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Microwave radii in nonresonant spectra
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The microwave cross section cr for Debye-like spectra resulting from overlapping lines at high pressures is

computed. The main idea is a modification of Anderson's model, by which the cross section is computed for
an effective line instead of computing it for the single overlapping lines. This gives a natural explanation of
the observed reduction of cr compared to a. for the isolated lines. Complete numerical calculations are carried
out for the case of Debye spectra of symmetric-top molecules. Agreement with experiment is satisfactory.

I. INTRODUCTION

Microwave absorption spectra resulting from
overlapping of pressure-broadened lines are usu-
ally described in terms of Lorentzian line shapes.
The width 1" is given by F = neo where n and v are
the number density and the mean relative velocity
of the molecules and o is defined as "microwave
cross section. " The cross section resulting from
the overlap of several lines is usually much small-
er than the cross section for each of the resolved
lines, as observed at lower pressure. This re-
duction of a has been observed in the inversion
spectra of symmetric-top molecules, "' in over-
lapping of rotational lines of dipolar molecules, ""'
in magnetic dipolar absorption of 0,"' and in other
cases.

In the range of pressure in which the existing
measurements'" fall, the assumption of impact
theory, "' i.e. , duration of a collision is small
compared to the time interval between two subse-
quent collisions, is satisfied, due to the smallness
of the cross section. The "microwave radii" x
typically are 7 A, and hence the ratio R= (dura-
tion of a collision)/(average time between two sub-
sequent collisions) is typically A = nr'n = 0.02P(atm)'.

According to the impact theory developed by
Baranger' the reduction of the cross section for
overlapping spectral lines can be interpreted""
in terms of interference in relaxation between
neighboring lines of the band. One way to evaluate
this interference effect in terms of intermolecular
forces is to extend to overlapping lines Anderson's
model, "which proved successful in calculating the
width of isolated lines at low pressure.

As we shall discuss in Sec. II, if such extension
is done in terms of low-pressure data, i.e. , start-
ing from the isolated lines, theory agrees with ex-
periment only up to pressures at which only the,
wings of lines overlap. This is confirmed by the
fjt with measured data for NH3: at high pressure,
when overlapping gives rise to a unique profile,
calculated radii are larger than the measured ones.

II. LINE SHAPE OF A BAND

The line shape f(v) of a dipolar gas absorbing
radiation at frequency v, in the Liouville repre-
sentation'~ is given by

f(v) =1m(p, j ( p, );1
(2.1)

p is the dipole moment of the absorbing molecule;
the scalar product (A~B) means Trl pA~B), p is
the density matrix of the internal degrees of the
absorber, and L is the non-Hermitian Liouville

For NH, and 0, an explanation has been given by
Gersten and Foley, "who explicitly calculated the
Ben-Reuven cr~ss relaxation terms. Unfortunately
their method cannot be extended to other symmet-
ric-top molecules, for which rotational transitions
EJ40 are no more negligible.

For NH, an alternative explanation has been
given" considering that the discrepancies can be
caused by the failure of impact approximation. As-
suming as microwave radius the 13.2-A low-pres-
sure radius for the isolated line, the number 8
measuring the validity of impact theory is of the
same order of discrepancies. However, if one
tries to extend this approach to the Debye spec-
trum of other symmetric tops, as ND„one is in
trouble, since the Debye absorption is observed
at lower pressure, where the validity of impact
theory is not questionable.

In Sec. III we propose an alternative approach to
the application of Anderson's theory considering
the whole band as a new effective line, as sug-
gested by the observed spectrum. In this way the
cross section and the cut-off radius b, can be com-
puted for this line, instead of computing them for
the single overlapping lines.

In Sec. IV an explicit expression is derived for
the linewidth of Debye spectrum of symmetric-top
molecules interacting through dipole-dipole force. .

Numerical results are computed and compared
with existing experimental data.
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operator whose imaginary part describes relaxa-
tion. In the low-density limit the relaxation is lin-
ear with the number density n of the gas.

In a representation in which the isolated lines l
with frequency v, are a basis,

one obtains

'(v —v,)'+ (ny/2v)' '

where the intensity factor I, is given by

(2.3)

~ii = ~r ~i~ +»y» ~ (2 2)

If we neglect the shift, which is small compared
to the width, y» is ess'entially real and ny» is the
width of the isolated line l whose shape is a Lor-
entzian. At higher-pressure broadening causes
neighboring lines to overlap; then mixing terms
ny», in the relaxation are no further negligible
and the spectrum can result very modified with
respect to the spectrum one would obtain by extra-
polating the naive sum of the lines observed at low
pressure. In many cases the entire profile can be
fairly well fitted by a single Lorentzian shape with
intensity Ip and resonance vp, respectively, equal
to the intensity and the centroid of the band. For-
mally, this is obtained by transferring the average
on the lines contained in the scalar product
(p. . . .

