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We discuss the propagation of an electromagnetic pulse through an active medium prepared in a state of
inversion between two levels of the same parity. Since no electric dipole transition is possible between the
chosen atomic levels, we investigate the possibility of amplification of an injected signal having a carrier
frequency equal to one-half the atomic-transition frequency. We show that under suitable conditions a
nonlinear atomic polarization can be generated which oscillates at the same frequency as the incident
electromagnetic pulse. The coupled atom-field evolution is described by the usual self-consistent approach.
When atomic relaxation effects are negligible, we derive an equation describing the spatial evolution of the
energy of the propagating. pulse. From this equation we characterize the threshold condition for power
amplification and classify the multiple steady-state solutions of the propagation problem. The evolution of the
pulse envelope through the amplifier is analyzed with the help of a hybrid computer simulation. Pulse-
envelope modulation and multiple-pulse formation even in the asymptotic limit of long amplifiers are
displayed.

I. INTRODUCTION

The possibility of producing two-photon stimulat-
ed decay and power amplification in a pumped ac-
tive medium was suggested, apparently for the
first time, by Prokhorov' and Sorokin and Bras-
lau. ' Since then, considerable progress has been
made in understanding the dynamics of coherent
two-photon processes. '

Much of the recent work has focused on situa-
tions in which the atoms are initially in their
ground state; the results have shown surprising
qualitative stimilarities between coherent two-
photon processes and their single-photon counter-
parts' (the term coherent is used here, and hence-
forth, to characterize situations where the atomic
relaxation times are much longer than the dura-

. tion of the propagating pulse). Thus, self-induced
transparency, pulse-amplitude and frequency mod-
ulation, adiabatic following, and coherent trans-
fer. of atomic population have been described the-
oretically. ' Experiments on coherent two-photon
processes have also been reported. '

More limited attention has been directed to the
propagation of a pulse in an inverted medium when
the active levels are not coupled by a direct elec-
tric dipole transition. " Past experience with one-
photon processes has shown that rather minor for-
mal differences exist between the working equa-
tions for an amplifying medium' and those which
are appropriate for an absorbing system. " This

is still true in the theoretical analysis of atoms
undergoing two-photon emission or absorption.
However, the theory of a two-photon amplifier pre-
dicts interesting effects which have no analog if
the atoms are initially unexcited. Thus, for exam-
ple, we find that, while a two-photon absorber
allows the propagation of a I.orentzian-shaped
steady-state pulse, the coherent two-photon am-
plifier cannot support a steady-state-pulse en-
velope. On the other hand, the pulse energy satis-
fies an equation that allows different classes of
steady. -state solutions.

In this paper, we discuss the theory of a degen-
erate two-photon amplifier. 'The term degenerate
indicates that the carrier frequency of the incident
pulse is approximately one-half of the atomic
transition frequency. %e require the incident pulse
to satisfy the slowly varying envelope and phase
approximation, and in addition we restrict our at-
tention to pulse durations which are sufficiently
smaller than the atomic incoherent relaxation
times.

Our analysis evolves along the lines mapped out
by Estes et al. ' We describe in some detail the
derivation of the coupled atom-field equations of
motion and construct an equation for the pulse en-
ergy which is reminiscent of the well-known Arec-
chi-Bonifacio "area equation" for a one-photon
amplifier. In this case, however, we discover a
much richer variety of solutions that include single
as well as multiple pulses. In addition, our energy
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equation is integrable and leads to explicit pre-
dictions regarding the asymptotic (large-distance&
behavior of the pulse energy. 'The threshold con-
dition for power amplification requi. res simultan-
eously an appropriate population inversion be-
tween the active levels and a sufficiently large
input energy. As a result, small-signal amplifica-
tion cannot be supported by a two-photon amplifier.
On the other hand, if the power amplification con-
ditions are met, a propagating pulse undergoes en-
velope modulation leading to pulse sharpening and,
under appropriate conditions, multiple-pulse for-
mation.

where the electric field h(x, f) has the amiliar
form of a propagating plane wave with a slowly
varying envelope and phase

8 (x, f) = 8,(x, f) cos[~~t —kx+ y(x, t)] . (2.2)

The carrier frequency ~ is approximately equal

II. BLOCH EQUATIONS FOR THE ACTIVE MEDIUM

We formulate our calculations for a typical atom-
ic system with an energy-level diagram such as
shown in Fig. 1. The levels labeled Ia& and

I
b& are

assumed to have identical parity, while the inter-
mediate states, labeled lj&, are coupled to either
la& or

I
b& (or both) by a direct dipole transition.

