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A knowledge of the dynamics of nonlinear systems with multiple excitations is important for calculation of
the continuum density of states and for one method of calculation of the classical statistical mechanics of the sine-

Gordon Hamiltonian. Hirota s ¹oliton construction for the sine-Gordon equation is extended by analytic
continuation to incorporate usefully breather and continuum solutions as well, The significance of these
classical solutions is illustrated in the context of the propagation and excitations of domain walls in a
classical uniaxial ferromagnet of infinite extent. From these solutions, formulas for the relative phase shifts

in the scattering of a soliton, breather, or continuum solution from any one of these, acting as scatterer, are
derived. Following Hirota, it is shown that under certain assumptions about the asymptotic properties of the
solution the relative phase shifts of solutions corresponding to many soliton, breather, and continuum states

may be found by adding the derived pairwise phase shifts.

I. INTRODUCTION

The sine-Gordon partial differential w'ave equa-
tion has been widely studied by mathematicians
and physicists because of not only its complete in-
tegrability and accompanying remarkable "soliton"
properties, but also its ubiquity as a model of non-
linear physical phenomena. ' Its pulselike solitary
wave solution has been used to describe excita-
tions in many areas of condensed matter physics:
to name a few, domain walls in ferromagnets, dis-
locations in crystals, charge dislocations in one-
dimensional Frohlich charge -density-wave con-
densates, and flux quanta on Josephson-junction
transmission lines.

From among these many applications, we choose
here to discuss our general analysis in terms of a
simple model of a classical uniaxial ferromagnet.
Solitons and continuum solutions correspond to
domain walls and plane linear spin excitations (not
magnons). Breather solutions describe bound

pairs of domain walls. Knowledge of the general
analytic solutions yields information on how these
various magnetic excitations interact. It will be
seen that the classical solutions have interactions
which cause phase shifts of the various excita-
tions but do not permit them to be created or de-
stroyed. Knowing the analytic expressions for
these relative phase shifts allows one to calculate
the continuum density of states in the presence of
a given domain wall structure.

The classical statistical mechanics of systems
modeled by the sine-Gordon equation and similar
nonlinear partial differential equations represents
an outstanding problem. There are two ways' to

calculate partition functions. The first way, pos-
sible only for one-spatial-dimension models, is
the functional integral method. ' ' The second way
forms a sum over configuration space of the ap-
propriate Boltzmann weighting factor. The latter
method requires a knowledge of the density of states
for any infinitesimal volume in configuration space.
The classical statistical-mechanics problem is
similar to that of semiclassical quantization in
field theory. In connection with the field-theoretic
calculation, Dashen et al. ' have outlined a method
for computing some phase shifts. In this paper, I
present the phase-shift calculation in detail, using
an analytic continuation of Hirota's exact N-soliton
solution, derive some new general phase shifts,
and discuss their properties.

The outline of this paper is as follows: In Sec.
II, Hirota's N-soliton construction' is defined in
the context of a simple model ferromagnet, and its
use and analytic properties are explored for the
N= 2 case. It is shown how Hirota's construction
can be extended to include a breather and the trivi-
al continuum solution (k = 0) in addition to the pure
soliton solutions. The connection between the clas-
sical solutions and the physical excitations of the
ferromagnet is discussed. Section III defines the
phase shift and shows how it may be used to de-
duce the continuum density of states in the pres-
ence of a collection of possibly propagating domain
walls. Hirota's phase-shift theorem is stated, and
an important corollary is noted. A heuristic proof
of both the theorem and its corollary are presented.
Section IV presents the calculation of the general
phase shift for the continuum-soliton collision and
includes a list of phase shifts for all general two-
particle collisions.
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II. N-SOI. ITON CONSTRUCTION OF HIROTA

FOR THE SINE-GORDON EQUATION

E= 2mM'sin'0cos'g -icos'0
~l moo

+A sin 8 —+ — dx v (2.1)

which is the sum of demagnetization, anisotropy,
and exchange contributions, respectively. This
equation serves to define the constants K and A. If
we ignore Landau spin damping effects, then we
can describe' the possible planar (g = ,n) domai—n-

wall structures and their dynamics by the solu-
tions of the sine-Gordon equation

Ij5gg co(t) + Qlo Sin(t) = 0, (2.2)

where (t) = 28, c,= 8my'A, (()2 = 8&y'K, and y is the
magneto-mechanical ratio. Equation (2.2) not only
describes the dynamics of domain excitations but
also plane linear excitatj. ons, as well as their mu-
tual interaction. W'e stress that the latter excita-
tions are not the classical magnons of the ferro-
magnet.

