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In a previous paper we showed how time-dependent projection operators may be employed to enable the
Nakajima-Zwanzig projection-operator technique for deriving exact master equations to deal efficiently with
two or more coupled classical or quantum systems, neither of which is reservoir like. We considered in detail
the case where the relevant part of the classical-system probability-density function (PDF) or quantum-
system density operator (DO) is a product of the PDF's or DO's for the separate subsystems, and we applied
the techniques developed to problems in quantum optics and in the kinetic theory of dilute nonideal gases. In
this paper we make the time-dependent projection-operator approach useful for a greater variety of systems
by allowing the relevant part of the PDF or DO to include correlations between two of the interacting
subsystems. This extension allows us to describe well the dynamics of strongly interacting systems in a low
degree of approximation while avoiding the use of infinite resummations. We derive exact generalized master
equations in this manner for the same two cases as in our earlier work, namely a classical gas of N
molecules interacting via a two-body potential and a quantum-optical system of N two-level atoms interacting
with an electromagnetic field, In the former case, the relevant part of the PDF contains two-body
correlations, and we obtain two exact coupled master equations for the singlet and doublet PDF's F,(t) and
F2(t). In the latter case, the relevant part of the DO contains atom-field correlations, and the result is three
exact coupled equations for the single-atom DO p, (t), the field DO R(t), and the DO for one atom plus
the field g(t). From the exact equations we derive approximate equations by making simplifying
assumptions. In the case of the gas we carry out a straightforward density expansion of the F, master
equation and obtain a set of kinetic equations for dense gases, which have been derived previously by
Frieman, Goldman, and Dorfman and which describe well effects due to the finite mean free path. In the
quantum-optical case we derive kinetic equations for a single-mode laser by treating the y equation in the
Born-Markoff approximation. The equations describe gain saturation and other effects on the field dynamics
which are of infinite order in the atom-field coupling constant. It is shown that these equations reduce to
previously derived laser master equations if atom-atom correlations can be neglected. Finally, we mention
possible generalizations of the time-dependent projection-operator approach used in this paper and briefly
discuss its application to other problems, including the kinetics of liquids, collisional line broadening,
superradiance, and amplified spontaneous emission.

I. INTRODUCTION

It has been known for some time" that, by the
method of projection operators (PO's), one may
obtain from the Liouville equation of a system an
exact closed generalized master equation (ME) for
the probability density function describing the
"relevant" part of that system. The procedure in-
volves partitioning the probability density F(t),
which satisfies the Liouville equation

F(t) = LF(t),
into a relevant part F„(t) and in irrelevant part
F, (&),

F(t) =F„(t)+F,(t) .
Here L is the Liouvillian superoperator, such that
IO is the Poisson bracket of the Hamiltonian H and
0, where 0 is any ordinary operator. For a sys-

tern of N structureless molecules with coordinates
and momenta (q„,p ), n = 1, . . . , N, L may be
written

One then operates on Eq. (1.1) with PO's P and
Q=-1 P, satisfying-

P =P, Q =Q, PQ=QP=O,

such that

F„(&)=PF(t), F;(f) = QF(t),

(1 4)

and eliminates F;(t) to obtain the exact ME

F„(t) PLF„(t)=PL9 (t —-to)Ft(to)

t
dt'PLQ (t —t')(1 -P)LF„(t') ~

to
(1 6)

16 1625



1626 R. H. PICARD AND C. R. %ILLIS 16

and

where

d)t, t )=—Te p x'dt" [) P(t )]I)"-(1.12)

and T is the Dyson time-ordering operator. In or-
der to derive Eq. (1.11), one needs a condition on
P(t) in addition to Eqs. (1.9) and (1.10), namely,
P(t) must commute with the time derivative when
operating on j'(t),

(1.13a)

from which it follows that

where

9 (T)
—e(1-P)Lt

The irrelevant part occurs only through its initial
value F, (t,), which vanishes for some important
physically realizable initial conditions. This pro-
cedure works equally as well for quantum systems,
in which case I', F„, and'I', . are density operators
and the Poisson bracket is replaced by (—i/h) times
the commutator, so that

(1.8)

Most often, E„(t) is chosen to be (a) the diagonal
part of the system density operator' or (b) for a
system interacting with a reservoir, the product
of an equilibrium distribution function for the res-
ervoir and the distribution function for the system
alone. " In a previous paper, "hereafter referred
to as I, we have shown how one can enlarge the
class of possible E„'s by allowing our PO's to be
time dependent. Time-dependent projection oper-
ators (TDPO's) have been introduced by other
authors" in connection with another class of prob-
lems. These operators P(t) and Q(t) =—1 P(t) sat--
isfy, ' instead of Eqs. (1.4),

(1.9a)

(1.9b)

(1.9c)

for arbitrary t and t'. The partition of I', Eqs.
(1.5), and the IVIE, Eqs. (1.6) and (1.7), are re-
placed by

(1.10a)

(1.10b)

(1.13b)

The purpose of introducing the apparent compli-
cation of TDPO's is not obvious, since both Eqs.
(1.6) and (1.11) are exact equations. The advan-
tage of considering TDPO's becomes clear, how-
ever, as soon as one attempts to approximate the
ME in some way, a necessary procedure in any
nontrivial problem. It will then become apparent
that the use of TDPO's enables one to obtain very
powerful descriptions of coupled systems in a low
level of approximation. Typically, similar de-
scriptions using ordinary time-dependent PO's re-
quire one to perform infinite resummations.

In I we showed that TDPO's were particularly
well suited to describing a dilute gas of interacting
molecules or self-consistently interacting sys-
tems, such as the system of two-level atoms in-
teracting with a resonant em radiation field com-
monly considered in quantum optics. In the former
case we chose for the relevant part of the N-par-
ticle distribution function E„a product of one-par-
ticle distribution functions I„

(1.14)

where

The properties of I'„, E„and I'„„and the notation
are described more completely in" Eqs. (I3.4)-
(I3.9). The integral JdP is an integral over the
phase space of particle P. In the latter case, we
chose for the relevant part of the system density
operator I a product of the density operator p of
the atoms and the density operator R of the field"

(1.16)

That is, in each case we chose PO's which pro-
jected a general state of the system onto unco~~elated
states of the interacting subsystems.

In this paper we would like to extend the method
by introducing operators which project general
system states onto correlated states of the interac-
ting subsystems. ' In the case of a system of inter-
acting molecules, we will allow E„„(t)to contain
correlations between two molecules at a time, and
we will obtain exact coupled ME's for the singlet
and doublet distribution functions P, (1, t) and
E,(1, 2, t). The function E, is defined by Eq. (I3.6),
that is,

E(1 2 t)=- —.. —P (t)
d3 dN

We will find that inclusion of the doublet distribu-
tion function in the theory allows us to describe the
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kinetics of dense gases with ease. A density ex-
pansion of the ME for E, will result in a theory
which is free of divergence problems relative to
the transport coefficients, "siDce it includes
mean-free-path effects through the inclusion of ir-
reducible three-particle correlations. To the low-
est order in the density N/V, we will obtain in the
binary-collision approximation" the renormalized
kinetic equations for dense gases cited by Dorf-
man, "whose derivation was carried out by Frie-
man and Goldman" using multiple-time-scale per-
turbation theory. We will see that the TDPO ap-
proach is straightforward and can easily be gen-
eralized to higher order in the density. By con-
trast, in I when we expanded the master equation
for F, in powers of N(t V, the first-order term gave
rise to the Boltzmann equation.

In the quantum-optical case of atoms interact-
ing with a resonant field, the generalization pro-
posed in this paper will also allow us to obtain a
significantly more powerful description. We will
allow E„„to include correlations between the field
and a single atom at a time, and we will derive ex-
act coupled ME's for the density operator R(t) of
the field, the density operator p, (n, t) of the nth
atom, and the joint density operator y(n, t) of the
field and the nth atom. ' The density operator X is
defined as a trace of the system operator E„by

while R is defined by Eq. (I1.3), or as a trace of X

over the degrees of freedom of the eth atom

R(t) =- Tr„y(n, t),
and p, is a trace of y over the field

p, (n, t) = Tr~ y(n, t) . -

(1.19a)

(1.19b)

In the case of laser theory, where the atoms and
field are coupled to reservoirs simulating relaxa-
tion mechanisms, we will show the connection of
our equations with previous theories. "" The
standard theories are first order in the atom-field
coupling constant p. and do not contain any correla-
tions between two atoms and the field. We will
show that reducible two-atom-field correlations
lead to small, but not negligible, corrections of
the same magnitude as ordinary spontaneous emis-
sion. We will also evaluate the relative magnitude
of the correction terms -p. ', containing the effect
of i~reducible two-atom-plus-field correlations,
and show that the corrections due to irreducible
atom-atom correlations are small. The advantage
of the TDPO approach is also apparent here if one
compares the derivation of the terms -p, ' to a re-
cent derivation by Mandel" using a time-indepen-

dent PO; the latter derivation requires an elaborate
resummation of an infinite set of diagrams of all
orders in p, to obtain the atom-atom correlation
terms.

In Sec. II we determine the PO for the case of a
gas of structureless molecules interacting via two-
body forces corresponding to an E„„which includes
two-body correlations. We then derive the exact
coupled ME's for E, and E,. We continue in Sec. III
by deriving the PO for the quantum-optical case
which projects out a state containing correlations
between a single atom and the field. In that section
we also derive exact coupled ME's for j, 8, and

p, . In Sec. IV the density expansion of the ME for
the doublet distribution of the gaseous system is
carried out to lowest order in the density, and the
result is cast into the form of Dorfman's kinetic
equation for a dense gas. As a preliminary ex-
ercise to illustrate the method, we rederive the
Boltzmann equation, derived in I, by expanding the
singlet distribution master equation, Eq. (I3.19) or
(I3.22), in powers of N/V and focusing our atten-
tion pn the first-order terms only. We continue in
Sec. V by applying the exact quantum-optical ME's
of Sec. III to the case of a laser. We introduce the
first Born approximation (FBA) and the Markoff
approximation into the X equation, identify the
usual laser theories obtained from the terms -p. ,
and show that the correction terms -p, ' depending
on irreducible atom-atom correlations are small
for typical values of relaxation times. Sections
II-V will be written so that Secs. II and IV on
kinetic theory can be read independently of Secs.
III and V on quantum optics, insofar as possible.
Finally, in Sec. VI we discuss the benefits of using
the TDPO approach, especially with regard to pro-
jecting onto correlated states, and the connection
with other approaches. We also discuss applica-
tions of the ME's obtained to other problems and a
variety of extensions of the TDPO techniques de-
scribed in the paper.

II. EXACT MASTER EQUATIONS FOR GAS KINETICS

Assume a gaseous system composed of N mole-
cules interacting via a two-body potential
H'()q„—q8(). In I (Sec. III), we derived an exact
ME for the time development of the singlet dis-
tribution function F,(1, t), assuming that the rele-
vant part E~ „of the system distribution function
was a product of the singlet distribution functions
of the individual atoms [Eq. (1.14)]. In this sec-
tion we would like to generalize this technique to
obtain exact coupled ME's for the singlet and dou-
blet distribution functions F,(1, t) and F,(l, 2, t) by
choosing an E„„which depends on both E, and E„
that is, an E„which contains irreducible two-body
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correlations between molecules. We will use the
notation of I, Sec. III. The system Hamiltonian
and Liouvillian are defined in Eqs. (I3.1)—(I3.3).
First, we wiii write down F„„in terms of F, and

E,. Then we will derive the TDPOP„(t) which pro-
jects F„onto E» „and F» ont oF„, [see Eqs.
(1.10a) and (1.13b)]. Finally, we will substitute
E„„(t)and P„(t) into the ME for F„„(t), Eq. (1.11),
and by integrating over degrees of freedom appro-
priately we mill derive the exact coupled equations
for F, and F,.

In choosing FN „ it will be completely adequate,
for our purposes, to assume that FN „ is a linear
function of F,. More precisely, we will take F„„
to be the sum of an uncorrelated term which is a
product of F, 's and a term which is linear in the
correlation distribution ~„whose definition is

bt, (1,2, t) -=E,(1,2, t) -E,(1, t)F, (2, t) . (2.1)

The latter term must be symmetrized with respect
to all molecule labels. Hence, we write

N N

IF,(n, t)+
2 g nF, (a, P, t) j F,(Z, t) .

(2.2)

We use one or more primes on summation and pro-
duct signs to indicate that the index does not as-
sume the values of all previously occurring in-
dices. Thus in Eq. (2.2) the prime on the P sum
indicates Pa o. , and the double prime on the y pro-
duct indicates yea, P. Unless there is ambiguity
the index values omitted from the sum (product)
will not be specified. Equation (2.2) includes the
first two terms in a Taylor series expansion of
FN „, considered to be a function of F, and 4F„
about ~,=0. More general forms of EN „depend-
ing nonlinearly on AF, will be considered briefly
in Sec. VI. Usually it will be more convenient to
consider F„„to be a function of F, and F, than of
E, and ~,. Using Eq. (2.1) to eliminate AE, from
Eq. (2.2), we find"'

-E,(1,2, t)E, (3, t) dr,

+cycl(1, 2, 3) —2P, „,(t) . (2.6)

Here f dI', -=V ' fdl fds ~ represents a complete
integral over the space of all the molecules, and
P, „,(t) is the TDPO satisfying

P, „,(t)E,(t) =E, „,(t),
P, , „.(t)F.(t) =E,, „,(t) . (2.7b)

According to Eq. (I3.11) with N= 3,P, „,(t) has the
form

P3 „,(t) = F,(1, t)F, (2, t)
($1 42

dN—E„„(1,. . . , N, t) =E„,„(1,. . . , N- 1, t) .
(2.3)

There are no rules to find the PO which yields
the relevant part of E» given by Eq. (2.3), anymore
than there are rules to find any PO. One is forced
to proceed inductively at best or by trial and er-
ror at worst. We will attempt to find an optimum
middle ground between these extremes. The PO
must satisfy three conditions, Eqs. (1.9a), (1.10a),
and (1.13b). The solution to these equations is not
unique, since if P„(t) is a solution it follows that
P»(t) is also.