The total Hamiltonian of the system has the form

H = E,
I
a&&a + E~

I

t&&&t&
I

+ Q E, Ij&&j I

—p. ~ h (x, t),

to one-half the atomic transition frequency ~„
=(Z, E—,)/5 W. e classify this situation as degen-
erate to distinguish it from the more general case
in which two fields of different frequencies, ~,
and c&, (~, + ~2= c&„),are propagated through the
medium. The dipole-moment operator is assumed
to have the form

p = 2 I
~&&j lp.~+

I
f&&&j Ip.~+ (hermitian adjoint) .

(2.3)

The coupling terms between intermediate states,
i.e., terms of the form

I
j&&j' lp, ,„areneglected

in Eq. (2.3) since, under the present conditions,
the atomic population is expected to be distributed
only between the two active levels Ia& and

I
b&

Our calculation is based on the traditional self -con-
sistent approach. We construct equations of mo-
tion for the relevant atomic amplitudes C, and C,
driven by the applied electric field. We then derive
an expression for the atomic polarization in terms
of the atomic amplitudes, and require, self-con-
sistently, that the polarization act as a source
term for the classical field-propagation equations.
This approach was adopted to the description of
a one-photon amplifier by Arecchi and Bonifacio. '
Their results will be recalled in our discussion to
emphasize the similarities and the differences
between the one- and two-photon amplifier theo-
ries.

Our starting point is the Schrodinger equation,

fh
„

I
4(f)& = If

I
4(f)&, (2.4)

for a typical atom described by a state vector

Ib&
C (t) isbt/&&

I
b& (2.5)
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FIG. 1. Schematic energy-level diagram for an active
atom. The energy separation between the states ~a) and
~b) is approximately twice the erergy of an incident
photon. The symbol

~ j) collectively represents all the
intermediate states.

The atomic state vector evolves under the action
of the total Hamiltonian given by Eqs. (2.2) and
(2.3). The atomic amplitudes C, , C„C,are as-
sumed to be slowly varying in time, i.e., to re-
flect only the secular variations of the state vec-
tor. This assumption is well justified for single-
photon processes under resonance conditions. In
this case, in addition to requiring that ~ =-,~„,
we must neglect competing radiative processes
which cause the atom to radiate at a different fre-
quency from that of the stimulating field. In the
presence of a strong signal. at frequency co this
assumption appears justified.

The exact coupled equations for the atomic am-
plitudes are
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iIC, (t) = —g g„8(x, t)c~(t)e '"&",

tmc, (t) = g u„S(x., t)c,(t)e "»',

Hc,.(t) = -q,.s(x, t)c.(t)e'"~"

—q, ,b (x, t)c,(t)e'"»',

(2.6}

$(x, t) =$,(x, t) cos[(ut-ax+ y(x, t)]

=E,(x, t)e'"'+E,*(x, t)e '"',

E (x t) ~g (x t)e t(kx-e)

(2.10)

As an internal consistency check of the elimination
of the intermediate amplitudes, we observe that

ix— dt'[ p, ,S (x, t')c, (t')e'"~c'

+ p, ,S (x, t')C, (t')e'".&'] . -

(2.7)

A similar equation for C,(t) can be obtained from
Eq. (2.7) by interchanging the indices a and b with
one another. In order to reduce the exact integro-
differential equations to a manageable form, we
perform the slowly varying amplitude approxima-
tion for both the atomic amplitudes and for the
field envelope. This amounts to replacing b, (x, t'),
C,(t'), and C,(t') inside the integral with their
values at the upper limit of integration, and carry-
ing out the exact integration of the remaining ex-
ponential factors.

Upon retaining only the slowly varying terms,
the required coupled equations for the atomic am-
plitudes C,(t) and C,(t) take the form

c.(t) = (tie)[t ..~E, ~'c.(t) + t.,E', c,(t)e'"" "~ "),
(2.8)

c,(t) = (il@)[u» ~E, ~'c, (t)+ t,g,*'c.(t)e '"""o"']-
where the parameters 0„,k», and Q„aregiven
by

aa @ I-ja 2 2j ja

2 ~ 2 QPj~

%jg —(d

(2.9)

ab
4t) jp+ CO

\

and where the slowly time-varying field amplitude
E, is defined by

where we have assumed the field to be linearly
polarized and where the dipole matrix elements
p j, and p j, are projections along the direction of
polarization of the field.