In this section, we shall be discussing the main
mathematical results. For concreteness, we shall
adopt the language of one of the many possible ap-
plications. Consider a classical uniaxial ferro-
magnet of infinite extent whose magnetization den-
sity vector M prefers to align parallel or anti-
parallel to the z axis. As in Fig. 1, we define
e(r, t) to be the polar angle and )I)(r, t) to be the
azimuthal angle of the magnetization vector. We
are interested in planar configurations such as
Bloch, or domain, walls and we shall look for
structures which are independent of y and z, in
planes normal to the x axis. In the absence of mag-
netic fields, the energy of magnetization per unit
area of plane normal to the x axis, E, is

(t) ( q
—(t) „+sin(t) = 0 . (2.3)

There are at present three methods to construct
the exact N-soliton solution to Eq. (2.3). The
Backlund transformation, the earliest method, is
complicated and tedious in constructing solutions
for N ~ 2. The "inverse scattering method"" is
also unwieldy for N~ 2. A third method, which is
due to Hirota, ' is notable for its simplicity. The
latter method will be employed in this paper, using
wherever possible the notation of Ref. 1 which has
now become widely adopted in soliton calculations.
Hirota's solution is given by

tan[-,'y(x, t) ]=g(x, t)/f(x, t), (2.4)

where

f(e!)=P t'!
,eep g &, , , ePee» e)~

p. =0, 1 j=l
N

g( , ) egeteeep(+=a, ,e,e, eg e,.X),
tt, =0, 1 icj

X,= k)x —P~t+y), j= 1, . . . , N

k&, y&, P& are all constants satisfying:

k,'. =Pj+1,
and"

(2.5)

(2.6)

(2.7)

(2.8)

In order to appreciate the richness of the pos-
sibilities of the sine-Gordon model, it is necessary
to be able to obtain in a useful form the general
solutions. This we have been able to do by slight-
ly modifying, by an analytic continuation, the re-
markable N-soliton solution discovered by Hirota. '
In the remainder of this section, the details of
Hirota's N-soliton solution, our modification of it,

(

and how the derived solutions are important in de-
scribing the dynamics of the above model ferro-
magnet will be explained.

For convenience, one chooses units in which Qpp

1 cp and the sine -Gordon equation reads:

X

(2.9)k P; —k;P,.&0, ifi &j.

By Z (" I„we mean a. sum over a.ll sets
(p,„,p„) where each p& is 0 or 1, and

N

(ego) ~
j -"1

is an (even, odd) integer, respectively. The B,&
are

defined by

(k( —k,)' (P; P,)'--"""'=(k,'k, )'-(P,*.
P,)'

(2.10)

FIG. 1. Plane containing the magnetization density
vector Eq. (2.2) corresponds to g= —,

' r.
I

As an example of the technique, I shall construct
the well-known (N = 2) two-soliton solutions corre-
sponding first to a soliton and antisoliton, and sec-
ond to two solitons. For brevity, the frame of



1694 J. F. CUR RIE 16

exp(X, ) + exp(X, )

1+exp(X, +X,+B»)

Let us define

P, =P, =uk, = -uk„

k, = -k, =(l -u')-~',

y, =y, = lnu,

then exp(B„)= -u ' a,nd

u(e'~" + e '~") -u coshk, x
tan —6 =

sjnhuy g1

Now recall the identity

tan '(x) = —,'m —tan '(x ').

Therefore,

(2.13)

(2.14a)

(2.14b)

(2.14c)

(2.15)

(2.18)

, (sinhuk, t }
y = 2w+tan ~I—

~~
u coshk, x~~

'

Since P is periodic in 2n, we see that Hirota's two-
soliton solution with the choice of parameters
(2.14) is the same as (2.11). Note that in the limit
u 0', the points corresponding to @(x„t) =v (or
the centers of the soliton and antisoliton) when ex
tremely far apart approach zero asymptotic velocity
as follows: v, =at ' as t-a~ or v, = exp(-x, ) as
x,-a . Similarly, with the following choice of
parameters

P, = -P, =uk„

k, =k, =(1-u') 't'

y, =y, = -lnu,

exp(B„)= -u".

