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Validity of dispersion relations for electron-atom scattering
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This paper summarizes the usual assumptions made in applying dispersion relations to electron-atom
scattering. It is shown that in the static exchange approximation, electron exchange gives rise to a third-order
pole, and the position and strength of this pole are calculated. It is then argued that this singularity is a
feature of the exact scattering amplitude. Finally a numerical study is carried out which confirms the existence
of additional left-hand singularities.

I. INTRODUCTION
I

Dispersion relations are of fundamental impor-
tance in elementary particle physics. In atomic
physics they have been used to analyze experi-
mental data, ' in particular for forward scattering
of electrons on hydrogen and rare-gas atoms. In
this paper we discuss the dispersion relation sug-
gested by Gerjuoy and Krall' for forward electron-
hydrogen-atom scattering:

Ref '(k~, 0) = f~(k', 0) + g~(k', 0)

P "„„„Imf '(k", 0)
0

Here f' and f are the singlet and triplet scatter-
ing amplitudes, f~ and g~ are the first Born direct
and exchange amplitudes, given by

fs =1 and gs =2(3 —', k' —k'—)/(km+1)',

and the pole term corresponds to the bound state
of the negative hydrogen ion which occurs in the
singlet state.

The basic assumption from which this dispersion
relation follows is that the amplitudes f '(k', 0)
—fs(k', 0) + gs(k', 0) are analytic functions in the
complex energy plane with the properties (i) both
have a branch point at k' =0 with the branch cut
taken along the positive real energy axis, (ii) the
only singularities on the negative real energy axis
are poles corresponding to bound states, and
(iii) the contour integral over the circle at infinity
vanishes. Application of Cauchy's integral for-
mula then leads immediately to Eq. (1).

These assumptions have never been rigorously
proved for electron-atom scattering although they
are in accord with the analytic behavior of the
forward scattering amplitude proved in potential
scattering. ' However, in electron-atom scattering
the basic problem stems from the composite na-
ture of the target and the allowance which must
be made for electron exchange. That these effects

influence the singularity structure of the scattering
amplitude has been shown by Rubin et aI,. for the
case of Yukawa potentials. For electron-atom
scattering the validity of dispersion relations have
been discussed recently by various authors. ' Using
a combination of experimental data and numerical
calculations, they conclude that the dispersion re-
lations used so far are not fulfilled. These results
indicate the existence of fur ther singular itic s, in
addition to (i} and (ii} above.

So far, no attempt has been made in atomic
physics to determine the nature and the position of
these additional singularities. In this paper we
make a first step into this direction. Using the
static exchange approximation as a model we con-
sider the effect of exchange on the analytic be-
havior of the amplitude for electron-hydrogen
scattering. We show that the electron exchange
leads to a third-order pole at &' =-1; and we
evaluate the strength of this pole. This result is
related to the modification of Levinson's theorem, '
proposed by Swan, ' and we show that it can be ex-
pected to be a feature of the exact scattering am-
plitude. We discuss these topics in Sec. II of this
paper. In Sec. III we give results of a numerical
study. We first show that the effective range ex-
trapolation is consistent with a higher-order pole
in the amplitude, and we test the dispersion rela-
tion (1}and the corresponding zero-energy rela-
tion in the static exchange approximation. The
results show that both relations are only fulfilled
if exchange is neglected. Of particular importance
in the numerical study is the calculation of the
position and the residue of the H pole term, and
we discuss this in some detail.

II. ANALYTIC SOLUTION OF EXCHANGE EQUATIONS

In this section we discuss the singularity struc-
ture of the amplitudes f '. We concentrate on a
discussion of the triplet amplitude f in the static
exchange approximation. At the end of this section
we discuss briefly how our results can be general-
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ized to the exact amplitude.
In the static exchange approximation the wave

function is given by the expression

(I '(r„r.) = 4(r, )u'(r. ) + 4(r.)u'(r, ), (2)

where (I)(r) is the hydrogen ground-state wave func-
tion and u'(r) describes the motion of the scat-
tered electron. The upper and lower signs refer
to singlet and triplet scattering, respectively.