In order to find the general projection operator,
we begin by considering first the special case
N= 3, which we will use as a guide for the general
case. In the case N=3, FN „becomes

E, „(1,2, 3, t) = F,(1,2, t)E, (3, t) + cy cl(1, 2, 3)

-2F3 „,(1,2, 3, t), (2.4)

where

F, „,(1,2, 3, t) =F,(1, t)F, (2, t)E,(3, t) (2.5)

is an uncorrelated product state and cycl(1, . . . , s)
indicates all cyclic permutations of the molecular
labels (I, .. . , s). Consider the operator

P,(t) —= E,(3, t) —+ E,(1,2, t)
ct3 d1

+ cycl(1, 2, 3) —2F, (1, t)

x F,(2, t)F, (3, t) d r, . (2.6)
(2.2')

where (")=- n! /[m! (n -m)!] is the binomial coef-
ficient, so that (,") is the number of molecular
pairs. One may easily verify that F„„is normal-
ized, that its integral over the phase space of N-1
molecules yields F„and that the integral over
N- 2 molecular phase-space coordinates yields
E, ; that is, Eqs. (I3.5),. (1.15), and (1.17) are sat-
isfied by Eq. (2.2'). Moreover, we have

We would like to show that Eq. (2.6) satisfies the
three requirements for our PO with F„given by
Eq. (2.4).

In the first place, we have immediately from Eqs.
(2.6) and (2.7a),

P,(t)F,(t) = (1+1 —1)E,(l, 2, t) E,(3, t)+ cycl(1, 2, 3)
—2E, „,(t)
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Secondly, from the condition fdI', F,(t) = 0 and Eq.
(2.7b) it follows that

P,(t)F,(t) = F,(3, t)F,(1,2, f)+F,(l, 2, t)F,(t)

Eq. (2.6) is a TDPO, or that Eq. (1.13b) is satiS-
fied. Since Eq. (1.13b) must be true for every t,
it follows generally that if P(t) is a sum of l terms

+ cycl(1, 2, 3)-F, „,(]))
=F, ,(f) .

The last step follows by comparison with the de-
rivatives of Eq. (2.4). Finally, we must show that

P(f) = p p '*'(f) ,
j =1

we must have

In the present case, we have the relations

(2.9)

(2.10)

p' "(3, ]3)P,(t') -=F,(3, f) P,(—t')d3

=F,(3, t) —+ (1 —1)F,(1,2, t') dr,d3

—+ 1 2 — 1+1+2—4E, 1 t'P', 2 t' dl",di d2

=F,(3, f) —=p&'&(3, f),d3 (2.11a)

p' (1,2, t)P,(t') =-F,(1, 2, f) — —P,(t')

=F,(1,2, t) ((I ~ I ~ I —2) — —+ (I —I ~ I —I+ 1-1-2 —2 + 4)F, (3, I )dF)'d1 d2

=F,(1,2, f)
d1 d2

~p"](1,2, t), (2.11b)

2"t(1,2, 3, t)P, (t')—:-F,(1, 2, t)F, (3, t)fdl, P,(t')'
I

= -F,(1, 2, t)F, (3, t)[3(1+ I —I) —2(3 —2) ] f d F,

=-F,(1, 2, t)F, (3, t) fdI', -=3"(1,2, 3, t),

p
' (1,2, t)P,(t')=——2F, (1, t)F2(2, i) — —P,(t') =p '](1,2, t),d1 d2

(2.11c)

(2.11d)

and

Pt't(1, 2, 3, t)P, (t')=-4F, „,(t) fdI', P,(t')=3 (1, 2, 3, tt)t. (2.11e)

The validity of Eqs. (2.11d) and (2.11e) follows from Eqs. (2.11b) and (2.11c), respectively, since the for-
mer are the same as the latter with different functions in front of the integrals. By adding Eqs. (2.11) and
the necessary cyclic permutations it follows that P,(t)P,(t') =P,(t), completing the proof that P,(t) is a
TDPO.

Of course, we are generally interested in systems of N particles and would like the appropriate general-
ization of Eq. (2.6). By examining Eqs. (2.2 ), (2.4), and (2.6), we can guess the following properties of
the general PO P„(t). (i) The cyclic permutation terms in Eq. (2.6) will be replaced by sums over all
pairs of particles. (ii} The generalizations of the first, second, and third terms of Eq. (2.6) will have
N-2, N 1, and N integrals, —respectively. (iii) No doublet distribution F, may occur in the first term of
the generalization and only one in the second and third terms. (iv) The coefficient of the third term will
be chosen so that the first three terms yield the proper coefficient for the lead term of Eq. (2.2'). (v} The
PO P, „,(t) which projects out F, „,(t) is replaced by P„„,(t), given by Eq. (I3.11), which projects out
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F,„.(t) =- [F,(n, t)

With these guidelines one arrives at the TDPO, '
(2.12)

——'(&-2) g F,(n, ]3, t) ][F, (y, t) dr, —[(,")-1]P„„,(t) .

The proof that this is the desired generalization of Eq. (2.6) is lengthy and tedious but straightforward.
The spirit of the proof is indicated in Appendix A. The proof that P~(t) is a PO is facilitated if one uses
the decomposition of Eq. (1.10a) stated in Eqs. (2.9) and (2.10). The principle difficulty in the proof then
involves enumerating properly the cases corresponding to the various possible relations between the sum-
mation indices in P„(t) and those in P„(t ) and assigning the proper weights to each.

The next step is to obtain the master equation. The ME for F„„follows from substitution of Eqs. (2.2')
and (2.13) into Eq. (1.11). We choose t, = -~ and assume the condition F„,. (-~)= F„( -~) —F-„„(-~)=0,
which is equivalent to assuming no irreducible three-body and higher-order correlations asymptotically in
the infinite past. In the derivation we assume that the initial distribution is symmetric under permutation
of particles. This coupled with the symmetry of the Hamiltonian, Eq. (I3.1), will allow us to permute par-
ticle labels at will.

In order to derive the explicit form of the ME for I'~ „we will need to write out some of the expressions
entering Eq. (1.11). From Eqs. (2.13) and (I3.2) we find that

and

J„(~)li~= —p'(I. ".+ra)]T"s,(~, t.)f —"~ —g ) (n()'. ,

- ((,") -(i p I' )",(() ~)f '—""

(t)ci )= 2+'I', 'T')' (|,t) f ~+ Q L"F (y&) r'y]['[ )' (a, tl

(2.14)

+ QF, (n, P, t)

I dA
+ —QF, (n, P, t)

F,(5, t)

—g"g"'F,(5, t) —L„[ F,(~, t)

(2.15)

where we have used

(2.16)

Letting Eqs. (2.14) and (2.15) act on Eq. (2.2') gives rise to two of the terms on the left-hand side of Eq.
(1.11),

P„(t)L(~&F„„(t)=—g (I.'+ L8)F,(n, p, t) [ F, (y, t)+
2 g F,(n, p, t) g L&F, (y, t) I F,(6, t)

(2.17)

P„(t)L(„)F„„(t)= 2 Q L' 8F,(n, P, t)j j F,(y, t)+(N-2)Q —L',F, „(n, (8, v, t), [ F,(y, t)



TIME-DEPENDENT PROJECTION-OPERATOR APPROACH TO. . . 1631

with

9(N)(ti ti)

(2.19a)

(2.19b)

which is easily derived by differentiating Eq.
(1.12), to introduce SQ(")jet' into the ME and eli-
minate the second Liouvillian operator. It is also
easy to show that the unperturbed part I.o(» of the

through the use of the properties of I ~ „, including
Eq. (2.3); here cr denotes a dummy particle label.

Turning to the right member of the ME, Eq.
(1.11), we first make use of the differential equa-
tion of the time-development operator g" in the
irrelevant subspace'

s9( N)

(t) t')[1 —PN(t')jL(N)

first Liouvillian does not contribute. This follows
immediately from the very useful property" pos-
sessed by the P„(t) of Eq. (2.13),

—" [1-P„(t))-=0, (2.20)

whose proof is sketched in Appendix A. Equation
(2.14) shows that every term of P„(t)I(» contains
at least N- 2 integrals on the extreme right-hand
side, and that the integrals always operate directly
on a factor [1-P(t)] obtained from aQ("'(t, t')/dt',
so that Eq. (2.20) applies. Moreover, we can use
Eq. (2.20) to simplify. the interaction part of the
factor P(t)L(» in the right-hand member of the
ME. Only the second term of Eq. (2.15) contrib-
utes, since all the other terms are terminated by
N-2 integrals and vanish, by Eq. (2.20), that is

V Bt' (2.21)

At this stage, the ME is given by

FN „(t)—PN( )(L(N ) L(N ) )FN „(t)

t
dt Pgt L(p)

(2.22)

x F, „(1,2, 3, t),

and

dn
( ), &9( )(t, t')

y N (N) gtl

] [" f —»,(t) r.,'„,) „,(t)
(o W1, 2)

= L,',F2(1, 2, t) + (N- 2) —(L,'3+ I23)
d3

(2.23b)

Moreover, the left-hand side is given explicitly by
Eqs. (2.17) and (2.18), and Eq. (2.21) is available
to simplify the right-hand side. It is most natural
at this point to integrate over the phase space of
all particles but 1 and 2 and obtain the ME for the
doublet distribution function F,(1, 2, t). From Eqs.
(2.1V), (2.18), and (2.21), it follows that

(fy &1,2)

(n &1,2, 3)

dn &9(")(t,t')
v at'

= (N- 2) (I„',+ I.,',)—d3

(n &1,2)

= (L,'+ I„')F,(1, 2, t),

(2.23a)

In deriving Eq. (2.23b), note that the only sur-
viving contributions are from those parts of the
first and second terms of Eq. (2.18) for which
(n, P) = (1,2); the other terms all cancel one an-
other ultimately. The ME for the doublet distribu-
tion follows from Eqs. (2.23),

F,(l, 2, t) —L(,)F2(1,2, t) —(N-2) —(L,'~+ L,',)F,3,(1, 2, 3, t)

=-(N-2) dt' —(I.,', +I.,',) II — „,' F „(t'), {2.24)
d3, , »I dn BQ( )(t, t')
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where

L(2) ——L, + L2+ L'„=—L(2) (1,2) . (2,25)

The last term on the left-hand side of the ME in-
cludes the effects of reducible three-body correla-
tions while the irreducible three-body and higher

correlations are on the right-hapd side. It will be
more convenient to combine all three-body terms
on the right-hand side through integration by parts
with respect to t', in which case the integrated
part evaluated at t'= t cancels the last term on the
left, and one is left with

F,(1,2, t) —I(2)F2(1,2, t)

=(tt —2)f —(I,', L,',) ll . —»t t(t, — )»„,(- )+f d »t t(t, t )'-) . (2 26)
f)( 0

An obvious change of variables has been made in
the time integral.

Although Eq. (2.26) is the required exact ME for
F„ the ME is not closed since it depends on the
singlet distribution F,. Hence, a ME for F, is re-
quired. It is obtained by integrating Eq. (2.25)
over the phase space of particle 2. Noting that the
right-hand side does not contribute because of Eqs.
(2.20) and (2.16), the result is

»((, t) —Ll», ((, t)= -(»)tf2—2(»'. (1,2, tl.
(2.27)

This equation is just the first member of the
Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY)
hierarchy, "relating F, to F,. The result of our
analysis is contained in the set of two exact cou-
pled ME's for p, and F E2qs. (2.26) and (2.27). In
Sec. IV we will consider density expansions of
these exact equations in order to obtain kinetic
equations valid for moderately dense gases. Mean-
while, in Sec. III we turn our attention to the quan-
tum-optical problem.

III. EXACT MASTER EQUATIONS FOR QUANTUM OPTICS

In this section we treat the usual quantum-optical
case involving N two-level atoms coupled to a
near-resonant optical radiation field through the
electric-dipole interaction. The system Hamil-
tonian H is a sum of matter, field, and interac-
tion terms H, H&, and H', according to Eq. (I2.1).
The corresponding partition of the I iouvillian is
stated in Eq. (I2.2). The explicit forms for H~,
H&, and H' are listed in Eqs. (I4.3)—(I4.7); how-
ever, in the present section we will only need the
fact that H and H', as well as the corresponding
Liouvillians, are sums of operators involving the
dynamical variables of a single atom":

22')((n, t) =- X(u, t) —R(t)P 2(O(, t) . (3 2)

Hence, FN „ is given by'

NF,„(f)=F,„,(t) + g &)((o', t) p, (P, t)

The system density operator is F„(1,. . . , N, t); it
is related to the density operator for the o.th atom
p, (n, t), the density operator for the field R(t),
and the joint density operator of the field and the
nth atom" )((n, t) by Eqs. (1.18) and (1.19). We
will not assume the Hamiltonian and initial value
of the density operator to be symmetric under par-
ticle interchange for the following reason: The
positions X of the atoms enter H', and usually it
is appropriate to consider the X as parameters
rather than dynamical variables, since there is
negligible reaction of the internal state of an atom
on its translation. In addition to t;he dynamical
evolution under the above Hamiltonian, both the
atoms and field in quantum optics often relax.
This relaxation may be simulated by treating the
system as an open system and coupling it to reser-
voirs. We will ignore the reservoir coupling for
now, since it is easy to add to the master equa-
tions later, as discussed in Sec. IV of I. We note
only that the remarks made there apply here also
provided we make the plausible assumption that
the reservoirs for the field and for each atom are
independent.