(2.17a)

(2.17b)

(2.17c)

(2.17d}

Eq. (2.13) reduces to Eq. (2.12).
The solutions of Eqs. (2.11}and (2.12) have a

simple interpretation. The P solitons are 180'-
ferromagnetic domain walls, and their structur e

reference used in the construction is one in which
the center of mass of the two solitions is at rest.
Since Eq. (2.3) is invariant with respect to Lorentz
transformations, it is possible to deduce the solu-
tions corresponding to the two solitons traveling at
arbitrary velocities by means of transforming to a
different frame of reference. The solution for two
solitons with velocities +p, and -p. is known to be

tan4$=,,I, , soliton-antisoliton,sinh[ut(1 -u') '~']
u cosh x 1-u' '"

(2.11)
u sinh[x(1 -u') '&]

tan —,Q = „, ,1 „,~,], soliton-soliton.

(2.12)

Hirota's two-soliton solution is

as they change from 2nv to 2(n+1}n describes how

the magnetization changes between up and down

(magnetization parallel and a,ntiparallel, respect-
ively) domains. The single soliton corresponds to
the moving wall between up and down domains.
The soliton-antisoliton (ss) solution (2.11) and so-
liton-soliton (ss) solution (2.12) correspond to two
walls separating three domains (two up domains
separated by a down domain). The two solutions
differ by how, in the physical model, the classical
magnetization fields in the domain wall are
strained. In the ss case, the angle 0 increases
from 0 to m and then eventually decreases to 0,
whereas in the ss case the angle 8 increases from
0 to m and then increases to 2m. Topologically,
these two solutions are distinct. In the former so-
lution, two walls may approach each other and an-
nihilate leaving only one domain. However, in the
latter, the walls may never come close one to an-
other and the three domains remain distinct. In
the classical picture, this corresponds to the fact
that it is energetically unfavorable to have large
gradients of the magnetization field and thereby in-
crease the strain energy. The connection between
the parameters u (only one in the center-of-mass
fra, me) and the domain-wall picture is clear from
the example u= 0 described above. At t=+~ the
domain walls were asymptotically far apart and
stationary; thus u gives the asymptotic domain-
wall velocity. The walls experience an exponent-
ially small attractive force in this region for any
large but finite t~ and (x, ~; that is, they interact
with one another via a short-range force.

Ablowitz, Kaup, Newell, and Segur" discovered
the rest of the time-dependent solutions of Eq. (2.3)
using the inverse scattering transformation. These
solutions were classified as breathers or continuum
solutions according to their pole structure. Ex-
plicit construction of general solutions in this for-
malism is not easy. %e addressed the problem of
whether the Hirota N-soliton construction might be
extended to incorporate breathers and continuum
excitations. %e have found that it is possible to ob-
tain exact solutions containing breathers or con-
tinuum solutions from the N-soliton solution by an-
alytically continuing the asymptotic velocity pa-
rameters in Hirota's formalism for some of the
solitons into the complex u plane. This modifica-
tion is similar in spirit to a remark some time
ago" concerning how to obtain an oscillating breath-
er solution from the well-known ss solution Eq.
(2.11). We shall repeat this well-known construc-
tion, for it represents the simplest possible ap-
plication of the continuation to the Hirota formal-
ism. As a result of continuing in the complex u
plane from u=a+i0 to u=0+ib in Eq. (2.14), we
have



ASPECTS OF EXACT D YNAMICS FOR GENERAL SOLUTIONS. . . 1695

sinh[ibt(1+ b') 't']
tan g ib cosh[x(1+ b') "']

sin[bt(l+ b') '~']
b cosh[x(1+ b') "'] (2.18)

tan4& = e sin[t(l —pt )] [1 —2(cx) ]+0(~ )

= c sin(t+) cos(kx)

6 sin(Q)tk kx) y

where

To first order in &, we have

This "breather" solution is periodic in time with
angular frequency &u = b(1+ b') 't'. If the modulus
of the velocity u = jib

~
takes on any real value,

the frequency &u obeys
~

e
~

—l.
This localized oscillating solution corresponds

to a bound pair of domain walls. The energy of
creation of this excitation may take any value less
than that for two domain walls separating three
long-lived domains. In terms of domains, this
excitation represents a localized time-dependent
deviation of the magnetization density from a di-
r.ction parallel or antiparallel from the easy axis.
This "breather" excitation has not been generally
considered in sine-Gordon models of ferromag-
nets and should have interesting consequences. In
a real ferromagnet, such localized excitations
would of course have a lifetime, due to damping,
and not exist indefinitely as Eq. (2.18) suggests.

