PHYSICAL REVIEW A VOLUME 16, NUMBER 4 OCTOBER 1977

Ray theoretic analysis of spatial and temporal self-focusing
in general weakly nonlinear media

Dan Censor
Department of Electrical Engineering, Ben Gurion University of the Negev, Beer-Sheva, Israel
(Received 19 November 1976)

A general method is presented for describing self-focusing phenomena in various media by means of a
geometrical-optics approach. The general formalism applies to a wide class of media: inhomogeneous,
anisotropic, dispersive, and time varying. In contradistinction to previous methods, which derive pertinent
wave equations and analyze them by assuming intensity-dependent wave speeds, here the appropriate
Hamilton equations are derived, from which self-focusing phenomena evolve directly. Simple examples

illustrate the feasibility of the method to deal with spatial and temporal effects in various media.

I. INTRODUCTION AND GENERAL THEORY

Since Askar’yan' predicted in the early sixties
the existence of the self-focusing phenomenon, a
vast body of literature has evolved describing ex-
periments and analyzing the problem theoretically,
Space limitations rule out the possibility of giving
credit to numerous authors who contributed to our
present knowledge of the subject. To link the
present discussions with the existing literature,
the reader is referred to a recent paper by Miyagi
and Nishida® and the book by Akhmanov and Khokh-
lov.® Henceforth only work directly related to the
present subject will be cited.

The problem of describing self-focusing pheno-
mena is approached here from the point of view of
geometrical optics. Cumberbatch* (who also gives
a review of the subject with many citations) con-
siders self-focusing by means of geometrical op-
tics theory. His approach will be compared to the
present method. Ray theory is discussed by
Brandstatter’ and Kline and Kay®; hence the basic
theory will be presented here very succintly.

The basis for the present argument is a ray-
tracing formalism for weakly nonlinear media
recently derived by the author.” This is summar-
ized here using the extended Fermat principle of
Synge® and a compact four-vector notation.

The behavior of the physical system is governed
by Maxwell’s equations in sourceless domains. In
the conventional notation (e.g., see Ref. 9), we
have

) - 0 = el > 0 =

S XE==-— —= XH=—

X E at B, 89X H at D,

9 = 0 =

5§'B—£{;°D——O, (1)

which must be supplemented with constitutive re-
lations to make the system of equations deter-
minate. Essentially, geometrical optics is based
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on the applicability of the eikonal approximation,
which describes the solutions for (1) as quasi-
monochromatic waves having slowly varying am-
plitude and phase functions. Here we assume
periodic, rather than harmonic waves, of the
form

E;= Z E . ; exp(im0) , (2)
me—w

where E,,,';(}_E) and 6(X) are the amplitude of the
mth harmonic and the phase, respectively; i=1,
2, 3 denotes the space coordinates X = (x,, x,, X3),
and X=(%, ict) is the space-time radius vector. A
structure similar to Eq. (2) exists for ﬁ, _}§, and
H. The phase is represented as a line integral in
four-space,

e(i)zéxﬁ-di, 3)

where K =(&, iw/c) and k and w are the propaga-

. tion vector and frequency, respectively. The self-

consistency condition

0K, 0K
a—fi_ﬁizo’ a+pB, a,ﬁ=1,2,‘3,4, 4)
prescribes
= _96
&
0 ) o /.
E{"(ﬁ’ﬁ/u) . (5)

The constitutive relations for weakly nonlinear
media*’ are written as

Di=eQE; +e W E;Eytenr
(6)
Bi:“(t!}Hj"'“%)kHij""" ’

where ¢, j, etc. indicate spatial Cartesian compo-
nents, and all quantities depend on K and X. Sub-

1673



1674 DAN CENSOR 16

stituting (2), (5), and (6) into (1), we obtain for
each harmonic wave .