Rather than assuming the matter and field to be
two coupled systems as in I, we consider them to
be N+1 coupled systems (N atoms and field) and
choose the relevant part of the density operator to
be a product of the N+1 reduced density operators
of the coupled subsystems, plus terms linear" in
the correlation between one atom and the field

N

H =+H

I =QL„,

H'=PH.'I,

L'= Q L' .
(3.1)

= g X(tt ') g tt (»1) —(»1- 2)» ...(t), ,

(3.3a)

where F„„,(t) is the uncorrelated density operator
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F„„,(t) =- a(t) I) p, (n, t) (3.3b)
P„,(t)F„(t)=F„„,(t),

P„.(t)F (t) =F ...(t) ,
(3.8)

Tr+N y=1 (3 4)

where

and primes in products or sums have the same
meaning as in Sec. II. The reader can easily check
that I'„„is normalized

and is given explicitly by analogy with. Eq. (I3.11),

P„(t)= R(t)Trig ][p, (P, t)Tr 8
a

+ ]Ip, (n, t)Tr

Tr —= Tr& Q Tr„, (3.5) (3.9)

that the appropriate number of traces of I'„„
yields y, R, and p„as indicated in Eqs. (1.18)
and (1.19), and that

» F„„(1,. .. , N, t)=F„,„(I, . . , N. -l, t) . (3.8)

P(t) = p ]I, Ip, (P, t)»8

+.Q y(n, t)Tr Tr~ I ['p, (y, t)Tr~

—(N- 1)gy(n, t) II p, (P, t)Tr —(N- 1)P„(t),

where P„,(t) is a TDPO which satisfies

(3.7)

To find the TDPO which gives rise to the ME for
I'„„,one could begin as in Sec. II by considering
a system composed of only two atoms and the field.
However, it is simpler to guess the form of the
PO from the PO of Eq. (2.13) for a system of N
gas molecules by considering the difference be-
tween the interactions involved in the gas-kinetic
and quantum-optical cases. In the gas-kinetic
case, one has a. system where interactions occur
between every pair of the N particles, or (, } in-
teractions. On the other hand, in the quantum-
optical case, interactions occur only between each
of the Natoms and the field, for a total of Ninter-
actions. The latter situation is analogous to a sys-
tem of N+ 1 molecules, where one molecule is
tagged and interactions occur between the tagged
molecule and the N untagged molecules, while un-
tagged molecules are not allowed to interact with
one another. Thus double sums in Eq. (2.13) will
be replaced by single sums, I', by 8 or p, F, by
g, and V 'f dn by Tr . In addition, the expression
(,") in the last term representing the number of in-
teractions should be replaced by N, and the symbol
N in the third term representing the number of in-
teracting subsystems should be replaced by N+ 1.
With these rules we may write the PO' '

The symbol Tr denotes a trace over all atomic
degrees of freedom.

In order for Eq. (3.7) to represent the desired
TDPO, it must satisfy Eqs. (1.10a), (1.13b), and
(1.9a), with F„(t) given by Eq. (3;3a). First, we
have immediately

P(t)F„(t)= [1+(N-1) —(N 1)]-
xgq(n, t)

~ I p, (P, t) —(N-l)F„„,(t)
a 8

=FN, „(t), (3.10a)

P(t)F (t)= PX(n, t).['.[ p, (p, t)
a 8

+ g X(n, t)g p, (P, t) ',g p, (r, t)

—(N —1)F„„,(t)
(3.10b)

Next, we must show that P(t) is a PO, or that
P(t)P(t') =P(t). This proof is not as lengthy as the
corresponding proof of Sec. II, but is still some-
what tedious; it will be carried out in Appendix B.
Since P(t) is a sum of terms, as in Eq. (2.9), the
proof will demonstrate the set of simpler relations
in Eq. (2.10), instead of the TDPO property.

Now that we have obtained the correct PO for
the quantum-optical problem, we are ready to de-
rive the quantum-optical ME for F„„.In this case
we interpret Eq. (1.1) to be the quantum-mechani-
cal I iouville equation with I, given by Eq. (1.8),
and the ME of Eq. (1.11) still follows. " Its explicit
form is obtained by substituting Eqs. (3.7) and
(3.3a) and simplifying. We choose the initial in-
stant to be t, = 0 and assume that there are no ir-
reducible two-atom-plus-field correlations initial-
ly, that is F„,. (0) =0. (Usually there are no atom-
field correlations at all initially. )

We will need the effect of the PO on both the un-
perturbed and perturbation Liouvillians. From
Eqs. (3.7), (I2.2), and (3.1) and the relations
TrfLf Tr„I,' = Trf Tr L' =- 0, one has



R. H. PIt ARD AND G. R. %ILLIS 16

P((p)I.'= g (Lz+ L'„)IIp, (p, t)Tr()+ p I.'y(p, t)TrsTr&II pl(y, t)Trz

—(N ll (lt—ilp.,(a, t)Tr ~ R(t)Trt g I.', Ll p, (p, t)Trr),

P(t)I.'=g I' II p, ()8, )')Tr8+ g [p, (n, t)Tr I'+y(P, )P)TrBTr&I']g p, (y, )p)Tr„

—(N l) (R(t—)Trt P L', + g p, (a, t)Tr, L,')Q p, (tl, t)Trt .

Operating with these equations on F„„((,)(yields two of the terms on the left-hand side of the ME:

P(f)L'F „(~)=g (L~+I')x(o', t) II p (P t)+g x(n f)L'8p (P i)II p (& (')

(3.11)

(3.12)

—(N-() (L, R(t)lip (a, t)+'R(t) PL".p(a, t) ,ll p (tht)) (3.13)

P(f)I.'F„„(t)= g I-.'x(~, f) Dp, (P, t)+ g [p, (~, t)».I-.'I".„(~,P, f)+ x(~, ~)», &~x(P, t)]II'p, (r, f)
cx 8 o, 8

—(N l) (R(t)Q T-rt L'l(a, t)+ QP (a, t)Tt I, l(a, t))„Q', P,(Pt), , (3.14)

where Eqs. (3.6), (1.18), and (1.19) have been
used.

Equations (3.11)—(3.14) will also be useful in
representing the right-hand side of the ME. In ad-
dition, to reduce the right-hand side, we will need
the very useful result that the projection operator
Q(t) on the irrelevant subspace vanishes identical-
ly when traced over any N-1 atomic variables,
that is

II Tr„[1-P(t)]=0. (3.15)

P (t)L'9 (t, t') [1 P(t')] =- 0 (3.16)

follows immediately. In addition, we can prove
that L' in the second factor L of the right-hand
side does not contribute. We do this by showing
that

[1 P(t) J I.'F' „(I)= 0, —

or, equivalently,

(3.17)

The proof of this relation is given in Appendix B.
The property is analogous to that expressed by Eq.
(2.20) for the correlated-gas PO, by Eq. (12.14)
for the uncorrelated-atom-field PO, and by Eq.
(13.18) for the uncorrelated-gas PO. Using Eq.
(3.15), we can show that the first L factor on the
right-hand side of the ME, Eq. (1.11), can be re-
placed by L'. The product 9(t, t')[1 P(t')] always-
has a PO of the form [1-P(t)]as its leftmost op-
erator. Since, according to Eq. (3.11), each term
of P(t)L,' is terminated by at least N 1 traces over—
atoms, the result

The left-hand side of Eq. (3.17') is given in Eq.
(3.13); we have only to compute the right-hang
side. This is done in a completely straightforward
manner using Eqs. (12.2) and (3.1) for L,', with the
result being identical to Eq. (3.17').

Having eliminated L' from both factors L on the
right-hand side of the ME, we now examine the re-
maining factors L,'. By Eq. (3.15), it is clear that
only the second term of Eq. (3.12) contributes to
the first factor L', since it alone contains only
N-2 traces over atom. s. Hence, it follows that

P(t)L, '9(t, t')[1-P(f')]
= g p, (o', t)Tr I.' II p (r, f)»),

x 9 (t, t')[1 P (f')] .

(3.18)
Finally, the last factor L' can be simplified by
evaluating

[1 P(t)]L,'F„„(t)= I,'F, „-(t) P(t) I.'F„„-(t). -
(3.19)

The second term on the right-hand side is given by
Eq. (3.14), and the first term is

L, 'F„„(t)= P L„'y(o, t) II p, (P, t)

~ ~ Lsx(, ~)p, (~, i)II p, (r, i)
e, 8 y

—(N-1)gL'&(t)p, (o', t)/ p, (P, ~)

P(t) I.'F„,(t) = I.'F„„(t). (3.17') (3.20)
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Combining Eqs, (3.18) (3.20) and (3~ 14) and slm
plifying, one obtains

where ( ~ .&„,=—Tr f . p, (n, t)j denotes a partial
average over particle o. . In addition, we have in-
troduced conditional averages,

[I -I'(f)j L'+ „(f)
(o(f &)&pi. , 2= »-go(f, ~)X(f1~, t), (3.23)

—(N 1)R(t) ] [ -p, (pt)) . , (3.21)

~, I..' = Z.„' - (-L.'&. , —(L.'&,].. . (3.22)

We have defined 62L„' analogously to Eq. (I2.20) as

where the field dependence of the operators has
been indicated explicitly by the symbol f and
]I(f~o. , f) is the conditional density operator de-
fined by

(3.24)X(o' f)=X(flu t)p (o' t) ~

The ME for I"~ „may now be written explicitly
by combining Eqs. (1.10), (3.13), (3.14), (3.16)-
(3.18)„and (3.21); the ME is

Z„„(t)-g (L, + L'„+ L'„)]I(~,t)op, (p, &)-~ (L:+(L'.&., , +(L'.&,~„,, ) X(]3, t) ]I p, (r, &)

()' &8)

- ( 1N) (t)PRp, (l), t))

=g p, (u, &)» L'II p, (y, t)Tr„
t

df & (f, f ) 2 ~3 L~ g x(& f ) II P, ((, &')
f

(e &6) (C &~)

—(N —1)R(t')lip, (t, t')) . (3.23)

Since we are really interested in the density operator ]I, we can operate on Eq. (3.26) with A' —1 traces
over al], atoms but the nth one to obtain the ME for ]((a, t). After some cancellation and rearrangement,
one obtains'

]((u2 /) —(L~+ L'+ L'„)y(n) t) — Q TrsL'8E2 „(a,p, t)
8

( 8&n)

E Tr I&II Trr„ tt'3(tt)+tp, , p( 2, 2( 't ) ]'. [ 3' I't N 1 Rlt IIp'lt' )'8 y o E(8 &n) («~) («~)
(3.26)

p, (~, t) —L'. p, (~, f) = Tr&L.'XI(~, t) . (3.2V)

Similarly, performing a trace over the field, the

This &&«~ expression cannot be simplified further
without introducing approximations. The last term
on the left-hand side incorporates the effect of re-
ducible correlations between two atoms and the
field, while the right-hand side incorporates ir-
reducible two-atom-plus —field (as well as higher-
order) correlations.

Since Eq. (3.26) depends on both R and p„we
must obtain dynamical equations for the latter two
density operators also. These are derived most
easily by tracing Eq. (3.26) over the nth atom and
over the field, respectively. Performing first the
trace over matter, we note that neither the right-
hand side nor the last term of the left-hand side
of Eq. (3.26) contributes, for one has a complete
trace of a commutator in each case. The result is

right-hand side of Eq. (3.26) still does not contrib-
ute, because one has IV 1 trace—s of [1-P(t)j over
atomic degrees of freedom, but every term of the
left-hand side makes a coptribution. In this case,
one obtains

R(t) —L~ R(t) =+TrsLH]I(pt t) . (3.28)

Equations (3.27) and (3.28) are the first members
of the BBGKY hierarchy" for the quantum-optical
Hamiltonian, relating R and p, to y. Together Eqs.
(3.26)-(3.28) form an exact closed set of coupled
ME's for X, R, and p, . In Sec. V we will apply
these equations to the single-mode laser, making
the first Born approximation in the X equation.
However, before doing this, we will return in Sec.
IV to the gas-kinetic ME of Sec. II and consider
approximate solutions to the exact ME for the gas.
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v;„, /w „) =Nx 0/ V—= &&. « 1, (4.1)

where r0 is the hard-core radius. Starting from
the exact ME for F, in the case where F~ „ is un-
correlated, Eq. (I3.22), we show that to first or-
der in A. only the first two terms contribute and
even then only in simplified form. Using the op-
erator relation

Pf. APPROXIMATE MASTER EQUATIONS IN GAS KINETICS

The starting point in this section is the set of
two coupled exact ME's for the singlet and doublet
distributions F,(1, t) and F,(1, 2, f) derived in Sec.
II, Eqs. (2.26) and (2.27), obtained by assuming
that the relevant part of the distribution function
contains two-body correlations. We will carry out
a density expansion of the F, equation and, in ad-
dition, make the binary-collision approximation"
(BCA). It will be seen that even the first-order
term in the density N/ V gives rise to a trans-
cendental dependence on density in the Fj equa-
tion and provides a correction to the equation for
the singlet distribution leading to a good descrip-
tion of mean-free-path effects in dense gases.

This behavior is in contrast to that found in I,
where the equation for the singlet distribution, ob-
tained under the assumption that F„„(t)was uncor-
related, yielded the dilute-gas Boltzmann equation
to lowest order in N/ V. Before considering the
density expansion of the present equations, we will
illustrate the method by reconsidering briefly the
derivation of the Boltzmann equation through ex-
pansion to order N/V of the equation for the sin-
glet distribution of I, Eq. (I3.22). This is de-
sirable because the derivation of the first-order
terms carried out in I is not a good guide in the
current case. The simplicity of the result was ob-
scured somewhat by the desire to illustrate the
origin there of certain correction terms of order
(N/V)' derived by Klimontovich" which make the
total energy, kinetic plus potential, a conserved
quantity and by the desire to make contact with
the expressions of Klimontovich.

%e recall from I that, in the kinetic regime, we
are interested in phenomena occurring on a time
scale 7, v;„t «v. «v. „~, where ~;„, is the duration
of a collision and ~„~ is the time between col-
lisions. Moreover, this allows us to introduce an
expansion in powers of the density since

= G~'&(1, 2, ~)

d&'9 ' (1, 2, t, t —r')

where"

x Z&» (1,2, t —v') G&'(1, 2, ~- 7-'), (4.3)

$&» (I, 2, t —~) =- L, 'F, (2, f- 7 )
d2

d1
+ L,'F, (1, f —~) (4.4)

and

(4.5)G'&(1, 2, ~) =- exp[L&» (1,2)~]

is the solution to Eq. (I3.29). By iteration of Eq.
(I3.25), we find that

F,(1, t —~) = d'&(1, —7)F,(1, t)+ O(».),
where

G'" (1,~) -=exp(L,'~) .