The small-amplitude plane linear excitations
may also be derived within the Hirota formalism.
Physically, these corresporid to traveling spin
waves in which the classical spins oscillate in
planes normal to the x axis. In the presence of
domain walls, the excitations are plane waves far
from the wall, but in the wall, the plane waves
are modulated and undergo a phase shift [see Eq.
(4.11)]. The combined wall and continuum solu-
tion presents an interesting new planar excitation
of the ferromagnetic system which differs from
the solutions of linear spin waves about a static
Bloch wall that have been found by Winter, Janak,
and others. " A harmonic traveling-wave solu-
tion of given frequericy & and wave vector k is re-
lated to that of any other permissible &' and k' by
a Lorentz transformation since Eq. (2.2) is Lo-
rentz covariant. Thus, in order to know all har-
monic traveling-wave (continuum) solutions, it is
sufficient to know just one such solution. Note
that if b ' —= e where 0& e «1 in Eq. (2.18), then

which is a low-amplitude harmonic traveling-wave
solution and also a solution of the linearized sine-
Gordon equation P« —P„„+P = 0. The dispersion
relation for the continuum solutions is ~'= 1+4'.
Hence, in the limit e - 0, the solution (2.18) is the
(zero amplitude) k = 0, + = 1 continuum state.
While this example is simple, it should be em-
phasized that a general solution corresponding to
any arbitrary number of solitons, breathers, and
continuum excitations may now be constructed.
Thus, we can determine the effect of the presence
of a domain wall upon a given continuum mode in
this classical theory by examining the appropriate
classical solution. We shall see in the next sec-
tion that the presence of solitons and breathers
can, in fact, alter the continuum density of
states.

One cautionary remark should be made. The
solutions of Hirota are valid on an infinite interval
xc [-~,+ ~], and should describe a ferromagnet
whose' extent is infinite, as is commonly assumed
when considering properties in a thermodynamic
limit. One must be careful if these results are to
be used on a finite interval xc [ 2L, 2-L] where
the above solutions represent at best an approxi-
mate solution of Eq. (2.2).

III. DYNAMICS OF THE SINE-GORDON FIELD:
PHASE-SHIFT ANALYSI S

In the previous section, we noticed that domain
walls in the sine-Gordon model interacted via a
short-range force which was exponentially small
at long distance. It remains to understand the
interaction of the walls at short distances. While
the details of such interactions are complicated,
the asymptotic effect, on one wall, of having inter-
acted with many others is, amazingly, character-
ized by a single simple quantity —a phase shift.
This is reminiscent of the Friedel discussion" of
impurity states in metals. In order to be able to
see this, it is necessary to reexamine the special
mathematical features of the classical solutions
of Sec. II.

Hirota investigated the dynamics of his exact
N-soliton solutions corresponding to k,.P, &k,.P&

if i 4j and established the following theorem: On
the spatial interval [-~,+ ~] the N-soliton solu-
tion of the sine-Gordon equation (2.3) splits apart
into N single solitons in the limit ~t~ ~. The ef-
fect of the collision of the jth soliton with the
other N —1 solitons is only a relative phase shift
6(j); otherwise the jth soliton conserves its iden-
tity (k&, P&) after the collisions. Suppose I solitons
satisfy

p =4& sin(&ut+kx), (2.19)
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while N-1-l solitons satisfy

lim(X, -X,.) = —~.
00

Defining the phase shifts 5,(j) by

Iimg{x, f) =4tan '{exp[X,. —&,{j)]),
g~ ya)

the relative phase shift 5(j) is given by

6(j) -=6.(j) -6 (j)

where
m=1 pm' j jfl=l+1 y Pll J

(3.1)

&„&--—ln[- exp(B„&)]

= —(&„,+in) .

One observation of considerable computational
importance in the calculation of the density of con-
tinuum states and of the classical statistical me-
chanics arises from Eq (3.1). in the following cor-
ollary: The phase shift 5(j) of Eq. (3.1) is inde-
pendent of y„.. . , y~ and depends on the param-
eters k,. and P, , i = 1, . . . , N only.