We start with the observation that the s-wave
static Schrodinger equation for triplet scatter ing
is satisfied identically by u, (r) = r(I)(r) (where u,
denotes the s-wave function). Therefore each
function of the form

The last condition follows from the orthogonality
condition (4}. The function A(k') and B(k') deter-
mine the s-wave amplitude f, through

1 B(k2)
211 A (ii*) }' (10)

+ge- (K-1) (1 la)

We have determined the "Jost functions" A(k') and
B(k2) near k' =-1 by iteration, starting with Eq.
(9). We obtained (writing k =iK)

2(2-1)( (2 —))'}

u, (r, a) =u, (r}+ar(I)(r) (3)

is a solution if u, is a solution (a is an arbitrary pa-
rameter). This degeneracy can be removed without
modifying the asymptotic form of the wave function
for k'&-1, by requiring that

A 4 (K,)„
(K —1)(K—3)2 (K —1)'

f u0(r, a)rp(r)dr =0.
0

(4) e- (K-g)r ~ ~ ~

(K +1)' (11b)

This orthogonality condition modifies the s-wave
Schrodinger equation. It can then be verified that
u0=r(t)(r) is an eigenfunction of the modified equa-
tion belonging to the eigenvalue k' =-1.'

This eigenfunction is clearly connected with the
'antisymmetry of the wave function (2), that is,
with electron exchange. The effect of eigenfunc-
tions of this type on the low-energy behavior of the
scattering phases (Levinson's theorem') has been
considered by Swan. '

We now show that the existence of this eigen-
function leads to a third-order pole in the ampli-
tude at &' =-i. We transform the s-wave Schro-
dinger equation (which is an integro-differential
equation) into two coupled differential equations:

4 'g

,' +k'u0(r) =2U(r)u (r) —2(t)(r)v(r),

We know that the system has the solution u, =rQ
for k'- —i. We therefore require

u0(r)-rp(r) =2re ',
v(r)-1 —(1 +1/r)e '",

(12)

A(K) =a, (K —1)', (13)

where a, is a constant. We expand B into a power
series

as k'- -1. The terms neglected in Eq. (11) cannot
easily be determined. However, they vanish
asymptotically more rapidly than e "and e '", re-
spectively and do not contribute at k' =-1 in ac-
cordance with condition (12).

Comparing Eqs. (11) and (12), we see that A
must have a double zero at &' =-1 and B a simple
pole. We normalize to

6f '0

dr2
= —(I)(r)u0(r) ~ B(K) = b, /(K 1)+b, +b, (K —1—)+ (14)

The function v(r) is defined by'

r OO

v(r) = u, (r)r(b(r) dr +r u, (r) 1b(r) dr, (7)
0 r

and the local potential is given by
(i6)

From this and Eqs. (10) follow

The coefficients ao, bo, and b, are determined by
substituting Eqs. (13) and (14) into Eqs. (11) and
equating powers of (K —1). This gives

ao= & ho= 1 b

U(r) =-(1+1/r)e '".
We are interested in a solution satisfying the

boundary conditions (k2 & —1):
u, (0) = v(0}=0,

u, (r)-A(k')e ""+B(k')e"", r
v(r)- 0,

(6)
8 2

0 (k2 +1)3 (k2 1)2 (i6)

Equation (16) shows that f, has a third-order pole
at &' =-1 but with a different coefficient than g~.
Although the total wave function (2) vanishes iden-
tically in the limit k'--1, we see from Eqs. (16)
that the pole affects the s-wave amplitude for ener-
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q'(r„r, ) =Qg„(r,)u„'"(r,)+y„(r,)u„'"(r,)j, (17)

where the sum includes the integral over all con-
tinuum states of the hydrogen atom. We note that
the function P' is invariant under thy transforma-
tion

u'"-u'"+ a!"yU

where the arbitrary parameter a,",. ' (a,'. ~ ') is sym-
metric (antisymmetric) in the indices i and j for
the triplet (singlet} case. As discussed for the
static solution, this can be used to ensure that

(18}

(u,'. '1Q~) =0 for i ~ j
for triplet scattering and

u'+' =0 for i &

(19}

14~)

for singlet scattering. The coupled integro-dif-
ferential equations for u,'" have bound-state solu-
tions of the type, for the triplet case,

(20)

u' '

u&-'
2

u' '
3

0

0 ' 0 '''' 0

4's

0

(21)

and for the singlet case

u(+)

u"'"2
(+)
3

(22)

It is clear that these "bound-state" solutions will
give rise to singularities inethe full amplitude f '
in a similar way to those discussed in the static
exchange case.