(4.6)

(4.7)

In addition, we iterate Eq. (4.3) once to obtain"

9&»(,1 2, t, t-~)
= d'&(1, 2, 7)

r
d~'G"(I, 2, ~')

0

&«&»(1, 2, t —~')G'"(1, 2, r v') . (4-.8)

It is not so clear that the iteration in Eq. (4.8)
is related to an expansion in powers of X. How-
ever, we will show in Appendix C that the term
-X in the ME for F, is obtained by substituting the
first term of the 9 "& equation, Eq. (4.8), into the
second of the F, equation, Eq. (I3.25). On the other
hand, the second term of the 9 '~ equation sub-
stituted into the second of the F, equation com-
bines with the result of substituting the first term
of Q

' into the third term of F, to yield a contribu-
tion -A. '. The result is

F,(1, t) —L',F,(1, t)

but agrees with the latter to order A. , as dis-
cussed in footnote 14 of I.

To proceed further we note that 9 ' satisfies the
integral equation"

9&'&(1,2, t, t —~)

d2 ~ d2
L,'2&N L'„= O(A. ) . (4.2)

—L,', limS~'&(1, 2, 7)F,(1, t)F, (2, t)
r~ 00

along with the identities, Eqs. (2.16), the integral
over 3, . . . , N can be performed in Eq. (I3.22) with
the result for P, given in Eq. (I3.25). Note that
9 '& appearing in this equation and defined in Eq.
(I3.26) is not exactly the same as 9 " with N=2,

+ N d7 —L,'~g~»(I, 2, 7)
d2 s 2

0

L ~ L2 F~ 1~ t F~ 2)

(4.9)
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where

3 '&(1, 2, 7) =—G '& (1,2, v) G ' (1, —v)G ' (2, —v) .
(4.10)

Clearly, by iteration, one finds

(4.11)

so that the term containing it in Eq. (4.9) is -&).2

and can be neglected. The remaining terms of Eq.
(4.9) are exactly the Boitzmann equation for the

singlet distribution F„as derived in I."
We have illustrated the technique for expanding

to first order in N/V (or &).) by considering the gen-
eral ME for E, derived in I, where E„„was t;aken
to be uncorrelated. We wish now to apply the same

technique to the more difficult density expansion of
the doublet ME, Eq. (2.26), derived in Sec. II
based on a relevant part of the probability density
containing two-body correlations. When one solves
the resulting. equation for F, and substitutes the
result into Eq. (2.2 "I) for F„one obtains an equa-
tion for E, which is a transcendental function of the
density, even though the F, ME contained only
terms up to first order. One hopes by this tech-
nique to bring into the theory a collisional damp-
ing factor depending upon the mean free path and,
hence, obtain results valid at higher densities than
would be possible by a naive density expansion of
the E, equation.

Using Eq. (4.2) we can perform the integrals over
4, . . . , N ln Eq. (2.26) to lowest order in &). with the
result

F,(1, 2, t) —I
&2& (1, 2)F,(1,2, t) = (N- 2) —(L,', + L22) lim 9(2& (1,2, 3, f, f —g )F (1,2, 3, f —7)

where

00 9
~ d gt t(t1, 2, 2, tt —t') —F,, ,(1, 2, 2, t —t))

0

(4.12)

9 "&(1,2, 3, t, t —r) =—Tex dt'[L(, &(1, 2, 3) —2(,
&
(1, 2, 3, t')], (4.13a)

t-T

g(,&(1, 2, 3, t) —= L,' F„(2,t) —+ (2 3) + [F,(2, 3, t) —2F, (2, t)F, (3, t)]
d2 d2 d3

+ L,',F,(3, f) —+ cycl(1, 2, 3),d3 (4.13b)

and we have written the phase-space arguments explicitly. Once again, Q' ~ is not identical with the oper-
ator obtained by setting N= 3 in Eqs. (2.19), but differs from it only in terms -&).. In deriving Eqs. (4.13)
we have used an alternate form of Eq. (2.14),

t„(t)r:. 2"„g'',IF(y, t)J=-"'+ —,
' g' g"F(t)y, t) —2 —' '

"F(tt, t)

(4.14a)

along with the expansion to lowest order in &). of Eq. (2.15),

F„(t)1.„'t= 2 „'t ]I ht)FJ —~ O(1,)..
y

By iteration of Eq. (4.12), it is clear that

F,(1,2, t - ~) = d'&(1, 2, - ~)F,(1,2, t)+ 0(& ) .
Moreover, the time-development operator g~» is related to I,(» and

G"&(1,2, 3, 7 ) =- exp [L(» (1, 2, 3)v.]

(4.14b)

(4.15)

(4.16)

in the same way as 9~" is related to 2(» and G('&, that is by an analogue of Eq. (4.3). Iterating this equa-
tion once results in

T

9 ~ '&(1, 2, 3, t, f —r) =—G('&(1, 2, 3, r) — dT' G('&(1, 2, 3, T ')2(,&(1, 2, 3, t —T') G( '&(1, 2, 3, 7 —T ') .
0

(4.17)
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Proceeding as in the density expansion of the F, ME of I, we now substitute Eqs. (4.15) for E„(4.6) for
E„and (4.17) for 9('& into the ME for F„Eq. (4.12). The desired term -&( in the ME is obtained from the
first term of the g

' equation in the first term of the right member of the E, equation, whereas the second
term of the g&'& equation in'the first term of the F2 equation combines with the first term of 9" in the sec-
ond term of I'2 to yield a negligible contribution ™tA.'. The result is

E,(1,2, t) —I(,&
(1,2)F,(1,2, t)

d3= N —(L,', + L,',)
I

)i m G ' (1;.2, 3, t )F,(1,,2, 3, t —))

00

t dtG)')(1, 2, 3, )} Gt')(1, 2, —t)G)')(3, —))C——
)L( t22)-L') F,(1, 2, t)F, (3, t)

p

}

8 p+cycl(1, 2, 3 2I IG o. ' T L8 j F (r, t)
Of y

(4.18)

The details are carried out in Appendix C. By iteration of Eqs. (4.18) and (2.27), one finds that

and

Ij )(1 2) L )F (1 2 t)F (3 1):G()l) (4.19a)

IB p'~y, t =Ok, (4.19b)

so that the integral over T in Eq. (4.18) is -A, and, hence, is negligible. Writing the remaining term ex-
plicitly, still keeping only terms ™FA., one obtains

F,(1,2, t) —I.(,&(1, 2)F,(1,2, t)

= N —L,', lim G '&(1, 2, 3, r)
d3

7 ~ t)O

3
x G' 1,2, -vG' 3 -7 +21,2, &E, 3, t+cycl1, 2, 3 —2 Q' ~, -yp, ~ t + ] (4.20)

=d'&(1 3, 7.)G ' (2) ~), (4.21a)

G ' (l, 2, —T) -=exp[-(I,'+ I„')v]

Solution of Eq. (4.20) requires knowledge of the
three-body collision operator G ' . Although not
strictly a consequence of the density expansion,
we can introduce the BCA at this point to elimi-
nate G ' in favor of expressions depending only on
the binary-collision operator G' and the free-par-
ticle evolution operator G ' . In the term shown
explicitly in Eq. (4.20) involving L,'„ the BCA al-
lows us to neglect all interaction Liouvillians in
G ' and G '~ except for I.,',. Hence, one has

G(3&(l, 2, 3, T) —=exp[(L, + L2+ L2+ L,'2)7']

E,(l, 2, t) —I(,&
(1,2)F,(1, 2, t)

—L,',(E2(1, 3, t)E, (2, t) + li m 8('& (1,3, 7)
d3

X [AF2(132, t)E, (3, t)+ (1 3)])
(4.22)+ (1-2),

where we have introduced the correlation distribu-
tion tLF2 defined in Eq. (2.1).

Although Eq. (4.22) is the desired result of our
expansion of I2 to first order in A. , the virtues of
the equation are more apparent if it is rewritten
as an equation for the time derivative of 4I,. The
first term on the right-hand side can then be elim-
inated by using Eq. (2.27), with the result

= G"&(1,—v)G('&(2, —T), (4.21b)

and so forth. In the BCA, Eq. (4.20) assumes the
form

d3 A(1, 2, 3, t) tI3F, (1,2, t)

+I'F (l, t)F, (2, t), (4 22)
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A(1, 2, 3, t) = [L,',I ~'~(1, 3, ~)(1+(P~3)

+ (1 —2)|F,(3, t) . (4.23)

Here (P 8 is the permutation operator on particles

o. and P. Equations (4.22') and (2.27) constitute
closed, Markoffian equations for F, and F, which
are equivalent to Dorfman's renormalized kinetic
equation. " Since Eq. (4.22') is a linear inhomo-
geneous integrodifferential equation for ~„we
can solve it for ~, in terms of F,. The result is

~F,(1,2, t) = SF,(1,2, — )+
1

dt'exp Ck" I.&» 1, 2 +
t'

d3A 1 ) 2) 3~ t &~2F) 1~ t F] 2~ (4.24)

When we substitute this solution into Eq. (2.27),
we obtain a self-contained nonlinear non-Mark-
offian integrodifferential equation for Fy which is
infinite order in the density N/V, since N/V ap-
pears in the exponent on the right-hand side of Eq.
(4.24). The non-Markoffian behavior and the trans-
cendental density dependence arise from an ef-
fective resummation of an infinite class of dia-
grams representing a time integral over the past
history of particles 1 and 2 interacting, one at a
time, through repeated Boltzmann collisions with
the remaining particles. As a consequence of the
interaction of particles 1 and 2 with the remaining
particles, the time integral in the exponential of
Eq. (4.24) is effectively of the form exp(-7 /r*),
where v* is the mean free time between colli-
sions.

In passing, note that if one were to repeat the
procedure of this section to calculate bt; to sec-
ond order in the density before solving for ~, and
substituting into Eq. (2.27) for P„one would find
the cutoff exp(-v/7*) responsible for removing the
divergence of the diffusion coefficient. " We feel
the joint solution of our equations for F, and F,
represents an appreciable simplification over most
methods of obtaining mean-free-path effects in the
kinetic equation for Fj Because of this simplifica-
tion, we feel the present example demonstrates
clearly the merits of considering an F„„which
contains two-body correlations, even for systems
of low or moderate density.

The current method can be extended to the theory
of liquids by applying the Rice-Allnatt" idea of
separating the potential into a strong short-range
repulsive part and a weak long-range attractive
part. The resultant equations will be different due
to the fact that our approach couples F, and g,
strongly while the Rice-Allnatt theory results in
completely separate equations for the singlet and
doublet distribution functions.

We leave the problem of ME's in kinetic theory
now and return, in Sec. V, to the exact quantum-
optical ME's derived in Sec. III in order to apply
them to the consideration of atom-atom correla-
tions in lasers.

and

0 t&y=Hy+Hres y+ Hres, f (5.1a)

0 0 0 1&a=Hn+H- n+H". a ~ (5.1b)

such that the total Hamiltonian of the extended
system is"

X=X'+H',
N

x'=x, + gx'„.
(5.2a)

(5.2b)

Here H,'„& and H,'„are the Hamiltonians of the
field reservoir and reservoir for the nth atom,
respectively, while H,'e, ~ and H,'„are the cor-
responding system-reservoir interaction Hamil-
tonians. Of course, we may also introduce Liou-
villians corresponding to each of the newly defined

V. MASTER EQUATION FOR THE SINGLE-MODE LASER

In this section we apply the exact ME's for quan-
tum optics, Eqs. (3.26)-(3.28), to the single-mode
laser by restricting the number of modes coupled
to the atoms to one and introducing reservoirs for
the radiation field and for each atom. The field
reservoir accounts for radiation losses from the
optical cavity containing the atoms, while the
atomic reservoirs destroy the phase of the atomic
polarization and cause the population inversion to
relax to a level determined by the pump. We show
that in the first Born approximation (FBA), that is
to order p. ', the j equation gives rise to the con-
ventional laser theory, ""plus some additional
two-body terms involving two-atom-plus-field
correlations. We do not assume a priori that the
two-body terms vanish, as is usually done. How-

ever, we are able to show explicitly that some of
these terms make small but important corrections,
within the usual range of laser parameters.

In order to introduce reservoirs, we proceed as
in our previous treatment of superradiance ME's"
and replace the field by an extended subsystem
containing the field plus its reservoir; similarly,
we replace the nth atom by an extended subsystem
containing the atom plus its reservoir. The Ham-
iltonians of the extended subsystems are
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Hamiltonians; in particular we will need Zf p cC~ cC',

and Z corresponding to 3Cf, $C'„, ', and $C. The
derivation of Eqs. (1.11) and (1.12) and each step
of Sec. III may now be carried out as before, with
extended-system operators replacing system op-
erators. The density operators in the resulting
ME's are replaced by extended-system density
operators. For example, L in Eq. (1.12) is re-
placed by 2, and X(u, t) in Eq. (3.26) is replaced
by the reduced density operator of the field and
the eth atom plus their respective reservoirs.
By taking traces of these ME's over reservoir de-
grees of freedom, one obtains ME's for the sys-
tem or subsystem alone.

The reservoirs play a critical role in ensuring
the validity of the FBA. For the FBA to be valid
in the j equation, we require an interaction time
7;„, to be much shorter than the relaxation time
7„& for the density operator X. For the usual situa-
tion in a homogeneously broadened laser, the
shortest damping time is T„ the polarization de-
cay time, and T, plays the role of 7;„,. On the
other hand, ~„, is given by" ~„~ = lp l'NT„where
p, is the atom-field coupling constant having di-
mensions of frequency, defined in Eq. (I4.7). (We
have dropped the mode labels k and s since we are
dealing with a single mode, having wave vector k
and polarization index s, say. ) Consequently, we

find that the dimensionless ratio e -=~;„,(r,„
= lp, l'T,'N«1 for typical laser parameters, and we

are justified in treating the right-hand side of Eq.
(3.26) in the FBA.