Our objective is to derive a set of coupled equa-
tions for the coherent amplitudes C, and C,. To
this purpose we solve formally for the intermediate
amplitudes C,(t) and r. eplace Eqs. (2.6) by a pair
of coupled integrodifferential equations for C,(t)
and C~(t). The result is

t8C.(t) = —g p,.,h (x, t)e-'"~"

„--([c,f'+ ic, /') =0 (2. iS)

as one must expect from probability-conservation
requirements.

Within the approximations leading to the system
of Eq. (2.8), we have replaced the exact dynamical
evolution of the multilevel atom with a description
that bears considerable similarity to the tradition-
al analysis of a two-level system. The major dif-
ference, of course, is that Eqs. (2.8) contain the
square of the field envelope, rather than the first
power of the field as in the usual description of
one-photon processes in a two-level system.

Next, we derive an expression for the atomic
polarization in terms of the relevant amplitudes
C, and C,. From the definition

i'=~&~) =~&((t) ip lt(t)& (2.12)

and the operator representation (2.3) for the atomic
dipole moment we find, as expected, that the total
polarization depends on the entire set of atomic
amplitudes, i.e.,

e' = ee P C,,CC,". e ' e" + P C,,CC,. e' e"+ cc) .
j j

(2.13)

The elimination of the intermediate amplitudes
C, (t) is carried out in identical fashion as in the
derivation of the equations of motion (2.8}. Thus,
we replace C, (t) with their for. mal solution in
terms of C,(t) and C,(t) and carry out the time in-
tegration after making the slowly-varying-ampli-
tude approximation. The result of this calculation
reveals polarization terms which oscillate at fre-
quency (d, as well as terms oscillating at frequen-
cies coj„(dj„andat the third harmonic of the in-
cident frequency. Thus, as already remarked
(Grischkowsky et at. in Ref 5), competing effects
may accompany two-photon emission or absorption
processes.

En the presence of an injected field at frequency
&u, it appears reasonable to ignore all the polariza-
tion contributions other than those which oscillate
at the frequency of the externally injected pulse.
En this case, the atomic polarization takes the
form
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I' =N[k-
I
c.I'+ kb& I

C~ I'+ k.~(c.c~ e--+ c.*c~e' )]$,(x, t) cos[cut —kx+ y(x, t)]

+ Nk„i(C,C,*e ' —C,*C,e' )h, (x, t) sin[ ~t —kx+ y(x, t)], (2.14)

where

n = (2(u —(u„)t—2kx+ 2y(x, t) . (2.15)

It is apparent from Eq. (2.14) that, as in the one-
photon case, the induced atomic polarization con-
tains terms that oscillate in-phase and terms that
oscillate in quadrature with the applied field. The
in-phase component of the polarization in Eq.
(2.14), however, depends not only on bilinear
terms of the type C,C,*, but also on the populations
of the active levels through C,'and C', .

By analogy with the Bloch-vector representation
of the one-photon theory, it is convenient to in-
troduce the new atomic variables

are driven by the square of the electric field en-
velope, rather than by the field envelope itself,
and the detuning variable contains an intensity-de-
pendent contribution. The immediate consequence
of the latter feature is that, even in resonance
(2'= ~„and&y/st=0), the second component R,
of the Bloch vector does not vanish for all time.
This factor will be shown explicitly and discussed
in Sec. III.

III. COUPLED SCHRODINGER-MAXWELL EQUATIONS

The field evolution is described by the wave
equation

R, = i(C,*C,e' —C,C,*e "),
(2.16)

82$ ] Q2p
.hsx c st c eo st (3.1)

R, = Ic I'- Ic.
The physical meaning of R, and R, is immediately
obvious: R, represents the population difference
between the two levels of interest, while R, is pro-
portional to the quadrature component of the non-
linear polarization. R„however, is no longer
proportional to the in-phase component of the po-
larization because of the dependence of P(x, t) on

the atomic populations.
In terms of the new variables, the atomic evolu-

tion is described by the set of equations

'dt 2 26

(2.17)

(3.2)

CO

C
g

+
g

$0 2
Pg j

X t E0
(3.3)

where P, and P, are the in-phase and in-quadra-
ture components of the polarization in Eq. (2.18).
In terms of the atomic variables, the field equa-
tions (3.2) and (3.3) can be cast into the form

c +—2' —cob++ 2

A — " "R, , 34
2A,',b

In the slowly varying envelope and phase approxi-
mation Eq. (3.1) is equivalent to

R = ——SP&ab

2S (
+Xk,b

0 ~ 1 0' (3.5)

while the atomic polarization takes the form

bb aa R ca + bb

x cos(&ut —kx+ y) Nk„SQ, sin(vt —-kx+ y) .