(EX_E), —wu(}} H; - w#(iZ}kHj H,-:--=0,
(7)

(kxH) +we(,-’j)E,~ +we(,2,)k E, E, +.--=0,

where m, indicating the harmonic, is suppressed.
The notation in (7) is compacted in the form

G,K,3 X)=0, »=1,...,6, (8)

where X denotes that the constitutive parameters
and amplitudes are slowly varying functions of f{,
and 3=(E,, E,, E,, H,, H,, H;) is a six-component
vector. Similarly to the case of linear systems,
(8) can be rewritten as

G,=F,;a,=0, 7,s=1,...,6, 9)

where F,, is a 6 X6 matrix, depending on K, 3 X.
For a nontrivial solution of (9) the determinant of
F,; must vanish

detF, =F(K,%X)=0. (10)

All nonsingular representations of F,; lead to the
same F =0. Thus we have derived a dispersion
relation between K, 3, X. It is recalled that (8)
describes all harmonics. To conform with the
linear case, for which onlym =1 in (2) exists, we
consider (10) as the dispersion relation only for
m=1; for all other harmonics, (8) and (10) consti-
tute equations for 'finding & of the relevant harmon-
ic. It is observed that 6 in (2) prescribes identical
phase velocities for all harmonics. This satisfies
the physical requirement for coherent harmonic
generation which is essential for weakly nonlinear
media.

The existence of a dispersion relation (10) and
the use of the eikonal approximation, (2) and (3),
together with the set (8) of field equations suf-
fices to derive the Hamilton equations for the class
of problems discussed here,

II. THE FIELD OF A BUNDLE OF RAYS

We consider the problem of deriving the appro-
priate Hamilton equations. As a variant of the
derivation in Ref. 7, this is done here by using the
extended Fermat principle of Synge,® which stipu-
lates that (3) is an extremum. Since K, &, and X
are related by means of (9) and (10), the integrand
is augmented by using Lagrange-multiplier func-
tions. The variational principle is, therefore,

TN S
0-6/(deT +M1)F(K, §; X)

+MT (1) a, -AK; ff)]) ar , (11)

where the form A2, has been chosen for conven-

ience, and a,=A,(K; X) is a solution of (9), which
we assume to exist, although we need not find it
explicitly. The corresponding Euler equations are

d—i:-)\[ﬁ+)‘ a—jAé] ,

ar 8K T 8K

dK _ \:aF aA,}

it s Rt S (12)
oOF

55:—7\,.

Splitting (12) into space and time components and
using ¢ as the parameter along the ray path, we ob-
tain

df __aF/ok+(@F/sa0A,/ok

dt 8F/8w+(dF /8a,)9A, /6w ’

dk _8F /6% +(oF /0a,)0A,/o% (13)
dt oF/ow +(8F /0a,)0A,/ow’

dw__8F/ot+(aF/oa,pA,/ot

dt ~  0F/sw+(8F/0a,)0A,/ow "

The derivatives 8A,/8l;, I; standing for k;, x;, f,
or w, are related to derivatives of G, [Eq. (9)] ac-
cording to

%=_( 3G, ) 3G, (14)
ol dag al; *

Equations (13) and (14) suffice for ray tracing in
weakly nonlinear media; however, for discussion
of self-focusing we have to consider the structure
of rays which form a beam, or bundle. This pro-
vides the necessary interaction mechanism which
leads to self-focusing and pulse compression ef-
fects. We demand that (8) be satisfied consistently
throughout the bundle of rays, which are described
by (13). We therefore add the constraints

da, =§é.§.+a;4_a LL +8AE dw

9x; ox; dk; dx; dw 8x (15)

da, _bA, 2A; 3ky A, bW
8t ot 9k; ot Bw of ’

prescribing the relations between spatial and tem-
poral distributions of amplitude frequency, and
propagation vector. These constraints are equiva-
lent to dG,/dt =dG, /dx; =0.

The framework (13)-(15) suffices to deal with
self-focusing phenomena in a variety of media.
Unlike more specialized models, it is feasible to
investigate anisotropic, inhomogeneous, time
varying, anddispersive media. Other methods,
e.g., that of Cumberbatch,* require that a wave
equation be given, which is usually much more
complicated than dealing with the field equations
directly. The “effective refractive index,” or the
intensity-dependent wave velocity assumed by
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many authors is more heuristic than (15), which
takes into account amplitude and polarization of
all field components.

III. SIMPLE EXAMPLES

It is the aim of the present study to formulate
a general theory rather than to investigate
special cases. It is, however, felt that the feasi-
bility of discussing various media should be dem-
onstrated, at least for the simplest possible cases.
We therefore consider spatial and temporal ef-
fects in simple media, and discuss the influence
of dispersion and time and space inhomogeneities.