~
p) to the denominator of Eq. (2.1). Then

la=,& pi [ &r l
'~

l

the centroid of the band by

(2.4)

vo=g pr &r I vi~f0~ (2.5)

and the "effective width" ny by

pt. »yri ~ &r ~~0 ~ (2.6)

In impact approximation

(2.7)
r 'O

y„,=Q p„v J
2mb db P„,(b, r),

where .P», (b) describes the average effect of a
collision with impact parameter b. In terms of
the scattering matrix T(b) =i[S(b) -I], we have

P», (b, r) =(l, , r T(b) l,', r)&„, (+l&, r Tt(b) ~l&, r)&„, -+2(l;, r T(b) ',I, 'r)(l&, r' T~(b) l&, r) (2.8)

y =g p„v 2mb db P(b, r),
p

(2.9)

where

Here l, and l& are the initial and final state for the
line $ and l,', l& the corresponding states for /', x
and x' describe the initial and final internal state
of the perturber.

By Eqs. (2.6) and (2.7) and by the unitary nature
of the 8 matrix, y can be expressed" in the form

line paths. The cut-off radius b, for a fixed line

l, is assumed by Anderson as the shortest radius
at which the lowest-order term for PP~(b) in the
perturbative treatment exceeds the unitary bound,
i.e. , P»'~(b, ) = 1. Clearly, bo depends on I.

This model has been successful in calculating
the width of isolated resonant lines. " In the next
section we adapt it in order to calculate y. Our
approach is based on treating the P(b) of Eq. (2.10)
as relative to a new line vector /) describing the
whole band, i.e. , P(b) = P-;,(b). The cut-off radius
b, is so calculated in this line /: P~(b,) = 1.

g, (lf, r T(b), ~I/, r') ~'. (2.10)

By Eq. (2.8), when the scattering matrix T(b) is
known, P(b) can be obtained and the problem of
calculating the width ny is completely resolved by
Eqs. (2.9) and (2.10). But a complete knowledge of
T(b), as pointed out by Anderson, is unnecessary.

Anderson proposed a method based on the defini-
tion of a cut-off radius b„such that for b & bp col-
lisions can be considered as "strong, " so that
every correlation is lost and P», ——P,;"'=~», . For
b& b, collisions are "weak" and interaction is treat-
ed as a perturbation which can be easily calcula-
ted assuming molecules to move following straight

III DETERM INATION OF

According to the physical situation, in which the
spectrum exhibits a single Lorentzian shape and
the individual lines are completely destroyed, we
define the effective line vector I) as the sum of
the individual line vectors

~
l), internal to the

band, weighted with the amplitude intensity p. , of
the line, i.e. ,

)
I ) = g p, , ~

I)/I', ". (3.1)

In this way the intensity
~
( p,

~
l ) ~' and the resonance

Re(l ~f
~
I) assume the form required, respective-
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ly, by (2.4) and (2.5) relative to the Lorentzian
shape describing the band.

The Anderson's cut-off radius b,(r) is so fixed
by

(3.2)

y p ystrollg+ yweak (3.3)

where

P-"-'~(b,(r), r) =1 ~

At this point the width y = y- can be expressed by

IV. NONRESONANT SPECTRA OF
SYMMETRIC-TOP MOLECULES

We apply the method developed in the preceding
section to calculate explicitly the Debye line-
width of symmetric-top molecules interacting
through a force which is mainly dipole-dipole.

Denoting by J,K and J„,K„ the rotational states
of the absorber and the perturber respectively,
Eqs. (3.3), (3.4), and (3.5) become

strong ~vbs(r) (3 4)
P Jr'Er y J' K +yJ' K

ywssk
r 2mb db P"' (b, r}. (3.5)

"bp(r)

In the frame of Anderson's model, our determin-
ation of b„always allows to select the smaller be-
tween P"""and &"'ak; i.e. , we minimize the cross
section o = y/v. Any other determination of b,
causes in some interval of 5 to select the larger of
the two. If, according to low-pressure data, one
would define b, through P»(bo) =1, then one would
obtain for the well-known spectra of NH, and ND3

a width y reduced for a factor q ) 2 compared to the
width of the isolated inversion line. This result is
straightforward considering that y"""' is not af-
fected by interference and that for NH, and ND3
ywe& ystro ~ 1 The maximum possible effect of
interference is so to destroy the "weak" part of
the cross section, so that g= 2. But this would be
in complete disagreement with experience that
give g =3 and q= —,

' for NH, and ND» respectively.