(2.18)

The conservation probability (2.11) is mapped into
the conservation of the length of the Bloch vector

The coupled set of equations (2.17), (3.4), and

(3.5) represent the starting point of our analysis.
It is convenient to introduce the following nota-

tions

y = (k,~
—k„)/2k„,g = urNk„/eo,

~s = (1+~')'"(k.&/2@)&'. ,

n= (2ur —(o,.)+ 2
ep

(R', +R', +R',) =0 (2.19) and to refer the atom-field evolution to the local
coordinate frame

which follows at once from Eqs. (2.17).
On comparing Eqs. (2.17) with the usual Bloch

equations for a two-level system we note two ma-
jor differences: in Eqs. (2.17) the atomic variables

q=x/c, ~=t-x/c. (3.7)

'The coupled Schrodinger -Mwvvell equations can be
written in the form
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(I y2)1/2 /1+ 2+ (I+ y2)1/2 2 t

8R,
at (t+ tn)'" " )

8R3 g
(I+ y2)1/2 t

(3.8) so(1},r)
87'

= (d~ (3.15)

or by

The parameter o(q, 2) is related to the Rabi fre-
quency by the simple relation

1
=g(OgR —/(dg ~

//(q, 7) = d1 (t)/1('Qt7 ) . (3.16)

80 8R2 . 8R3
8n

=g 87 -~
87

(3.9)

The field-envelope equation is written in terms of
the "Rabi frequency" (d~ which is proportional to
the square of the field envelope. The damping term
-l(d~ has been added phenomenologically to de-
scribe the effects of nonresonant losses.

In the coherent propagation limit, i.e., neglecting
atomic relaxation effects, the field equation can be
cast into the form

8 ct)&
=g(d+1 —l (0„t

(3.10)
80
8~ 1

-- = —gQR

which reveal an interesting conservation relation
for the product of the Rabi frequency co~ and the de-
tuning Q. In fact, from Eqs. (3.10), we find

8—((u~Q) =- l(u„Q . (3.11)

Equation (3.11) can be integrated at once to yield

(u)sQ)„=((dsQ)„~e '" . (3.12)

If at the input of the active medium the detuning
parameter is zero, it remains identically zero,
everywhere. We define as resonant propagation
the situation in which 0 =0 for all values of g. In
this case a closed-form solution exists for the
atomic variables R„R„andR, which is easily
shown to be (see e.g. , Belenov et al. in Ref. 3)

R, = [R,'/(1+y')'/']sino,

R2 =[R2/(1+y')' 2](cosa —1), (3.13)

R, = [R2'/(1+ y2) ](cosa+y2),

where R,'is the population difference
( e, (2 —)c, (2

just prior to the arrival of the leading edge of the
pulse at a given depth into the active (or absorbing)
medium .

In arriving at Eqs. (3.13) we have assumed im-
plicitly the swept excitation initial conditions

Hence, 0 is proportional to the integrated pulse
energy from the leading edge of the pulse up to a
given value 7' of the local time. The total pulse en-
ergy will be denoted by

(3.1V)Z(1i) =lim a(1I, 7);
It is easy to derive the equation of motion for
o(1i, v). From the first field equation (3.10) and
from Eq. (3.13) we have

s)le2. (1+y')'" e~ e~
' (3.18)

We find a major difference between Eq. (3.18) and
the "area" equation derived by Arecchi and Boni-
facio' for a one-photon amplifier. The Arecchi-
Bonifacio area equation has the form

8 O' . 80'
=G sino —l —,

8'g8'7 87
(3.19)

where ~ represents the area under the electric
field envelope. In our case the nonlinear driving
term on the right-hand side of Eq. (3.18) contains
the product sino'(So/82) This .circumstance allows
us to make general statements concerning the be-
havior of the pulse energy which are drastically
different from those derived for a one-photon am-
plifier.