To introduce the FBA into the extended-system
version of Eq. (3.26), we replace' 2 by 8' in
9(t, t'), obtaining 9,(t, t') as in Eq. (I4.1), and use
an analog of Eq. (I4.2) with L'-2'. Then we ob-
tain an equation for j by taking traces over the
reservoirs. In addition, we choose to set average
fields and average polarirations equal to zero by
letting R and p, be diagonal operators in the P'
representation. We obtain the following equation
of motion for X:

x(, t) —(L + L'+ L')x(

«s& 8~, , ,R(~)p, (~, &)
6x(n, t)

Ot
( / &ex)

I
d7' Tr 8L'8(Q, , 7 '8( v)p, (p, t —-w)

8 o

&«x(o' ~- ~)& ~ + (o. —P)].
(5.3)

The I iouvillians occurring in Eq. (5.3) are re-
lated to Ha, miltonians by Eq. (1.8), and the Hamil-
tonians are defined in Eqs. (I4.3)—(14.V) and Eqs.
(3.1.), such that for the homogeneously broadened
single-mode case,

Hf =hA(a'a + —,'),
I

H ~ = ph(dos~

H' =hp, e'"' ~a'g +p. *e '"'~0 g' .

(5.4a)

(5.4b)

(5.4c)

The conditional average (L') „~~, on the left-hand
side of Eq. (5.3) is strictly analogous to the condi-
tional average (L'&z~„, of Eqs. (3.22)-(3.24), that
is

«.'&.~,, , =».L-.'x(~If, ~), (5.5)

where X(elf, t) is the conditional density operator
satisfying

x(, ~) =- x(~lf, ~)R(t) . (5.6)

x(, ~- )= xp[(& +&'.) ]x(,~- ),
p, (o. , t —7) =exp(Z'v)p, (n, t —7),
R (f, —~) = exp(Z~~) R(t —~),

and so forth. Moreover, we have defined

g' ( 7) -=exp—[(S~+g')~]L' exp[-(Z~+ g'„)~],

(5.'I)

(5.8)

while b, ,L„' is defined by Eq. (3.22) with the density
operators in the partial averages replaced by their
interaction-picture counterparts (x-x and p, -p, ).

In addition to justifying the FBA, the condition
e -=~„,/~„, «1 also permits us to introduce the
Markoff approximation" on the right-hand side of
Eq. (5.3). In the Markoff approximation we let
t ~ in the upper limit of the integral, and we re-
place the density operators X(n, t —i), R(t —i),
and p, (o. , t —7) by X(o. , t), R(t), and p, (n, f), re-
spectively. Since the shortest reservoir time con-
stant is T» we have ~I„, =-T» and we write phe-
nomenologically

(5.8)

where the 7 dependence of L, '8 is now due only to
the system operator L,'. Consequently, with the
Hamiltonian of Eq. (5.4), the ~ integrations take
the form of two definite integrals C and C*,
where"

We have represented the time development of y
due to reservoirs alone symbolically by the term
(5xy5t),..

In deriving the right-hand side of Eq. (5.3), we
have assumed that the final density operator for
the extended system appearing in the equation is a
product of a system density operator and equilib-
rium density operators for the reservoirs. This
assumption is consistent with the FBA and the fact
that the reservoirs are large systems. The angu-
lar brackets with subscript "res" represent partial
averages with respect to the reservoir density
operators. " Density operators with tildes are in-
teraction-picture operators,
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(5.10)

Purely for convenience in exposition, we will con-
sider the field frequency 0 to be exactly resonant
with the atomic frequency co„ in which case C = C*
= T,. Hence, we obtain from Eq. (5.3) the Born-
Markoff ME for a single-mode laser tuned to reso-
nance,

j(n, t) —(L~+ L'„+ L„')y( o, t)

—
&IJ.P»'a +p*P, a')I, „.=0. (5.13)

In Appendix D we calculate the time rate of
change of the imaginary part of p, &P, a ) due to
two-atom correlations. The result is

p, &P»a ). The reason is that the real part is pro-
portional to &pP»a + p. *a'P„& = II '(0'), by Eqs.
(3.1), (5.4c), and (5.12). Consequently, the con-
tribution to the time derivative of the real part by
the irreducible two-atom terms on the right;-hand
side of Eq. (5.11) vanishes, that is

(5.11)

Correlations between two atoms and the field en-
ter Eq. (5.11) in two ways: (a) through the next-
to-last term on the left-hand side and (b) through
the right-hand side. The former are reducible
two-atom-plus-field correlations in the sense
that they arise from the relevant part of the two-
atom-plus-field density operator, that is from
P, „(n, iI, t), while the latter are irreducible cor-
relations since they result from the irrelevant
part P, , (n, P, t) of the density operator treated in
the FBA. All such correlations are neglected from
the beginning in the usual laser theories. In this
section we wish to estimate the magnitude of these
terms and determine the conditions under which
they are negligible. %e will assume throughout
the current section that X(n) is diagoonal in the un-
perturbed-energy (Ãz+Ho) represeetation, so that

for example.
We begin by examining the irreleeible correla-

tions on the right-hand side of Eq. (5.11). Even
though the right-bmd aide of the equaticw is rather
complex, one may obtain a fairly accurate picture
of its behavior with relative ease by examining
moments. The simplest moments that measure
atom-field correlations are (a'a ) and its con-
jugate &a„"a ). A better choice is to replace o'by
the corresponding collective variables defined in
Eq. (I4.5),

(5.12)

representing the spatial Fourier component of the
atomic polarization at the wave vector k corres-
ponding to the field mode, and calculate the equa-
tions of motion of (P,'a'). Even better is to write
equations for the real and imaginary parts of

—„&p,Pa»—p*a'P, &~, „.
=2~pj'(N-1) T&s&& pP»a —IJ. *a'P, ), (5.14)

where

s—= N 'ps„ (5.15)

is the operator corresponding to the mean inver-
sion per atom. Since the contribution to
Im(p&P» a )) from the single-atom terms on the
left-hand side of the ME is dominated by the
matter-reservoir term, we have

—„&pP»'a —g*a'P, &~, „.
=--T, '&pP»a —p, *a'P»& . (5.1$)

Hence, the effect of the irreducible two-atom cor-
relation terms is to replace the dephasing re
T2' by an effective reduced rate

(5.1'7a)

(5.1Th)

We show in Appendix 0 that ~is a small correc-
tion; in fact, upon substitution of the steady-@tat&
value of (s) into Kq. (5.1VIQ), Qne obtalSs

r = T,(2T~, (5.18)

where T& is the decay time of the field gpggygy due
to the field reservoir. In typical gas lasers one
has T,/Tz-10 ' to 10 '. The condition T,/Tz«1
has previously been noted by Kazantsev and Surdu-
tovich" as the requirement for neglecting multi-
particle effects in the laser.

In the following we will neglect the right side of
the ME for X, Eq. (5.11), and show that the left-
hand side contains conventional single-mode laser
theory, plus some corrections due to reducible
two-atom-plus-field correlations. Thus we have

It(n, t) —(Lt + Lo —K„—K&)It(a, t)
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(5q/5i)„, -=if.-q Z,-q . (5.20)

Taking the trace of Eq. (5.19) over the matter, we
obtain the equation for the field density operator

R(t) —(L~ —K~)R(t)

= -i@ p e' '.[a-, )P.'(i)]+ H. c. , (5.21)

where in the last step we have used Eqs. (5.5) and

(5.4c) and defined the two Hermitian-conjugate
operators

where we have split (5y/5t)„, into two parts, one

(—K ) denoting the relaxation due to the matter
reservoir and the other (-K~) relaxation due to the
field reservoir:

time t, and one can adiabatically eliminate the pol-
arization from Eq. (5.21), that is

4"„(t)= ip-*T. ,e'"' ~[a"X„"(t)-5I (i)a'], (5.28)

with a similar equation for d', and

gi(i) -(L, —SC,)ft(t)

= -) p. )'T, Q [a,a'3I'(i) -3I„(t)a']+H. c. (5.27)

To proceed with the determination of the equa-
tion of motion of R, we need the equation for
& "(i), which is obtained by multiplying Eq. (5.19)
by n' and tracing over a, with the result

3I.'(i) —(L, —Z, )X „'(i)+ V' [3I'.(i) —Z(i)]

= Tr n„' L„'y(n, i)+(n'), Q»gL'By(P, i) ~

(5.28)
(P'(t) -=Tr o'y(o. , i) = (o') )f,ft(i-), (5.22) We have written

In passing, we note that the same equation for R
would have been obtained from Eq. (5.11) without

neglecting the right-hand side and that Eq. (5.21)
agrees with the result previously found in Eq.
(3.28) with the exception of the added field-reser-
voir term.

Hence, to find the behavior of B, we need the
dynamical equation of 6'„'. The equation for 0' is
obtained easily by multiplying Eq. (5.19) by v' and

tracing over e,
6"„(i)—(i(u, + Li —7, ')6"(i)

ip*e -'"
, ~[a'3I'„(t) -3I (t)a'] . (5.23)

We have neglected the term Tr„o K~y(o. , i) be-
cause its magnitude is Tz'(P' and T&'«T, '; in
addition, we have defined

Tr„n.'Z.q(~, i) = V' [3I'.(i) —It(t)], (5.29)

implying that the matter reservoir includes a pump
term which tends to drive the upper-state occupa-
tion probability (n') to unity, "in the absence of
coupling to the field, at a rate T, '. The last term
on the right-hand side of Eq. (5.28) represents the
effect of reducible atom-field correlations on

This term assures us of obtaining the correct
A equation, Eq. (5.27), when the equation for 3I
is added to Eq. (5.28) for 3I '„and Eq. (5.25b) is
used. Previous laser theories" "are obtained by
neglecting this two-atom term, plus the field-
reservoir term. It is convenient to rewrite Eq.
(5.28) using the conditional-average notation of
Eqs. (5.24a) and (5.5), yielding

5I„'(t)-=Tr n'y(o. , i) -=(n')„)~,R(t), (5.24a)

analogously to Eq. (5.22). In Eq. (5.24a) the oper-
ators for the upper and lower state occupation
probabilities,

nn + n+o. &
(5.24b)

have been introduced. We note for future use that

n'+n =1, n' —n = s (5.25a)

5I'„(i)+5I-.(i) = It(i) . (5.25b)

We assume that T, is the shortest relaxation time
in the laser, "T, «T„T&, where T, is the relaxa-
tion time of the level populations and T& is the
relaxation time of the field energy due to leakage
of photons out of the laser cavity. Then, since we

already assumed T, «7„,=— ()p, j'NT, ) ', Eq. (5.23)
can be solved for 6"„(i)in terms of 5I' at the same

=(n„'L'„) )/, &(i)+(&+)g g (LB)8)y gfl(i) ~ (5 30)

At this point, there are two possibilities: (a) The
atomic populations can be adiabatically eliminated,
like the polarization. This is possible if T,
«~„,~, Tz. (b) The atomic populations cannot be
adiabatl cally e11mlnated since Ty R T j In the
latter case, we must solve the coupled dynamical
equations for A and 31 ', Eqs. (5.27) and (5.28) or
(5.30), and one will find population pulsations. We
will not consider this case further. On the other
hand, in case (a) we will see that 3I„' can be elimi-
nated from Eq. (5.27) leaving a single ME for
i(i).

Before obtaining the adiabatic solution for the
population, we will eliminate the sum over P from
Eq. (5.30) by subtracting from it the equation of
motion of (n')A. To obtain the latter we need the
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equation for R [Eq. (5.27)] and the equation of mo-
tion for (n„'), obtained by tracing Eq. (5.30) or
(5.28) over the field

—(n' ), + T, '((n'„), —1) = (n„'L'„), (5.31)

Combining Eqs. (5.30), (5.31), and (5.21), we ob-
tain

in Eq. (5.32). The first condition enables us to
write

T, '((n') -1) =(n„L„')

which combines with the second condition to yield
the result

T,'((n'„) (~
—1)R+K~[((n') (~

—(n'))R]

=(~n'„L.').„R. (5.33)

Since T, «T&, we may ignore the field-reser-
voir term in Eq. (5.33) in comparison with the
matter-reservoir term, and the equation becomes
especially simple. We may write

+(n')(X + a'X'a + a"2 a' —a a'R)],

(5.34)

where we have eliminated the polarization by Eq.
(5.26) and used the commutation rule for a and
a' and Eq. (5.25b). We have taken the diagonality
of g into consideration in the form

[a a', X]=0.

Through the use of the definition of the commuta-
tor, in conjunction with Eq. (5.25b), we can easily
rewrite Eq. (5.34) in the form

2' -R = — fa a'('2'„-'X )+ a [a',X„]—(n')
nsat

x(31' -5I +a'[a, z']+a [a', 3I ])].,

where

=((an'„L'„)„~,-(n„'L'))R. (5.32)

We have dropped the time argument where there
is no possible ambiguity. Equations (5.31) and
(5.32) are still quite general. In the adiabatic
case, T, «T„&, T&, we can set

d(n„')/dh =0

in Eq. (5.31) and

n„, -=[4/ p)'r. ,r,] ' (5.36)

is the photon number at which the gain, or popula-
tion inversion, saturates. "

It is clear from this expression that X' and
(n') = Tr& JV„are independent of n. This is true
because the atoms are interacting with a single-
mode traveling-wave fieM in the rotating-wave
approximation [see Eq. (5.4c)]. The lack of de-
pendence of the inversion of the atom on its posi-
tion could also have been predicted earlier; it is
a direct consequence of the cancellation of the
mode factors exp(+ik X„)when the polarization
is eliminated from Eqs. (5.21) and (5.33) using
Eq. (5.26) for d" . In the future we will drop the
label ct and write X', (n'), X =-R -'X', and (n )
==I -(n'). One may now also perform the summa-
tion over a in .he kinetic equation for R, Eq.
(5.2'7), and write

R (f) —(L~ —Zy)R

= -~ p~'&T, [a-, a'3 -6I"a ]+H.c. (5.37)

At this point one solves Eq. (5.35) for X' in terms
of R, obtains X from Eq. (5.25b), and substitutes
the results into Eq. (5.37) to obtain the equation of
motion of the radiation density matrix. However,
before proceeding it is useful to make a few re-
marks about the nonlinear terms involving (n') in
Eq. (5.35), which we will henceforth call simply
the "nonlinear terms. " The nonlinear terms in
Eq. (5.35) arose from the reducible two-atom
correlation term in the ME, that is they appeared
when the last term in Eq. (5.28) was eliminated
in passing to Eq. (5.32). The usual practice"'7 is
to neglect irreducible two-body terms of the form
(v' v~), since we have shown that they a,re of order'

T,/Tz and thus are frequently negligible. The non-
linear two-body terms due to reducible two-atom
correlations are also usually neglected. We will
show that although small, they are not strictly
negligible. In Appendix E we show the term. s mul-
tiplying (n') in Eq. (5.35) are of order unity.
Hence, they make a contribution of the same order
as the, incoherent spontaneous emission term in
Eq. (5.35), which arises from the one in a a'
= a'a" + 1.