A. Simple media

The medium is considered to be homogeneous,
isotropic, and time constant. This means that the
constitutive parameters in (7) are constants with
respect to X, ¢. Also the medium is isotropic, so
that all indices in (7) become . In addition, it
will be assumed here that the constitutive param-
eters are nondispersive, i.e., independent of E,
w. For simplicity the nonlinearity will be re-
stricted to the dielectric properties, i.e., only
1 =p=const. is considered. Only €@, the first
nonlinear effect, will be retained. Further sim-
plification results due to a proper choice of the
fields. In the present simple medium, transverse
fields are possible. To reduce the problem to a
scalar two-dimensional case the E field is as-
sumed to be polarized in the x, direction. The
beam is incident and stays in the x,, x, plane.

Because the nonlinearity exists only for the di-
electric parameters, the Hi field can be eliminated
from (7), yielding only one equation,

G=[-F*+w?WeP+Ee®) E=FE =0,
k2=R24R2 . (16)

Clearly this is a vast simplification of the general
case that can be discussed in the frame of the gen-
eral theory. We can write

F==k +wue,=0, (17)

where €, =€® +Ee? is the “effective” value of
the dielectric parameter. This is used here only
as a convenient notation.

We wish now to compute (13) and (15) for the pre-
sent case. It is noted that because G and F are
proportional, the first equation, (13), becomes
indeterminate, i.e., 0/0. By applying a limiting
process and 1’Hospital’s rule we obtain

dx; _ _ky

= =12 ®)
“e

This means that the group velocity is directed

parallel to k, as expected for a homogeneous, iso-
tropic, and time-invariant medium. The medium
properties also render dw/dt=0. Next consider
dk,/dt. Since 8I/8x;=0A/9x;=0 in a homogeneousg
medium, we have dk;/df indeterminate. This is
not caused by the fact that G=FE; hence we get

OB oA ok _ 2 ok,

19
ox; ok; 8x; wine® oy (19)

The time invariance and (8/6%) xk =0, Eq. (4),
prescribe

dky _ok;  Ok; dx; Ok; Ky (20)
dt 8t ox; dt 9x; wpe,

Finally we get from (19) and (20)

dk;  we® oE

dat 2, ox; 21

The profile of the field within the beam tapers off
away from the center; therefore we have oFE /8 X,
<0for x,>0. Consequently we get anegative dk,/dt for
€?> 0; i.e., the k vector changes direction to-
wards the center of the beam. Since the group
velocity (18) remains parallel to &, the vays con-
vevge towards the centev of the beam. This is a
demonstration of the spatial self-focusing phen-
omenon. Of course negative €@ will give rise to
a divergent beam. The field along the ray path
behaves according to

dE oA dk, 2k, dk

dt ok, dif  wue® at
d
=(w2ue(2))‘lﬁ k2, ‘ (22)

This yields E along the ray path, but since the
present problem is time invariant, results from
various rays can be used to compute 8E/8x; for the
next computational step. Hence the whole process
of spatial self-focusing can be computed for the
present case, As the rays get closer, 8E/dx, will
become smaller, slowing down the process of self-
focusing. If, for some reason, E is not a mono-
tonic function of x,, the beam will break up into
filaments, as observed by Brewer and Lifsitz.'°

The structure of (15) suggests that there should
also be a temporal self-focusing phenomenon. To
show this for a simple example, let us assume an
infinitely wide pulse, for which we assume da,/dx,
=0. On the other hand, da,/0¢ is taken as a con-
straint. The analog of w = const. for the spatial
case is replaced now with k= const. This pre-
scribes through (4) that aw/8x; =0. Consequently
Eq. (15) becomes

9E _8A bw 2¢, dw

3wl wed at (23)

which is the analog of (19). Equation (18) is the
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same for this problem. Thus Eq. (18) and

d_u)__ 0.)6(2) é_E_
at = 2, ot

(24)

are the equations needed for tracing the ray. Us-
ually a pulse will start with 8E/8¢>0 and have a
trailing edge with 8E/6¢<0. For € ®>0 and posi-
tive 8E/a¢, the frequency will diminish, according
to (24); hence the group velocity (18) will in-
crease. For the trailing part of the pulse the
group velocity will decrease. Consequently ®>0
will cause the pulse to expand. On the other hand,
€?<0 will cause a time-focusing, i.e., compres-
sion of the pulse. Note that for spatial self-focus-
ing, €®>0 was needed. It appears that space and
time focusing are working in opposite directions.
The field intensity which builds up in a spatial
focusing process will therefore be counteracted by
the pulses becoming more extended in the direction
of propagation. The last statement is of course
speculative, as we address ourselves to two differ-
ent and highly specialized examples.