III. NUMERICAL TESTS

A. Effective range expansion

The general arguments given in the Introduction
suggest strongly that the relation (1) is not ful-

gies removed from &2 =-1. Since the pole occurs
only in the s wave [because it is associated with the.
bound state P(&}], it is unlikely to be cancelled in
the full amplitude and will contribute to the dis-
persion integral.

We now consider briefly how the arguments
leading to Eq. (16) may be generalized. We write
the exact wave function in the form

filled. The discussion in Sec. II shows that indeed
"left-hand" singularities, neglected so far in
atomic physics, exist. In this section we discuss
some numerical tests which support our theoreti-
cal arguments.

We start with an investigation of the triplet am-
plitude f, in the effective range approximation.
The s-wave amplitude can be written in the form

f, = I /(k

cot�'0,

—i k),
where &, denotes the triplet phase. The usual
effective range expansion gives

k cot &0 = -1/a + ,' x k' +—0(k4), (24)

B. Test of the zero-energy dispersion relation

Further information on whether the relation (I)
is correct can be obtained from a numerical in-
vestigation of the dispersion relation itself. Using
the R-matrix method we calculated the phase
shifts for the first seven partial waves for singlet
and triplet scattering in the static exchange ap-
proximation hand, in addition, in the static approxi-
mation neglecting exchange. Prom these, the
real and imaginary parts of the scattering ampli-
tudes can be obtained. The effect of the neglected
higher partial waves is taken into account by writ-
ing

B

Ref =
k Q (2l +1)(sin2&, —25, ~) + f~,2k,

B

Imf = —g (2l +1)(sin25, —62, s) +~kg„, ~.
l=p

where a is the scattering length and &p the effec-
tive range. In this approximation the amplitude
has, in general, two poles in &. Under certain
circumstances one of the poles representsabound
state (negative ion). The other pole has to do with
the potential; it approximates the "left-hand" cut
of the partial-wave amplitude.

Plotting k'cot~p against k one obtains a straight
line within the limits of the approximation (24).
The position of the poles is given by the crossing
point of this line extrapolated to negative energies
with the curve —(-k2)'+

VFe calculated the s-wave phases for triplet
scattering numerically using the R-matrix meth-
od, ' and plotted &cot ~p against O'. Figure 1
shows that for triplet scattering the extrapolated
line is within numerical error a tangent to this
curve close to 02 =-1, consistent with the existence
of a higher-order pole in fo in accordance with
Eq. (16). The deviation of the contact point from
our theoretical value k' =-1 is connected with the
relative large distance between the pole and the
physical region, whereas the extrapolation (24)
is expected to be good only for small k2.
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FIG. 1. Effective- range

expansion for the triplet
amplitude.

Here &, ~ and a',
g g denote the phase and total cross

section in the Born approximation. We note that
0$ g g can be calculated analytic ally.

We used the numerical values of the amplitudes
for a test of the zero-energy dispersion relation,
obtained from Eq. (1) by putting k2 =0:

-a' = f~(0, 0)+ gs(0, 0)

1
" Imf '(k", 0)

7l p
QI2 $2 (26)

It follows from the low-energy behavior of the phases
that Imf-~k'fork'-0. The integrand in Eq. (26)
(but not the integral itself) has therefore a singu-
larity at zero energy, and, thus, a large contribu-
tion to the integral comes from the region with
small O'. The calculation of the low-energy part
of the integral must therefore be done with care.

We found that the position k, and the residue x
of the singlet bound state affects the numerical
results considerably. It is necessary to have ac-
curate values for both &, and r. We obtained these
using analytical expressions in terms of the Wigner

matrix. The details are given in the Appendix.
We obtained -0.0266 Ry for the position and -0.627
for the residue of the pole.

The results for our three cases of interest are
shown in Table I. Table I shows that Eq. (26) is
satisfied only if exchange is neglected. We also
considered a modified dispersion relation where
the nuclear term 16/(k'+1)' is omitted from g~.
This is consistent with the orthogonality condition

(4). As can easily be seen this modified equation
is not fulfilled as well.