The physical importance of this phase-shift re-
sult can be seen if we pause to consider the effect
of N domain walls with all different velocities
(u, j, j= 1, . . . , N, on the continuum density of
states. Suppose the ferromagnet extends a dis-
tance L along the x axis (L ~ to allow us to use
Hirota's theorem). In the absence of domain walls,
the continuum states parametrized by wave vector
k are allowed if they satisfy the Born-von Karman
boundary conditions in the form

I k = 2mn for n = 0, +1, . . .

and

kqx —P, t= 0

X; -X~ ——k;(P;/k, . —P,./k, .)t+y,. y, . -

(3.2)

(3.3)

Combining (2.9) and (3.3), we can assume, without
using lengthy arid formal limit analysis but re-
taining generality, that

dn L 1
D(k) =—=—+—&'(k),

dk 2m 2m

1
= D'(k) +—6'(k) .2'

where D'(k) is the density of states in the absence
of domain walls. Once the analytic form of the
phase shift 5(k) is known, then one has a result
for D(k) which is exact in the limit L-~. The
analytic expressions of all the pair-collision
phase shifts will be derived and listed in Sec. IV.
We have made particular use of the phase-shift
formulas and resulting density of states in order
to calculate the classical partition function cor-
responding to the model ferromagnet. Details of
the calculation will be presented elsewhere. ' We
have shown how it is necessary to include the do-
main walls as elementary excitations" along with
the continuum modes for an accurate low-temper-
ature theory of the thermodynamics. This is quite
reasonable for Sec. II demonstrated how closely
the domain-mall classical solutions are related to
the continuum classical solutions.

A heuristic proof of Hirota's theorem follows.
By assumption, k, P, tk, P, if .i 8-'. j. .This means that
in the limit t = ~, the phase difference X,. -X&,
i+ j, can be made arbitrarily large or small. In
fact, requiring that X&=z&, a finite constant, then

However, in the presence of domain walls, this
condition is changed to become

Lk+ 5(k) = 2mn for n = 0, +1, . . .

X„.. . , X, +

X,.= finite

OQX)+$ P
B ~ ~

P Xg~g

(3.4)

where 5(k) is, in the limit L ~, the sum of the
phase shifts of the continuum state (k, (d) by the
N domain walls. The density of states D is easily
calculated

Now multiplying the right-hand side of E(I. (2.4) by

1=exp[-X, —,. . . , -X,]/exp[-X„. . . . , -Xz],
we have in the limit t-+ ~

Z„exp[Z, (&&;„p,;.p„+ (u, X;)+Z;, (p; — );]
Z."'exp'';&„(&;„g;g„+W, X,) +&&, (V& —1)X(]

Equation (3.5) may be evaluated for two cases:

(3.6)

(3.7)

(i) 1 is even: tsn-, 8=exp(g B t+X,.),
i=1

(tt) 1 is odd: tsn —', 8 = exp( —P Bt —Xi) . ,.
5=1

Using the result (2.16) and the periodicity of
P(x, f), we may rewrite (3.7) as

(tt) 1 is odd: tsn —,8= exp P Bt+X),.
f=1

=exp I B t 1st+Xt). (8.8)
tn"-1
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From (3.6) and (3.8) and the definition of &,( j),
we see

state of frequency 1, and wave number 0, let &-1.
Then d 0 and

and

6„,. = (B—~+i v)

m= j.

or

(I -v")'~'-iv'

6"(v') = m —2 ta,n '[v'(1 —v")] '~ '.

(4.6)

(4.V)

The result for 5 (j) follows mutabs mutandis,
proving both the theorem and corollary.

It will be convenient in the following section to
differentiate between the real and imaginary parts
of 6. Therefore, define

O'=—Re(5),
&"—= Im(&),

& -=&'+i&".

(3.9a)

(3.9b)

(3.9c)

P~=i&= P2,

p vi(1 vs2)-&I 2

then,

(4.1)

(4.2)

k, =(1-(o')"~'= -k, , k, =(1 -v") '~'. (4.3)

Treating the bound solitons constituting the breath-
er as one excitation, the phase shift of the breath-
er by the soliton is

IV, DERIVATION OF PHASE SHIFTS FOR GENERAL

COLLISIONS OF SINE-GORDON SOLUTIONS

Hirota's phase-shift formula as defined in Sec.
III together with observations in Sec. II (concern-
ing analytic continuation of the velocity and soliton
parameters) and the properties of solutions to Eq.
(2.3) under Lorentz transformation, allow one to
derive the phase shift of an arbitrary collision be-
tween any number of solitons, breathers, or con-
tinuum states. The technique is readily introduced
and illustrated by the following example.