In order to retain the main effect of the non-
linearity without the extra complicatio~ of a non-
linear term, we may simply set(n') = 1 in Eq.
(5.35) for the following reason: The magnitude
of the spontaneous-emission term, and hence of
the nonlinear term, relative to stimulated emis-
sion is n"', where n is the number of photons in
the field. At threshold we have" n-n,'~,'= 10' (for
a typical laser n„,=-10'), so that spontaneous
emission is a correction of O. lan. Above threshold,
spontaneous emission becomes even less impor-
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tant and eventually becomes negligible. However,
at threshold (n') -=1-(nQ can be approximated by
one, since it follows from Eqs. (5 ~ 25a), (D10),
and (5.36) that (n}-n/n, «, which is approximately
10 ' at threshold. Hence, the nonlinear term can
be well represented by replacing (n ) by one in
the threshold region, which is the only region
where it is appreciable.

When we set (n') equal to one in Eq. (5.35) we
obtain

X'-R -(2n ) '[a'a (X'-Ol' )+a'[a, X+]}. (5 33)

Using Kq. (5.25b) and the operator identity

a'[a-, 5f'] -=a' .5f',
8

(5.39)

we ean formally solve Eq. (5.38) for X',

X' = 1+ —2, 1+ A. 5.40

We show below that, if one neglects the commu-
tators and nonlinear terms in Eq. (5.35), the re-
sult is the conventional laser theory. "" How-
ever, if one requires a theory that treats spon-
taneous emission rigorously near threshold, then
it is necessary to retain Eq. (5.40) without approx-
imation. Furthermore, if a rigorous theory of
spontaneogs emission for n-n„, is desired, then
it is necessary to retain the full Eq. (5.35) in-
cluding the nonli. near terms.

To show that neglecting commute, tors and non-
linear terms in Eq. (5.35} leads to a differential
equation for A which is identical to the ME of the
usual laser theory, we take matrix elements in the
photon-number representation and define"

8„=(night n}, l, ( )=-( j&'i ). , (5.41)

The result is

ft„(t)+(ni+,Jt(t}in}

2
i N i'NT,((n+ 1)[F.(n+l, t}-E.(n, t)]

+ n[E, (n - 1,t) F(n, t)-]}, (5.42a)

which agrees with Eq. (3.10e) and Eq. (4.1b) of Ref.
1V for the case of zero detuning currently under
consideration. 40 Similarly, neglecting (n') and
the commutator in Eq. (5.35) and taking matrix ele-
ments one obtains

(5.42b)F ( t)
1+ (2nsat} (n+ 1}g (t)1+n„,-'(n+ 1)

which agrees with Eq. (4.3}, Ref. 17, if n', = p'(+ )-
= 1.

Risken" has shown there are corrections to the
usual laser theory at threshold of order n/n„,- 10 ', represented by the term a fa', X ) in Eq.
(5.35). On the other hand, we have shown that,

due to the nonlinear terms in Eq. (5.35), there is
an even larger contribution, which is of order one
near threshold where (n') = 1 and the commutator
is of order one. This latter correction is of the
same magnitude as ordinary spontaneous emis-
sion.

We now summarize the conditions required for
the validity of Eqs. (5.35) and (5.37). First, we
require 7'„,—= T,«T„,= ( i p i'NT, ) ' for the validity
of the FBA and the Markoff approximation. Sec-
ondly, we require &,«T& in order to neglect the
irreducible two-atom-plus-field correlations
represented by the right-hand side of Eq. (5.11).
Finally, we require T„T,«T&, v'„, in order to
eliminate the matter adiabatically from the ME
for the field density operator, Eq. (5.21), and to
neglect the time development of X' due to the field
reservoir compared with that due to the matter
reservoir.

The power of the TDPO technique can be appre-
ciated by the relative ease with which the results
of this section were obtained. Using the TDPO of
Eq. (3.7}, which projects the system density oper-
ator onto states having correlations between one
atom and the field, we have shown that the usual
laser theory is obtained by ignoring all but single-
atom-plus-field correlations in the ME for X(o.', t).
In addition, we have determined the magnitude of
corrections to the theory due to two-atom-plus-
field correlations. The present treatment should
be contrasted with that in a recent paper" using
a time-independent PO without atom-field correla-
tions, namely, "

P=&Tr, (5.43a)

&-='
[2 (1+o,)n'„+-,'(1-o,)n-], (5.43b)

where oo is a constant satisfying 0» o,» 1. With
this PO, it was necessary to perform an infinite
summation of terms of all orders in p, instead of
just the term of order

i
p, i'. This led to the diffi-

culty that the general solution diverged; more
precisely, the term containing ipse'~diverged as

The proper procedure in this case, according
to Ref. 19, would have been to reorder the summa-
tions in such a way as to lead to a convergent
series but the labor involved was too great.
Therefore, the author showed that summation of
the most divergent terms at each order in p gave
rise to a convergent result. By contrast, with
the proper choice of PO, namely, a TDPO con-
taining atom-field correlations, we have made it
unnecessary to deal with infinite-order terms and
have avoided the need to perform infinite resum-
mations.
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VI. CONCLUSION

We will conclude by discussing the results ob-
tained in Secs. I-V using TDPO techniques for
systems with correlations, then mention some
possible generalization of the methods of this
paper, and finally discuss extensions of the TDPO
technique to other problems in kinetic theory and
quantum optics.

A. Discussion

In this paper we have extended the domain of
applicability of the TDPO method to include sys-
tems involving correlations between two particles
and between one particle and field variables. Our
equations represent an exact transformation of
the Liouville equation, expressed entirely in
terms of the single- and two-body distribution
functions in the particle-particle interaction case
and in terms of the single-atom, field, and atom-
plus-field density operators in the atom-field in-
teraction case.

The equations of our model include nonlinearities
on two levels. We will illustrate this in terms of
the molecular-kinetics problem, but our remarks
apply equally well to the quantum-optical case.
First, our propagators 9(t, t') depend on the TDPO
P(t), which in turn depends on the one- and two-
body distribution functions. Consequently, we have
a transcendental nonlinear dependence on the one-
and two-body distribution functions. Second, since
our equations for E, and E, are coupled, the eli-
mination of either one in terms of the other leads
to a nonlinear dependence.

The way nonlinearity enters the TDPO approach
should be contrasted with the way it enters Mori's
exact Langevin equations4~ using time-independent
PO's. In the original Mori treatment averages
over an equilibrium ensemble demand that the
equations be explicitly linear in the Langevin
variable. The Mori approach has been generalized
to include nonlinearities in three recent publica-
tions. "" However, the nonlinearity of the time-
independent PO s in the latter publications is dif-
ferent from the nonlinearity of our TDPO with cor-
relations, which arises from projecting the full
distribution function onto suitable products of one-
and two-body distribution functions. Since the
full time-development .operator causes the distri-
bution function to change in time, the application
of our PO at two different times constitutes a dif-
ferent projection. Our introduction of nonlinearity
thus becomes time dependent because we are rep-
resenting the linear time development of the Liou-
ville operator in the N-molecule phase space or
X-atom-plus-field Hilbert space exactly in terms
of the time development of one- and two-particle

F„,„(1,. . . ,N, t)=B(t)]i[a(o.'if, t). (6.1)

One can check that this expression satisfies Eqs.
(3.4) and (3.6); that is, it is normalized and
tracing over the coordinates of an atom yields the
relevant part of the density operator for N —1
atoms and the field. In addition, it is clear that
the density operator of Eq. (3.3) results when one
linearizes Eg. (6.1) in &y(n, t). The TDPO associ-
ated with the F„ofEq. (6.1) is'

&(t)=P II &(Plf t)T

(6.2)

distribution functions.
Of course, since all generalized ME's are exact,

the advantage of any new generalized ME, whether
obtained from time-independent or time-dependent
PO's is to provide alternate starting points for
making approximations. In I we showed that
TDPO's projecting onto uncorrelated states are
especially useful for problems in which self-con-
sistent-field behavior is important and for Boltz-
mann-like problems where there are strong inter-
actions between dilute systems. In the present
paper we have shown that TDPO's are also useful
in other situations, where the TDPO's of I do not
result in a good low-order description of the phys-
ical phenomena. These situations include those
where correlations are important due to the fact
that one is dealing with strongly interacting sys-
tems such as a laser or a dense gas. The use of
the TDPO with correlations in describing such
systems effectively incorporates infinite resumma-
tions already in lowest order.

One can conceive of various generalizations of
the TDPO techniques developed in this paper.
However, one must pay the price of increased com-
plexity and they offer little advantage in the cur-
rent problems. For the sake of completeness, we
mention two of these possible generalizations.
First, the generalization to include three-body
and higheg-order correlations, or two-atom-plus-
field and higher-order correlations in the quantum-
optical case, directly in E„„is completely .

straightforward. However, this process is prob-
ably too laborious to justify the effort. Secondly,
the forms of F„„used in Eqs. (2.2) and (3.3) can
be generalized to include terms higher than first
order in &E, and &X, respectively. We refer to
such forms of E„„asnonlinear E„'s and discuss
them briefly.

In the quantum-optical case, the most general
nonlinear E„containing correlations between the
field and only a single atom at a time is"'
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It can be verified directly that this is the desired
PO by showing that Eqs. (6.1) and (6.2) satisfy the
conditions in Eqs. (1.9a), (1.10a), and (1.13b).
Moreover, the TDPO of Eq. (3.7) for the linearized
E„can be obtained by carefully linearizing Eq.
(6.2). One can proceed with the derivation of the
ME's as in Sec. III, but the results are quite com-
plicated.

In the gas-kinetic case, the generalization to a
nonlinear E„ is not straightforward. ' One can
attempt to obtain a nonlinear generalization of Eq.
(2.2} or (2.2') by using a form of the Kirkwood-
superposition approximation" for E„„.For exam-
ple, one could choose the form of Percus" where
every molecule is linked with every other mole-
cule in an E„

~ -. E(o. P t)E,„(1,. . . ,N, t)= E,(c(,t) ' ' ' ).
(6.3}

However, there are well-known problems" associ-
ated with this class of expressions, such as the
inability to prove that they are normalized (in some
cases) or to prove that V ' J dNF„„=F„,„[Eq.
(2.3}]. In our opinion, these difficulties preclude,
or at least make unattractive, the use of any con-
ceivable nonlinear F„as a basis for deriving gen-
eralized ME's in the gas-kinetic case.

B. Impurity-atom line-shape problem

Many of the new methods developed in many-
body physics and nonequilibrium statistical mecha-
nics have been successfully applied to the problem
of predicting the line-shape function for the radia-
tion from an impurity atom in a fluid. '0 In parti-
cular, time-independent PO methods are frequently
employed" to obtain the time-correlation functions
that appear in the expression for the line shape.
The new methods in question are usually based on
linear response theory, that is they require only
small deviations from equilibrium. The methods
involving TDPO's developed in this paper can be
used to study the line-broadening problem for
situations where the deviations from equilibrium
are not small.

It is beyond the scope of the present paper to de-
rive expressions for the line shape of a radiating
atom in a fluid using the TDPO formalism. How-
ever, we will give an indication of how such a
theory might be developed. We wish to calculate
the spectral density of dipole radiation from an
atom in a surrounding fluid whose molecules act
as perturbers. The spectral density is proportion-
al to the line-shape function"

(6.4)

where (d d(t)) = Trd ~ d(t)E„, d is the dipole mo-
ment of the atom, F„=E„(a,1, . .. ,N, t) is the
density operator of the radiating atom (degrees of
freedom represented by a) and the N bath atoms
(degrees of freedom c(= 1, . . . ,N), and the trace is
over all degrees of freedom of the radiating atom
and the perturber atoms. The time dependence of
d(t) is due to the full system Hamiltonian, and we
have arbitrarily treated the entire system as quan-
tum mechanical. The relevant part of the density
operator is chosen to be

where E&(a, 1, . . . ,j,t) is the density operator for
the radiating atom and j perturber atoms,
pz(l, . . . ,j,t) = Tr,E& is—the density operator for j
perturber atoms, and f(a, t) =Tr E,(a, c(, t) is the
density operator of the radiating atom. The form
of Ez „ in Eq. (6.5) contains both impurity-per-
turber and perturber-perturber correlations. As
such, it represents a combination of the two prob-
lems we have treated in this paper, the dense gas
of Sec. II, where E~ „ is given by Eq. (2.2'), and
the quantum-optical system of Sec. III, where
E~ „is given by Eq. (3.3a). The impurity atom in
the current problem plays the same role as the
electromagnetic field does for the quantum-optical
problem.

When we apply the theory of the present paper to
the line-shape problem, we find an exact gen-
eralized ME, which is equivalent to a set of four
closed coupled equations of motion for the quan-
tities p, (c(, t), f(a, t), p, (c(,P, t), and F,(a, c(, t).
The advantages to be gained by the present formu-
lation of the line-broadening problem are (i) the
ability to include nonlinear effects, (ii) formally
exact equations of motion for the four important
distribution functions of the problem p„ f, p„
and F„and (iii) the relative ease of obtaining
approximate solutions which are not perturbative
in a small parameter. One may obtain approxi-
mations which include resummations of infinite
subclasses of diagrams by expanding the coupled
equations in a parameter such as the density,
expressing p„p„and F, in terms of f(a), and
eliminating them from the f(a) equation. The re-
sultant equation for f(a) will be transcendental in
the density, just as the equation for E,(c(,t} was
in the gas-kinetic case of Sec. IV when mean-free-
path effects were included by eliminating E,(a, P, t).
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C. Quantum-optical problems: Amplified spontaneous emission

and superradiance

There are several additional applications of
TDPO methods involving projection onto correlated
states in quantum optics. In this section we will
mention applications to two processes which occur
in high-gain laser media, namely, amplified spon-
taneous emission (ASE) and superradiance.