TABLE T.. Contributions to the zero-energy dispersion
relation (26).

No exchange Singlet Triplet

a (scattering length)
f~(0, 0)
g~(0, 0)
Integral term
Pole term
Discrepancy

—9.45
1.0

8.45

0.0

8.095
1.0
6.0
8.21

-23.56
0.26

2.350
1.0
6.0
2.82

-0.i7

C. Nonzero-energy dispersiop relation

Finally we inserted our numerical values for
Ref and Imf into relation (1). The singularity at
& =&'2 in the integrand was taken into account by
expanding the numerator of the integrand in a Tay-
lor series. We note that the bound state in the
singlet case and the existence of a virtual state
in the no-exchange amplitude gives rise to a rapid
variation of the s-wave phase shift at very small
energies. The calculation of the low-energy part
of the integral must therefore be done carefully.

The results given in Table II show that the dis-
persion relation (1) is only fulfilled if exchange
is neglected. L and R denote the left-hand and
right-hand side of Eq. (1). The numbers show that
the difference between L and R decreases for
higher energies where the influence of exchange
effects becomes less important.
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TABLE II. Contributions to the positive-energy dis-
persion relation (1).

functions satisfying the usual R-matrix boundary
conditions. We need to find an energy E such that

k (Ry)
No exchange
' I R

Singlet
L R

Triplet
L R

0.4
0.8
1.2
1.6
2.0
4,0
6.0

0.96
0.93,
0.94
0.95
0.96
0.98
0.99

0.96 0.26 0.02 0.87
093 002 -019 145
0.94 0.04 -0.15 1.56
0.95 0.16 -0.03 1.56
0.96 0.22 + 0.09 1.53
0.98 0.55 0.47 1.36.
099 070 065 126

IV. CONCLUSIONS

0.87
1.38
1.47
1.46
1.41
1.26
1.18

where b is the logarithmic derivative satisfied by
the 8-matrix states. At a bound state we have

u, (r)-e r" for r (AS)

(E = —~K }. Let us assume{that b =0 and uo(r) satis-
fies (AS} for all r~ a. This is true in our case of
interest (static exchange approximation). It then
follows from Eqs. (A2) and (AS) that

R(E{,) =-1/Ka. (A4)

The future use of dispersion relations in atomic
physics depends critically on a better understand-
ing of the nature of the singularities on the left-
hand cut. In this paper w'e have been able to deter-
mine the position and strength of one of these sin-
gularities in the case of electron-hydrogen-atom
scattering in the static exchange approximation.
However, a full description of the left-hand singu-
larities is not yet available, and until this is
achieved the application of dispersion relations in

analyzing experimental data will be seriously re-
stricted. It is our hope that the results presented
in this paper will provide a stimulus for continued
effort to understand the analytic structure of the
scattering amplitude for electron-atom scattering.
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APPENDIX

In this appendix we derive an expression for the
residue r of the bound state occurring in Kqs. (1)
and (26) for singlet scattering. We use the R
matrix method. ' Wigner'sR matrix is defined for
single-channel, scattering by

R(E)= ' g ""' . (A12a g Ex-E
Here a is chosen in such a way that the potential
V(r) =0 for r~ a. w q is a complete set of eigen-

Writing the wave function in the form

u, (r) =Be'~" +Be "" for r~ a,
the S matrix is given by

S =-A(E)/B(E).

(A5)

(A6)

A(E )
(dB/dE)~ e,

'

and near the pole we have

S(E)=r'/(E —E,).

(A7)

Substituting Eq. (A5) into Eq. (A2) gives (k = iK)

(A e r'+ Ber') =R (E)aK(-A e '+ Ber') .
Taking the derivative with respect to E of this
equation, evaluating this for E =E,(K =K,), and
using Kqs. (A4) and B(E,) =0, we obtain

aQ + =-2 e b

and thus the residue (A7)

2 e2Eba
gf

aK~(dR/dE)e +I/K2~
'

Because we have

(A8)

1f ("' "=- ~ '(' '=-
2K E E

=
u ab b b b

we obtain the expression

2Kba{

aK2{,(dR/dE)e +1/K{,

for the residue occurring in Eq. (1).

(A,9)

At the bound-state energy E =E, the S matrix has a
pole with residue
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