Ultimately one wishes to find the phase shift & of
a continuum state of wave number k by a soliton
with velocity v. Let us begin by considering the
three-soliton solution viewed in a frame of ref-
erence in which one soliton travels with velocity
e= v'+i0, and the remaining two solitons are
bound so as to form a breather whose center of
mass has zero velocity. Let

k'= (1 —V') 'i'(k —Vu&),

(u'= (1 —V') 'i'(a) —Vk),

(d —k = 1=@) —k

(4.8)

(4.9)

If one chooses V= v', then &u'=(1 -v") '~' and k'
= -v'(1 —v") '~'. In this new frame, a phase shift
5, =i5" will remain the same as Eq. (4.'I). Thus,
the phase shift of a continuum solution of fre-
quency &' and wave vector k' in the presence of
a soliton at rest is

=m —2tan '(k') = 2 tan '(k' ') . (4.10)

The foregoing result may be easily checked inde-
pendently. J. Rubinstein" first showed that the
exact form of the continuum solution in the pres-
ence of a single soliton at rest is"
g,(x) = (2v) ' '(1+k") ' 'e'~ "(k'+ i tanhx) . (4.11)

Defining the phase shift ~" to agree with Hirota's
use of the term

lim g,(x) = (2v) ' 'e"'" '" " (4.12)

yields the same result for 5" as Eq. (4.10).
Finally the general phase shift of a continuum

state with & and k by a soliton with velocity v can
be deduced by performing the Lorentz transforma-
tion of either Eq. (4.10) or Eq. (4.2) and (4.3), and
recalculating 6. In the former case,

&"(v;k)=2tan '((I —v')' '[k+v(1+k')' '] '], (4.13)

and in the latter case

This is the phase shift of a k= 0 continuum state
by a soliton of velocity v'.

Now perform a Lorentz transformation to the
frame of reference in which the soliton is at rest.
Under this transformation, the frequency and
wave vector of the continuum solution transform
as

(k, -k.)' - (P, P,)'-
(k, + k,)' —(P, + P,)'

' (4.4) P, =u,k„P,=u,k„P,= v(1 -v') '~',

Let d—= [(1 —v')(1 —v")]' '. Then,

(d-1)' —[i~(l -v")' ' v']'
(d+1)' —[i(u(1 -v")'~'+v']' '

In order to find the phase shift of a continuum

+ib+ V -ib+ V
1+i'V' "2 1 ib V

k —~(I (g2) &2 V —k(1 y k2) ~&2

k, = -k,* = (1 —u,') '~', k, = (1 —v') ' ~'.

and algebraically one can deduce Eq. (4.13).

(4.14)
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Before leaving this example, let us note two in-
teresting limits of Eq. (4.13). First, let v 1, cor-
responding to a soliton which is traveling at the
limiting speed and whose width d= (1 —v')'~' van-
ishes: 6(1,k) =0 for all k. Second, let k-~; once
again 5(v, ~) = 0 for all k. In both cases, v- 1 and
k-~, the continuum solution is insensitive to
presence of the soliton.

In the following paragraph, I catalog phase shifts
according to the N-soliton formula that is required
when constructing the solution for [t).

A. Two-soliton formula

Choosing the frame of reference in which u, =I and

u, = -u, Eq. (4.15) reduces to

6(s s
1
u -u) = &(s, s lu, -u) = -2 log lu (4.16)

5(s, s lu„u, ) = 5(s, s lu„u, )

= -5(s, s lu„u, ), (4.17)

and hence

Similarly, for the general soliton-antisoliton col-
lision

The phase shift for an arbitrary collision of two
like solitons for velocities u, and u, is

6(s, s lu„u, ) = &(s, s lu„u, )

6(»lu -u) =+»og lul.