In order to analyze the spatial variation of the
pulse energy, we integrate Eq. (3.18) with respect
to the local time v. Upon taking the limit. av -~,
we have

—&(q) =-&&(1I)+ 1,„,[1—cosZ(1})]. (3.20)

The solution of Eq. (3.20) in the lossless case
(I =0) is found to be

Z(0) =2arccotan(cotan —,Z(0)—,r 0) +tanI + y2)l /2

(3.21a)

or

Z(0) =2 are cotan(cotan —,'Z(0)—,r, a)(1+y' '"
R, (v =0, )I) =0,

R,(2 =O, q) =0,

R,(r = 0, q) =R,'.
(3.14)

+ 2(k+ 1)v (3.21b)

where (3.21a) applies when the expression in large
parentheses is positive, and (3.21b) when it is ne-
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l2- 2.0

l.0

FIG. 2. Spatial behavior of the pulse energy'(n)
{Eqs. {3.2la) and (3.2lb)] for different values of the in-
put value Z (0). 0.

gative. The integer number k equals the integral
part of Z(0)/2v, and Z(0) is proportional to the in-
put pulse energy.

Typical solutions are shown in Fig. 2 corres-
ponding to different input energies Z(0}. It is ob-
vious both from Eq. (3.20) and from the solutions
in Fig. 2 that the efficiency of the amplifier, mea-
sured for example in terms of the initial rate of
growth, is not a monotonic function of the input en-
ergy, as in the case of an ordinary amplifier. The
initial rate of growth, instead is maximum for
Z(0) =u and odd multiples of w, while it vanishes
for Z(0) =2m, 4s, etc. In the latter case the pulse
energy is conserved during the propagation.

Detailed information about the pulse envelope
cannot be obtained from Eg. (3.20). A computer
simulation of Eqs. (3.8) and (3.10) has shown that,
even when the pulse energy is conserved during the
evolution, pulse reshaping takes place with a con-
tinuous narrowing of the pulse and a subsequent
growth of the peak power.

Interesting predictions can be made also about
the asymptotic behavior (r)-~) of a pulse even when

the field losses are taken into account (l t 0}. In
this case the asymptotic solution Z(~) must satisfy
the transcendental equation

1 —cosZ( ) =(1+y')'"(l/g)Z( ) . (3.22)

It is apparent that multiple steady-state solutions
are possible. Three typical situations are indicated
in Fig. 3. With reference to this figure, the
straight line labeled 1 corresponds to (1+y')'~'I/g
=1. The only solution of Eq. (3.22} in this case is
Z(~}=0. The pulse is completely dissipated by the
scattering losses and no energy or power simplifi-

FIG. 3. Asymptotic steady-state solutions of the area
equation [Eq. (3.20)] correspond to the intercepts of the
strai ht lines(1+yt) ~2(l/g)Z(q) with the curve 1
—co (q). The straight lines 1, 2, and 3 have slopes
equal to 1, ~, and 5, respectively. The stable solutions
are marked with solid circles. The unstable solutions
are marked with open circles. The critical slope
{dashed line) is 0.7246.

cation is possible in the inverted medium. The
straight line labeled 2 corresponds to (1+y')'~'l/g
= —,'. It intersects the curve 1 —cosZ(~) in three
points. It is trivial to verify from Eq. (3.20) that
the intercepts marked with solid circles represent
possible stable solutions, whereas the intercept
marked with an open circle is an unstable asympto-
tic solution. In the case of the straight line labeled
3, we have chosen (I+y')'~'l/g= —', . Three possible
stable solutions exist [one corresponding to the tri-
vial case Z(~) =0].

Several conclusions can be gathered from the
above observations.

(i} Two simultaneous reiluirements must be satis-
fied for the asymptotic propagation of a pulse with
an energy Z(~) o 0. First, the parameter (1+y')'~'
x l/g must be smaller than the absolute criti-
cal value 0.7246. (The slope of the dashed line in
Fig. 2.) Secondly, the incident pulse energy must
be larger than the value of Z corresponding to the
first unstable root for a given choice of (I+y')'~'l/
g. If both conditions are satisfied, the total pulse
energy will converge to a stable nonvanishing value.

(ii) The output of the pulse energy can be larger
or smaller than its input value Z(0) depending on
the magnitude of Z(0) relative to the nearest stable
solution Z(~). This aspect of the propagation prob-
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lem will be confirmed by our computer simulations
where it is seen that power amplification in the co-
herent regime can occur both with energy amplifi-
cation or reduction.