In the ASE problem" "we study the output radia-
tion from an inverted medium driven by spontan-
eous emission. The medium is continuously
pumped, and the inversion density is sufficiently
small that many-atom effects are negligible. The
situation in ASE differs from the usual laser situa-
tion in that the absence of feedback arising from
placing the active atoms in a resonator allows
the mode structure to be continuous instead of
discrete. Consequently, there is no sharp thresh-
old as in a laser where the character of the emis-
sion changes from chaotic to ordered as the pump
rate is increased. Nevertheless, nonlinear elec-
tromagnetic effects are still important. The
atom-field correlations created by the interaction
cause the radiation statistics to change from Gaus-
sian to non-Gaussian, ""and situations are pos-
sible where the radiation becomes quite coherent.
In a future publication we will derive ME's for the
ASE problem using the methods of Secs. III and V.
The only fundamental change in the derivation is
that it is necessary to include a continuum of
modes instead of the discrete modes or single
mode of laser theory. The solution of the result-
ant equation for X will enable us to express the
correlations between atoms and radiation that
change the character of the radiation statistics
as the length of the inverted medium is increased.

The problem of superradiance differs from that
of ASE in that the initial inversion is much larger,
in fact virtually complete, and the density of ex-
cited atoms is so high that collective effects aris-
ing from the j ~ A interaction lead to radiation
rates proportional to N'. There are two distinct
regimes of interest in the superradiance problem.
In weak superradiarice" the shortest interaction
time in the problem, the radiation dissipation
time T&, is sufficiently short to serve as the in-
teraction time to justify the FBA and the Markoff
approximation. In this parameter regime cooper-
ative effects -N' are small compared to dissipa-
tive effects, and one obtains the usual superra-
diance ME" for I, in which the interaction induces
atom-atom correlations starting from uncorre-
lated atom-field states. In the regime of strong
superradianee, "on the other hand, the j A inter-
action is stronger than dissipative effects, and
neither naive perturbation theory nor the Markoff

approximation remain valid. P ropagation effects
become important, and the atoms and the field
enter the problem on a more equal footing. "
Neither matter variables, as in the laser, nor
field variables, as in weak superradiance, may
be eliminated adiabatically. Elsewhere we will
show that the methods of Sec. III lead to a natural
description of strong superradiance in terms of
the joint atom-field density operator X({).', t). In
this description atom-field correlations brought
about by the j A interaction are fundamental en-
tities while atom-atom correlations are derived
ones. The atom-atom correlations responsible
for superradiant emission arise indirectly from
the fact that many atoms are correlated to the
same field.

APPENDIX A: PROOF THAT EQ. (2.13) IS A PROJECTION

'OPERATOR; PROOF OF EQ. (2.20)

The purpose here is to show that the operator of
Eq. (2.13) is the desired TDPO for the molecular
system with two-body correlations by showing how
one proves that it satisfies Eq. (1.13b). Making use
of Eqs. (2.9) and (2.10) for I = 5, it is sufficient to
show that

(Al)

where from Eqs. (2.13) and (I3.11) we have defined

(A2b)

2„"& (t) =- —,' (N 2) Q F,(tt, 2, t) [ E,(tt, t ))d( „,
'

(A2c)

(A2d)

Nt't{t)-=(N 1)
)

)

-1 N, (tt, t) f dr„. (A2tt)

(2

The main difficulty in proving Eq. (Al) is in list-
ing and counting the various types of terms arising
on the left-hand side and their contribution to the
right-hand side. Different types of terms arise de-
pending on the relation between the summation in-
dices in the first and second factors of the left-hand
side of Eq. (Al). We standardize the notation for
the dummy indices irivolved and denote the dummy
indices in the second factor of the product, P„(t')
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(b) (c) (d)

(g)

FIG. 1. Graphs associated with Table I arising in the
evaluation of Eq. (A1} for i=1.

TABLE I. Terms contributing to PN (t)P&(t'), along
with their representative graphs and their weights.

Class '

(1 1) e P

Graphs Weights

(a)
(b)
(c)

Terms

A

(N—2)B
(N—2) (N- 3)C

(1 —2) e P (d)
(e)
(f)
(g)
(h)

(N-2) D
(N-2) B
{N—2)(N—3) C

{N 2)(N —3)B
(N-2) {N-3)(N-4) C

(1-3) ~ —P (a)
(b)
(c)

-(N-2) D
—(N-2) 2C

—(N—2)2(N —3) C

(1=4) e P
—2 (N-2)f~C

(1 —5) Q. P 2(N—1)fNC

=Q& p&&'(t'), by making the replacements
(t;n, p, y, w)-(t';5, e, &, A) in Eqs. (A2). A graph-
ical representation is extremely helpful; so we will
denote the summation indices e, P, y in the first
factor by a superior row of dots and those in the
second factor 5, e, g by an inferior row of dots.
Equality of two indices will be denoted by a line
connecting the corresponding dots (see Fig. 1). The
symmetry of the p~&" under interchange of n and I3

and under interchange of 5 and & enables us to re-
duce the number of distinct graphs by assigning
weights to them. For example, a graph with a = 5

Q ]~) s,(~t)f, (A3a)

TABLE II. Terms contributing to P& (t)J'&(t'), along
with their representative graphs and their weights.

Class '
(2 1)~—P

~ ~

(2 2)~ —P ~

(2-3) 0- —P V
~ s

(2-4) ~ —P

Graphs Weights Terms

(a)
(b)
(c)
(d)

{e)

(f)
(g)
(h)

(i)
(i)
(k)
(1)
(m)
(n)

(o)
(p)
(q)

(a)
(b)
(c)
(d)
(e)

(r)
(s)
(t)

2
4

1
-2

2
4
4
4
4

2
2
1
1

2
1
1

(N-3)F
(N-3)E
(N—3) (N—4)F

(N-3) F

(N—3)F
(N-3) F
(N-3) E
{N—3)(N—4)F
(N-3}F
(N-3) (N—4)F
(N-3) (N—4)F
(N-3) (N—4) E
(N-3) (N- 4)
x(N—5)F

—(N—2)F
—(N—2)F
-(N—2) (N—3)F
—(N—2) (N—3)F
-(N-2) (N-3)
x(N-4)F

—2fNF
—2fNE
—2(N—3)fN F

and no other indices equal [Fig. 1(b), for example]
has a weight 4, since it contributes the same
amount as graphs with e=E, I3=5, or P=&.

The various contributing terms for i= 1 and 2 in

Eq. (Al) are listed in Tables I and II, respectively,
along with their weights. The product P„"'(t)p~&&'(t').
is represented by the couple (i —j). The products
are listed in column 1 of the tables along with the
specific configuration of indices being considered.
Data on the various terms associated with each
product (i- j) are listed in successive columns.
The graphs corresponding to Table I are drawn in
Figs. 1(a)-1(k) and those associated with Table II
in Figs. 2(a)-2(u). The letter in column 2

refers to the figure listing the graph for that
term. Only four types of terms result from the
products in Table 1, and they are abbreviated

We define (i-j)=P& (t)P~j (t'). The first row of each
pair below denotes particle summation indices in p~ (t)
and the second row indices in pg~it') Symmetric .pairs
of indices are connected by an arrow.

The letters refer to labels in Fig. 1.
The expressions A,B,C, and D are defined in Eqs.

(A3) and fN=(2) —1.

(2-5) ~—P V
~ ~

2(N—1)fw F

See footnote a, Table I.
"The letters refer to labels in Fig. 2.

The expressions E and F are defined in Eqs. (A4)
and fg =(2)—1.
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33=
3 g E, (I3, t')f E,(a, t) f

(ASb)

C-=—,
' g'E(a, t)E(t, t) [ E,(., t)f dr„,

(ASc)

1 , tt
33—=

d g E, (a, ,a, t ) '[ E(a,, t)f dt' . (Atd)

Likewise, only two types of terms occur in Table
II, namely,

z ,' -=E—E('ad, t),f, "f"E [ E(a t,)f. "; (A4a)

E-=—'E E (ad', t) f, ,
' f E E (33''), '[, ' E,(at) f'dr, „ (A4b)

The final result is obtained by multiI)lying each
term in column 4 by its weight in column 3 and

summing. For i =1, the result obtained from
Table I is

P'„"(t)P„(f')
= 2A + {8(N- 2) + 2(N —2)(N 3) —4[(2~) —1])B

+ {5(N- 2)(N- 3)+ (N 2)(N 3)(N —4)

—4(N 2)' —(N-2)'(N- 3)—+2[(g) —lj)C

C'—= —,'E, (a, t)E, (I3, t) fdp„, (A8c)

33 =—-'E, ('a, l3, t) f d)'„. (A8d)

The sum of terms is equivalent to Eq. (A5), so that

tt N

[ Tr„P„(t)=2A'=- I [ Tr„,
k

(gWo, 0)

p [2(N- 2) —2(N —2)]D

= 2A =- p('&(f), (A5)

thus proving Eq. (A7).

where the last step follows from Eq. (A2a). Sim-
ilarly, we find from Table II,

P/" (f)P/(f') = 2& -=Pg" (f) (A6)

The proof of Eq. (Al) for i = 3, 4, 5 is quite simple
and should offer the reader no difficulty. The re-
sult is the desired proof that P„(t) is a TDPO.

The prove the identity, Eq. (2.20), we rewrite it
in the form

(a) (b)

)
' f" p(t) '' f= (A7)

(kAe, g) (gee, g) (g)

We let the summation indices in P„(t) be 5, &, g and
prove Eq. (A7) by simply noting the formal equiv-
alence of the problem to that of proving Eq. (A1) for
i = 1. That is, the graI)hs reyresenting the relation-
shiI) of n, P to 5, E, f and their weights are identical
to those in Table I and Fig. 1. We can use Table I
directly if we define (1-j)=g„"Tr„P'&'(f) and re-
I)lace A, B,C, and D by

(m) (n)

~3 [1 f d

(gee g)

(A8a)
(p) (q)

(t) (u)
a'=- —P,(n, t) g +(n- [3),

(k&0)

(A8b) FIG. 2. Graphs associated rvith Yable II an'd arising
in the evaluation of Eq. (A1) for i=2.
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P"'(t)=-(N-1)QX(~, t)] p, ( ~t)»,

(Bld)

P&5'(t) —= —(N 1)g p, (—«, t)Tr„, (Ble)

P"'(t) = N(N l)-R(t) D—p, («, t)Tr .

TABI E III; Terms contributing to P (t)&(t') for the
quantum-optical case.

Class ' Graphs b Terms

(a)
(b)

V

(N-1) W

APPENDIX 8: PROOF THAT EQ. (3.7) IS A PROJECTION

OPERATOR; PROOF OF EQ, (3.15)

Here we indicate how one proves that the oper-
ator P(t) in Eq. (3.7) is the TDPO which projects
out of the general density operator for N atoms
plus electromagnetic field that part having cor-
rej.ations between a single atom at a time and the
field. We decompose P(t) in Eq. (3.7) into P"(t),
i =1, . . . , 6, according to Eq. (2.9) with l =6 m~d

prove Eq. (2.10) for i=-1, , 6, where

p&" (t) —=+II p, («, t)Tr„,

(a) (c)

(e)

FIG. 3. Graphs associated with Table III and arising
in the evaluation of Eq. (2.10) for & =1 with P(t) given
by Eq. (3.7).

The graphs associated with Table III are shown in

Figs. 3(a)-3(f). Only five types of terms occur in

the evaluation (1-j), namely,

(BSa)

A graphical representation will help us to classify
the types of terms arising in the evaluation of the
left-hand side of Eq. (2.10) for this case, as in Ap-

pendix A; however, the classification is simpler
because there are fewer summation indices in this
case. We obtain the terms contributing to P(t') by
m~&ing the replacements (t; n, P, &&)- (t'; 6,c, A.) in

Eqs. (Bl). The only term conta. ining more than one
summation P"' is not symmetric under interchange
of the summation indices a, P (or 5, e). Conse-
quently, one cannot use symmetry to reduce the
number of distinct graphs by assignment of
weights, as in Appendix A.

The various terms contributing to Eq; (2.10) for
i=- I are listed in Table III. Once again, we have
defined

(B2)

(1 —2) n (c)
(d)
(e)

(a)
(b)

(N—1)X

(N—].) (N—2)Z

—(N—1)X
—(N—].) 'Z

p, ic, t Tr,

F-=R(t')Trip]g p( «t)Tr„,

(B3c)

(B3d)

(] 4) n

(1 —5) e

(a)
(b)

—(N—1)F
—(N—].)'S

-(N—1)W

(BSe)

The final result is obtained by adding the terms in
the last column, with the result

P&'~(t)P(t') = V+ [(N- 1) —(N —1)](W+X+2')

+ [(N —1)(N- 2) —2(N —1) +N(N —1)]Z
(1 —6) N(N —1)Z = v=p&'i(t) (B4)

' See footnote a, Table I.
The letters refer to labels in Fig. 3.
The expressions &, +',&, F, and Z are defined in Eqs.

(B3)

The last step follows from Eq. (BSa) and verifies
Eq. (2.10) for i = l.

The next step in the proof that Eq. (3.7) is a
TDPO is to verify Eq, (2.10) for i=-2. This can also
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be done by drawing graphs as for the case i =1.
However, it is simpler to note that only two distinct
terms arise from all yossib1e graphs. If 6 = P in
products (2 —1) and (2 —4) or c = I3 in products
(2 —2}, one obtains a term with N —1 traces over
atomic degrees of freedom, namely,

t Jt
T= g-y(n, t)TrITr I p, (~, t) Tr„. (B5a)

In all other eases, one obtains a term with N
traces over atoms, namely,

J tt

U-=g X.(~, t)p, (&, t') P[ p, (~, t)». (B5b)
n~8 k

Hence, for each of the six products (2- j) one must
consider no more than two cases separately. When
the I)roducts are added, one finds that the coef-
ficient of T =—P("(t) is unity and the coefficient of U

is zero, which I)roves the desired result.
The final steps in the proof that Eq. (3.V) is a PO

are to prove Eq. (2.10) for i=3, 4, 5, 6. These
I)roofs are either very simple or trivial.