B. Three-soliton formula

(4.18)

(u,u, —1) + [(1 —u,')(1 —u', )]'~'

(4.15)

The general phase shift for a soliton with veloci-
ty u, and breather of frequency ~, and velocity u,
ls

[(1 —u)')' '(u, u, —1) —i[d(u, —u, )]+ [(1-u,')(1 —u,') j' '
-[ll —rd')'~ (uu. —)) + )re(u, —u) ]+ [[1 -anal)[) -ul) ['" ) '

~

~ ~ (4.19)

It is readily shown that (4.19) reduces to the formula for the soliton (v) —continuum (k) phase-shift re-
sult of Eq. (4.14) when the substitutions u, =v, u, = —k(1+k') '~', and &=1 are made. For completeness, we

repeat Eq. (4.13)

6(s, c
l v, k) = 5(s, br

l
v; 1,k(1+ k') ' ') = 2 tan 'l(1 —v')'~'[k+ v(1+ k')'~'] 'j.

Results for the phase shifts in antisoliton-breather and antisoliton-continuum collisions are merely nega-
tives one of another:

5(s, brlu. ;~.u.)=-5(s brlu, ;~.u.) 5(s, clv, k)=-5(s clv, k).

C. Four-soliton formula

The phase shift in a general breather-breather collision specified by ([))„u,) and (u&„u,) is given by the
complicated expression

6(br; br
l [d„u, ; [d„u,)

[(1 —u,') (1 —u,') ] '~' —(1 —u,u, )(( ),(u, + [(1 —(u,') (1 —[d', ) ]
' ~')+ i [(u,(l —(u', )

' ~'(u, —u, ) + [d,(l —(u,')' ~'(u, —u, ) ]
[(1-u',)(1 —u,')]'~'+(1 —u u, )][d,u), + [(1—[)),')(1 —[d',)]'~') —i[[d,(l —[d,')'~'(u, —u, )+or,(1 —[d',)'~'(u, —u, )]

„[(1—u', )(1 —u', ) ]'~' —(1 —u,u, )f-[d, (u, + [(1 —(u,')(1 —[d2) ]'@}+i[(u,(l —[d',)'~'(u, —u, ) -[d,(l —[d',)'~'(u, —u, ) ]
[(1 —u', )(1 —u', ) ] '~'+ (1 —u,u, )]—(u, (u, + [(1 —[d,') (1 —(u,') ] 'I') —i [[d,( f, —[d', ) '~'(u, —u, ) —(u,(l —(o,')'~'(u, —u, ) ]

From this expression we find the result for the breather-continuum collision

5(br, cl~, u;k) = 5(br, brl[d, u;1, k(1+k') '~')

(4.20)

(1 -u') -[(1+k')' ' -uk](a+i(1 —[d')' '[u(1+ k')' ' —k]
(1 —u') + [(1+k')' ' —uk](u -i(1 —(u')' '[u(1+ k')'~ —k]

(I -u2) + [(1/ k2)~~2 uk][d+ j(1 (g )~)'2[u(1+ k2) )' k]X (1-u') -[(1+k')' '-uk](u -i(l —(o')' '[u(1+k')'"-k] (4.21)
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= 0 identically. (4.23)

In order to treat collisions involving more than
two nonlinear solutions, one adds the pairwise
phase shifts presented in this section, according
to Eq. (3.1). Following from the corollary to Hir
ota's theorem, the initial and final spatial config-
uration of "scattering" solitons are not important
in detail as long as these configurations are all
sufficiently far from the "scattered" soliton.

Equation (4.21) reduces to

(1 —uP)'~'(1 —u')
b"(br, c

~
co„0;k)=4tan '

a -u(&+&' '~
u 0 1. (4.22)

The last type of collision is that of the trivial two-
continuum-solution collision; from (4.19),

&(c, c k„k,) = b(br, br 1, k,(l + k,') '~', 1,k,(1+k,') ' ~')

er and continuum solutions as well. The present
work details this extension by considering general-
izations of Hirota's two-soliton solution. Section
III presents Hirota's phase-shift theorem, pro-
vides a heuristic proof, and in an important cor-
ollary to it points out that the phase shift is in-
dependent of the detailed spatial configuration of
the scattering solutions. By applying analytic con-
tinuation to the original phase-shift formula of Hir-
ota, one can greatly extend the range of solutions,
include breathers and continuum solutions, and ob-
tain expressions for the phase shifts.

We have discussed these results in the context
of a classical uniaxial ferromagnet of infinite ex-
tent. The phase-shift analysis of Sec. IV and V
was shown to be of importance in establishing the
continuum density of states Th. is density of states
will be, in turn, important for the calculation of
the classical statistical mechanics of the model.
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