
+g gpwcosg

e'cosg
—ggcos g

+ gpNsing

TABLE VH. n S)/2-6 Sg/2 transition amplitudes:
(nsl El +Mll 6$) . a= e cosg+e~ sine, o'=e2n E~, p'

2.pg

1
2

c. cos6 ip sin-0

-iP sin0 z cosg

1

1/2 ' 1/2
X/2

1 1

(X + E6-E.p /Z/2 n

2
+ — R

9 n S, n'PS/2 68, n'P3/2
3/2

x y (29)(
1 1

E, -En,p En -En,ps/2 " " s/2

1
I 9 ~ nS, n'P 6S, n'P

/

6
~

n

1
X —En

1

n n

1
+ — R, R

9 „ nS, n'Ps/2 6S, n'Ps/
n'P

3/2

There is an El transition amplitude g~ between
the perturbed states, which we represent as a 2x2
matrix whose rows and columns are labeled by
mz(6S, /, ) and mz (nS, /, ), respectively,

h s = (n S,/2l ee ~ r
l
6 S,/2)

=e Eo ~

where

R„„, = (6S,/, li ln'P, /, ), Z, =E(6S,/ ), (31)6$, n'P~/2

etc. The quantities o and P have been evaluated by
summation over the nearest P,/„P, /, states, and

also by use of the Green's function. The results
are summarized in Table VI.

Our results can be compared with the calculation
of Bouchiat and Bouchiat, which was used in the
experimental determination of %(6S-VS).' Their
calculation used the E1 oscillator strengths cal-
culated by Stone and they determined signs by the
Bates-Damgaard method and summed over the
four lowest energy levels. Their value is e o.
=-1.62x10 'l~sl (V/cm) ' and lo. /Pl =7.0 for
g, (VS -6S). Our value of lu/Pl is 10.1 and agrees
more closely with the experimental result 8.8
+0.4. However, our analysis of excited-state life-
times leads us to suspect that our value e (y =-1.97
x10 'lysi (V/cm) ' is -10% to 20% too large, so
the true value of e'z is probably somewhere be-
tween our result and that of Bouchiat and Bouchiat.

In Table VII we combine the calculations of g~,
and $ pN in a single 2 x2 matrix so that the in-

terference among these amplitudes can be readily
extracted. Table VII gives the (6S-nS) transition
amplitudes with the photon directed along e„with
polarization q = e, cos0+ e, sin0.

X
1 1

En Enip E6 Enip
s/2 " 3/2

(30)
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