B. Effect of spatial and temporal dispersion

The influence of dispersion on self-focusing is
of great interest because the phenomena may be
competitive. Relevant studies have been pub-
lished by Hasegawa and Tappert.!!* 2 It must be
Kept in mind that the present model, with first-
order derivatives of the various parameters, can
only cope with small dispersion effects. Cases
where the wave packets change form rapidly, as
considered by Anderson and Askne, ! are out of
the scope of the present discussion.

To include the effect of dispersion in the sim-
plest form, replace €, by €,(¥%, w®). The quadra-
tic dependence is what we expect for simple loss-
less media. For discussion of spatial dispersion
(dependence on k) see Ginzburg.™

Repeating the first problem, i.e., spatial self-
focusing, we obtain

dx;  kiAg de; _ we® 3E

—d;f_—wueeAw’ dt  2€,A, 8x; ’
(25)
1wy 2Ce _1.,.9% %€,
Ap=1 Wi Aw—1+€e 90l *

For the temporal self-focusing problem, the first
equation of (25) is obtained, and

d_‘g__ we(Z) @
dt = 2e,A, 3t

(26)

Considering temporal dispersion only, A,=1, then
Eq. (25) and (26) indicate that the ray tracing is
speeded or slowed, compared to the nondispersive
case, depending on A,. Thus, for A,>1 we re-

place dt by df’=dt/A,, i.e., the parameter along
the ray is smaller and the effects take place soon-
er. Identifying the phase velocity V,=w/k = (pe,)"172
according to (17), the first equation of (25) be-
comes

x| _V,
dt |~ 27

V= A,

For A,z1, V2V, corresponding to anomalous and
normal dispersion. Thus our conclusion that ano-
malous dispersion is beneficial for self-focusing
agrees with the results of Hasegawa and Tap-
pert.’** The inclusion of spatial dispersion is not
expected to change this conclusion, since temporal
dispersion is usually predominant.

C. Effect of inhomogeneity and time variance

The ray theoretic approach is especially suitable
for media involving slowly varying parameters. It
might be necessary in certain problems to neutral-
ize self-focusing, or it might be desirable to add
the self-focusing effect in such a way that fila-
ments (produced by undesirable field gradients
within the beam) will tend to merge.

We return to the first problem of spatial self-
focusing without dispersion. It is assumed that
€. (X, t) now depends on position and time. For
€,(X) depending on position only, the group velocity
(18) remains unchanged, but

dr; _ w @ 9E _2€,
d_fL_§€_e (e ox; 0% > (28)

is obtained. Hence the change of direction of the
rays can be compensated by a spatial inhomo-
geneity.

Analogously, for temporal focusing e,(¢) will be
assumed. Again (18) is preserved, and instead of
(24) we find

v __w 20E aEe)
ar 2, (6 at "ot (29)

" demonstrating how in a time-varying medium the

nonlinear effects may be neutralized.

IV. EFFECT OF HIGHER-ORDER NONLINEAR TERMS

Inasmuch as many materials display nonlinear
effects due to the cubic term, let us examine the
simple wave equation

G=[-F +0?u(c@+E2P) | E=FE=0 s (30)

which should be compared to (16), with e,=¢€
+E%®, for this case. Retracing our steps which
led to (21), we find again (18), with the present
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definition of ¢,, and

@3) )
dk; =we3E BE we® gE?

dt €, 3x; 2¢, 9x;

= ) (31)

as the analog of (21). Similarly, the analog of (24)
involves 8E?/a/ for temporal self-focusing. The

effects depend now on €®and its sign and the pro-

file of the square of the field.
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