To prove the property of P(t) in Eq. (3.15), we
rewrite this identity as

W' =p, (c-(, t)Tr„,
X'= y(~-, t)Tr,

(BVb)

(BVc)

1"=—R(t)Trj [I Tr„,
k

(k40 )

(BVd)

Z' =R(t)p, (n—, t) Tr. (BVe)

According to Eqs. (B4) and (BVa), we then have

I
Tr„P(t) = V' -=,

, [ Tr„,
k k

(kAQ ) (k$0, )

We let 6 and e be the summation indices in P(t) and
note that the graphs for this case corresponding to
the possible relations between e, 5, and & are the
same as those for the proof of Eq. (2.10) with i = l.
Table III and Fig. 3 can be used, provided we rede-
fine (1-j}=—g„'Tr„p'&'(t) and replace V, W, X, Y, and
Z by

I
V' =- Tr„,

(kfu )

j Tr„P(t) = Tr„.
k

(k/0. ) (k/O )

(B6) which is the desired result, Eq. (B6).

APPENDIX C: DERIVATION OF EQS. (4.9}AND (4.18}
In order to derive the approximate ME for the singlet distribution F, using the uncorrelated form of

F„„from I, we substitute Eqs. (4.6) and (4.8) into Eq. (I3.25) and assume I)I » 1. The result is

F,(l, t) —I,'F, (l, t) =I,+I, ,

where

(cl)

Ix=N Ix2l'm G 1~2~v G x 1~ 7 G 2~ Fx1 t Fx 2

I2= -N v(v —l. ,', G'"('l, 2, ') G"'(2 v')I'Vv (2 1) —+(1—2)) .Vinv G"'(1,2, v' —v')Q2 d2

x Q "'(1, —r) G"' (2, —7')F,(1, t)F,(2, t)

+N —Ix26 '1)2~V G' 1,—7' Q ' 2) —7' —F, 1 tFx2 t .
0

(c3)

The term I, is obtained when the first term of Eq. (4.8) is substituted into the second of Eq (13.25) an. d is
the desired Boltzmann collision term. The first (second) term of'I, is the result of substituting the second
(first) term of Eq. (4.8) into the second (third) term of Eq. (13.25).

We wish to simplify the first term of I,. This can. be done by noting that we are performing an expansion
in powers of X and using the relations

—G "'(1,2, v —v') = G "'(1, v —v )f +G(1)'—

G'"(2, T)F, (2, t) = —F—,(2, t) =1, (c4b)
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along with the group property of the time-development operator G '",
(C4c)G'"(1 T )G"'(1,T,) =G'"(1,7'„+ T2) .

Equations (C4) can be proven using Eqs. (4.5), (4.7), (2.16), and (13.7b). Hence, the first term of I, can
be written

~ d2dr' —L,', G "'(1,2, 7') G "'(2, —7')L,'F, (2, t)G ' "(1,—7')F, (1, t) + (1 2) .12 (c5)

Using Eq. (C5) and noting that

[Lo G(1)(1 &)] 0

one may write Eq. (C3) as

(c6)

LS"'12~ L' L' Z1tZ 2t
0

(C7)

where I"' is defined in Eq. (4.10). The desired ME, Eq. (4.9), is obtained by substituting Eqs. (C2) and

(C7) into Eq. (C1).
5'ext, we wish to derive an approximate ME for the doublet distribution function I 2 using the correlated

form of F„„discussed in Sec. II. Substituting Eq. (4.17) for 9"' into Eq. (4.12), assuming N»1, and usingNyr

Eq. (4.13b), we obtain

F,(1,2, t) - L (,)(1,2)F,(1,2, t) =I,+I4,

where

(C8)

I3 —= N —L,'3+ L23 lim G ' ' 1,2, 3, T F3 r 1,2, 3, t —i (C9)

I~= —Ã dv' —. L13+L23 G'" 1,2, 3, 7 L1 +1 2, t —7' —+ 2 3
0

d2 d3
+ [F2(2, 3, t —7') —2F~(2, t —T')F, (3, t —7')]

+ L,', F,(3, t —w') —+ eye 1(1,2, 3)
d3

x lim G"'(1,2, 3, w- ~')F, „(1,2, 3, t —7-)

+H dr —(Lf, +L,',)G ' ~ '(1, 2, 3, v) —F~ „(1,2, 3, t —~) .
0 y 13 23» ~ gt 3 r (C10)

Here I, is obtained when the first term of Eq. (4.17) is substituted into the first term of the right hand
side of Eq. (4.12) and is the desired term of order X. On the other hand, the first (second) term of I, re
salts from substituting the second (first) term of Eq. (4.17) into the first (second) term on the right-hand
side of Eq. (4.12).

Ia order to simplify Eq. (C10), we first note the following relations:

(C 11a)

G(»(1, 2, 3, T T ) = G"'(1, ~ ~ ) —+ op.),d3 ( ) (1) d2 d3
(C 11b)

which can be proven from the definitions of G"', G'", and G'" [Eqs. (4.16), (4.5), and (4.7)]. From Eqs.
(Cl1) and (2.4), Eq. (C10) for I~ may be written
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I4= -N

1

dc' —(L,', + L,', )G "'(1, 2, 3, v') ( L( y(2, t v'l l m(G ' '(1,. 3, v —v')y (1,3; t - v) + (2 3)

+ [F,(2, 3, t —w') —2F,(2, t —wt)F, (3, t —wt)]

x limG'"(1, ~ —73)F,(i, t ~))

+I.,', F,(3, t 7') lim G"'(1,2, T 7t)F,(1,2 t ~)

+ cycl(1, 2, 3) ——tv„(1,,2, 3, t v'))
9

(C12)

I

Now one may use Eqs. (4.6) and (4.15), along with the group property of O'", Eq. (C4c), and the analogous
relation for G"', to make the time argument t in every distribution function F, and F of Eq. (Cl.2). lf we
also replace some terms explicitly written in Eq. (C12) by their cyclic permutations and use Eq. (C6) and
the relation

[LL+L2+LLt23 6 ' (1,2, T)] =0,
the result is

(C13)

I4 —-N dv —Ll3+L23 G 1~2~3 + G 12,—T' G 3, —T Fl 3~~ Ll L2 Ll2 F 1 2 t
0

+ G "'(3, —v) [G"'(1, 2, —7)F,(1,2, t) —2G "'(1, —7' )

x G "'(2, —v)y, (1, t)y(2, t)) (
——L;)y, (3, t)+ cycl(1, 2, 3)

(C14)
where we have replaced the dummy variable 7' by 7. Rearranging terms in Eq. (C14) and combining it
with Eqs. (C8) and (C9) yields the desired doublet ME, Eq. (4.18).

APPENDIX D: EFFECT OF IRREDUCIBLE TWO-ATOM

CORRELATIONS IN A LASER

Here we evaluate the contribution of irreducible
two-atom-plus-field correlations to the ME for y,
Eq. (5.11), and show explicitly that the contribution
is small for any reasonable laser parameters. In

order to do this, it is necessary to first write out
explicitly the right side of Eq. (5.11) and then take
moments to determine the relative contribution of
the right-hand side to the dynamical equations for
the moments.

Using Eqs. (3.2) and (3.22) the right-hand side of
Eq. (5.11) may be written

BX(o., t)
2- atom

I

»8 L(l(LB p.(P t}&X(c( t)+L.'p, (, t)X(p, t)

»«[ L(l X(tt, «}-] &X(a, t) -Tr«[L' X(~, t)] X (p, t )],

where we have used the vanishing of the average
field and average polarization due to the fact that
8 and p, (n) are diagonal. Of the four terms in
Eq. (D1}, not all contribute to the dynamical equa-
tion of any given moment. For example, only the
fourth term contributes to the time development
of diagonal field moments such as (a'a ) and only
the first and fourth contribute to the dynamical
equation of diagonal matter moments such as (0' o ).
However, we will evaluate the time development

of (a'o ), for which we only need the first and
second terms of Eq. (Dl}. We call the ith term of
Eq. (D1) (t), (o(, t),

Bx((y, t)
Bt

4

= g ((c(,t),
2- atom f =l

and evaluate g, and g, by using Eqs. (1.8) and
(5.4c) to express L'. After some manipulation we
obtain
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—
I i I' T. 2'&«~;~&~([a, [a', ~y(n, t)]]+[a, t y(n, t)a'] —[a', ~x(n, t)a ])

-( a'z &rz&,([a,4y(n, t)a'] —[a', b,x(n, t)a ]-[a',[a, b y(n, t)]])j, (D3a.)

y (n t)-. I~ I2T Q e«(x8-" (a p, (n, t)[a, a'(p~ (t)] —p, (n, t)a,[a, tp)()t)a'])

g~ t -p~ a, t ' a, (PB t a +H.c. ,

(QAe)

(D3b)

d(P;a )
2- atom

g(s &g el k'x~ ( gA a-)

u'T, Q(s„)$-e ""&(a'v, ) .

where p8 is defined in Eq. (5.22).
Multiplying Eq. (D2) by P„'a, using Eqs. (D.3),

and taking the trace, one obtains

I
pI'T+=—a, where & is the Born-approximation

expansion parameter. To obtain a more accurate
expression for the magnitude of r, we replace (s)
by its steady-state value (s&„. To calculate (s&„,
we assume that T, «T„Tz, where T, is the life-
time of the two-level atom. We further assume
that there is pumping only into the upper laser
level and make the breakup

(D4) (a'a s) -=(a'a &(s), (D9)

d(a'P, )
dt 2-atom

=
I

p, I' T, g (s,& g' e '"'

By a similar procedure, one finds corresponding to neglecting certain atom-field
correlations. Then the equations for (s& and
(a'a ) give rise to the steady-state results'""

p,2T2 s 'e'"' & crea . 05
(s)„=([1+4

I
pI'T, T, (a'a +1)] '&

= [1+4IpI'T, T, ((a'a )„+1)] ' (D10)

1d(H )
2-Rt om

verifying Eq. (5.13). If we subtract instead of
adding, we obtain

(D8)

Multiplying Eq. (D4) by p and Eq. (D5) by p, * and

adding, one obtains

and

4
I p I

'T, T,(a'a )„=N/N, „1,N ~N,-„, (D11)

where N, „=(2Ip, I' T,Tz) ' is the threshold number
of two-level atoms. From Eqs. (D10) and (Dll)
we find

(s) = N, „/N,

dt (PPaa —A*a P))& I2-«Om
from which Eq. (5.17b) yields

in agreement with Eq. (5.18).

(D12)

I
eked k~ g+ + N —1

0! N k~

(eQ)

(D8)

with negligible error, and we have reduced Eq.
(D7) to Eq. (5.14).

Now we show that the correction to the relaxa-
tion rate of Im(p(P„'a )) due to two-atom-plus-
field correlations, that is r in Eqs. (5.17), is
small. First, since (s) ~1, r is bounded by

'
p,
e'"' ~ 0'a —p*e '"' o a'cr

(D7)

Now the sums over n in Eq. (D7) would be P'„
were it not for the prime on the sum. Hence, we
may eliminate them by using

APPENDIX E: MAGNITUDE OF COMMUTATOR TERMS

IN EQ. (5.35)

5I'-5I =—(1+a a'/n~, ) 'R(a a'),
from which

(Ela)

Here we wish to show that the commutator term
appearing in Eq. (5.35), a'[a, 5I'], is of order
unity near threshold, while the commutator terms
a [a', 51 ] are of order n/n, «, or typically 10 '.
The operators X' and R are functions of the photon-
number operator a'a, since they are diagonal in
the number representation. According to the equa-
tions of the usual laser theory, ""which are ade-
quate for our estimates, the inversion exhibits a
saturation-type behavior, so that '
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and

5i'= (1+ 2a a'/n, «)(1+a a'/n «) 'R(a a')

=f(a a')R(a a') (Elb)

where the prime indicates a derivative with re-
spect to the argument n. Using the standard laser
theory, ""we can evaluate R'(n) near threshold.
By the method of Fleck, "'"we write

X = ~(a a'/n, «)(1+a a'/n, «) 'R(a a") . (Elc)

Near threshold, we may write" (a'a )-n'„~,' «n «
—= 10'. Hence, it is clear from Eqs. (Elb) and

(Elc) that K - (n/n, «)X' = 10 '5f' for typical lasers.
This is the ultimate source of the disparity be-
tween the two commutators in question.

To demonstrate the result explicitly, we write
the first of the expressions in whose magnitude
we are interested as

a'[a, 31']=a', R(a a')+ f(a a')B a a'), , BR(a a')

(E2)
using Eqs. (5.39) and (Elb). From Eq. (Elb) we
estimate that a'Bf/Ba'- a'a /n, «near threshold,
so that the magnitude of the first term of Eq. (E2)
1s

R (n) -=A (o, no/o') exp [-—,(n —n,)'/o'], (E5a)

where A is a normalization factor involving the
error function, so that

nR'(n) =—-n(n —n, )o-'R(n) . (E5b)

((n')/o' )R(n) = -R(n) . (E6)

In the next-to-last step we have replaced n' by its
average value. Since f-1 near threshold, we con-
clude from Eq. (E4) that the second term of Eq.
(E2) --R: Moreover, it dominates the first term,
from a comparison with Eq. (E3). Hence, we may
estimate the magnitude of the commutator near
threshold by

Now at threshold we have n, = 0, and it follows that

nR (n) = (n/~)'R(n)

a', R- R.
BQ

(E3)

a'BR(a a')/Ba'-nR'(n), (E4)

To estimate the magnitude of the second term in

Eq. (E2), we can write

a'[a, 5f']- —'R(a a') .

By similar methods we can show that

a [a', 5f ]-—,(a a'/n «)R(a a')

near threshold and, hence, is negligible com-
pared with the commutator of Eq. (E7).

(E8)
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