(iii) There isnosmallsignal gain; i.e. , even if
the parameter (1+y')'~'l/g is sufficiently small an
input signal with energy smaller than the first un-
stable root will not be amplified.

(iv) It is anticipated that whenever multiple stable
solutions are possible, the nth stable root Z(~)
corresponds to a pulse envelope that has been split
into n —1 distinct pulses (see Fig. 6).

In addition to the above remarks, we can add that
the field equations (3.10) do not allow a steady-state
solution for the pulse envelope. This feature is
confirmed by our computer simulations where it is
seen that, when the threshold conditions are satis-
fied, the peak power continues to grow and the
pulse duration becomes smaller and smaller, as
the pulse energy approaches its stable asymptotic
value.

FIG. 5. Evolution of a pulse with an initial energy very
close to the expected asymptotic stable value. The input

energy is Z(0) = 5 and the gain-to-loss ratio is 5.

The input pulse envelope has the form

IV. COMPUTER SIMULATION STUDIES (u„(v)= (usa sin'(wr/r~), (4 2)

Q(i) =0, r) =0 vs(@=0,7) =&a„(v). (4.1)

The coupled set of equations (3.8) and (3.10) has
been analyzed with a hybrid computer in the limit-
ing case of resonant interaction and with the atomic
system prepared in a swept excitation mode cor-
responding to the initial conditions (3.4), and to the
boundary conditions

where 7& denotes the pulse duration from the lead-
ing to the trailing edge ~

As expected the detuning parameter 0 remains
identically equal to zero throughout the evolution
of the pulse, an indication that the computer
round-off error has been kept small. An additional
check of the accuracy of the solution is provided
by the conserved nature of the linear combination
of atomic variables R, -yR, as one can verify at
once from Eil. (3.8) in the resonant case. We have
monitored 8, —yA„and found it to be essentially
constant over the entire range of integration of
the problem.

Figures 4-6 show some typical solutions of the

FIG. 4. Computer simulation illustrating the evolu-
tion of the pulse intensity through the amplifying medi-
um. The different dashed curves represent the inten-
sity envelope in different sections of the amplifier. The
solid curves are the corresponding integrated energy
cr (g:v). The value of 0 (q, 7) at the far right gives the
total energy Z(q). The horizontal axis is the local time
axis with y= 0 (leaden edge of the pulse) at the far left.
The input energy is ~ (0)= 8 and the gain-to-loss ratio
g/E(1+y ) ~ =2. Note the transient envelope modulation.

FIG. 6. Pulse splitting and double pulse propagation in
the coherent limit. The input area is Z(0) = 9.8 and the
gain-to-loss ratio is 5.
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props, gation problem. The dotted lines represent
successive pulse shapes at various sections along
the amplifier, while the solid lines give the cor-
responding pulse energies o(q, r) As shown in
Sec. HI the input energy Z(0) and the gain-to-loss
ratio g/l(1+y')'~' control the asymptotic behavior
of the pulse energy under coherent propagation con-
ditions. In Fig. 4 the gain to loss ratio equals 2.
As shown in Fig. 3, only one steady-state value of
Z(~) is possible corresponding to the present
choice of g/l(1+y')' ' provided Z(0) exceeds its
threshold value. This behavior is confirmed by
the solution shown in Fig. 4. In addition, the ini-
tial energy Z(0) is larger than the predicted asymp-
totic value for the chosen gain to loss ratio. As a
result the pulse energy decreases monotonically as
the pulse envelope reshapes itself.

In Fig. 5, we display the evolution of a pulse
with an initial energy Z(0) =5 propagating in a me-
dium with a gain-to-loss ratio equal to 5. In this
case two steady-state values of Z(~) are possible.
Corresponding to the chosen initial value of Z(0),
the solution evolves into a single narrow pulse with

an asymptotic energy that can be read off directly
from Fig. 3.

In Fig. 6, we show the effect of increasing the in-
cident pulse energy while keeping the gain-to-loss
ratio equal to 5, as in the previous case. The en-
velope reshapes into two separate pulses which ap-
pear to evolve more or less independently.

Additional solutions obtained for larger values of
the gain-to-loss ratio have confirmed that the nth
stable energy Z(~) corresponds to a pulse envelope
that has split into n —1 separate pulses.

Further work to incorporate the effects of detun-
ing and irreversible atomic relaxation is in pro-
gress.
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