(4.2)

= 2Tg bdbP""(b J K). (4.3)
"bp(J„,K„)

The cut-off radius b,(J„,K„) is now defined by

P"'~(bo, J„,K„)=1. (4.4)

The explicit calculation of P"'~(b, J„,K„) is carried
out in Appendix A. Denoting by fgg(k) and Egg(k)
the functions defined by Tsao and Cornutte" in
terms of modified Bessel functions, by J' and J„'
the final rotational quantum numbers of the ab-
sorber and the perturber, respectively, connected
to J and J„by the selection rule b J= 0, a1, and by
hrhco the jump in the collision of the total rotational
energy, the resulting expression is

P" "(b,J„,K„)= '."..f.' g p- «'KI»«& I'I «,'K, I»J,K,&
I'f,.(»~/v} J(J,)J,(J, ,).J'KJ'J'r

Substituting in (4.3) and integrating we obtain

(4 5)

weak strong Kg f.»I«'KI»«&I'I«, 'K, I 1«,K, & I'P«(bo~~/v)
( ), ,

)
. (4.6)

J'KJ'Jr

By (4.1) now the value of y and the Debye width
b v=ny/2w can be numerically computed. Compar-
ing the expression (4.5} with the one obtained by
Tsao and Cornutte for resonant lines, we note
that the nonresonant expression differs essential-
ly for the presence of a 1/J(J+1) factor that
causes the drastic reduction of nonresonant cross
section. The ~b 4 dependence of P gives, roughly,
y"vP, and so y"J '. This result agrees with
the empirical law proposed by Birnbaum, "who
measured y for several symmetric-top molecules
and noted that y" p'(J' '&.

If rotational transitions are disregarded it is
easy to see that our expression for y essentially

Gas
p B r (A)

(Debye) (G Hz) calculated
~ (A)

measured

NH3

ND3

CH3F
CH3Cl
CH3I
CH3Br
CH3CN
CHF3

1.468
1.468
1.79
1.87
1.65
1 ~ 80
3.913
1.65

298
154
25 ~ 5
13.3
7 ~ 50
9 ~ 57
9 ~ 20

10.34

7 ~ 1

6 ' 6
7 ' 5
8 ' 0
7 ' 8
8.1

13.8
5.8

7 7a
6.9
6 ' 5
7 2 7 6 7.7
8 ' 5
7.8, 8.825, 9.0

12 4c
53

See Ref. 2.
b See Ref. 18.

'See Ref. 19.
See Ref. 20.

TABLE I. Comparison of theory with experiment.
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reduces to the one obtained by Gersten and Foley. "
From (4.5) and (4.6) we have numerically com-

puted nonresonant line width for symmetric-top
molecules having large dipole moment. The re-
sulting radii are reported in Table I and compared
with experimental values. The agreement is very
good if compared to the one one would obtain by the
usual method discussed in Sec. III, which would
give for NH, and ND, microwave radii -10 A, in-
stead of the observed 7.7 and 6.9, respectively.
For other molecules the discrepancy would be even
greater. Other methods, such as the one pro-

O

posed by Birnbaum, ' give microwave radii -1 A,

about one order of magnitude smaller than the
measured ones.

The improvement of our method is evident.
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APPENDIX A

For nonresonant absorption in symmetric-top
molecules: / =E = JKM; I'=l'= J'K'M't ~= Jr+rf y 5 f
Eq. (2.10) becomes

JEJ'E'g'
(A1)

Following Anderson, at the lowest order in the
interaction V, the scattering amplitude (m T(b) n)
for the transition m-n, is given by

(m [ T(b) )n) =h ' exp(i~„„t)(m ) V(t) )n) dt. (A2)

defined by

2Io= g pz«l z«~

p»„= p. «(JM 10JM),

For molecules with large dipole moment,

1 - - 3p, r(t) p, r(t)

In Eq. (A1) the intensity I, and the factor
~

p,«„
—p, ~,~,„, , describing the variation in the colli-
sion of the orientation of the dipole moment, are

where p'z«=IF/J(J+1) and (JM 10JM) is the usual
Clebsch-Gordan coefficient.

Following Anderson the time dependence of V(t)
is assumed to be defined by straight classical mo-
tion. Substituting (A3) into (A2) and performing in
(Al) the summation over the magnetic quantum
numbers M, M', one obtains'.

I (0 J K ) Io 0 2 o 'g g pJ'» (cPKi 10JK) (J K 10J K ) fgg(56(tj/5)

x [p~«+ p~,» 2p, ~«p. ~,«(2J'+ 1)'~'(2J+1)'~'( )~+~'W(JJJ'J', 11)j. '

Substituting

p ~»+ p J,» —2p~»p ~»(2J'+ 1)'~'(2J'+ 1)'~'(-) '~ W(JJJ'J'; ll) = 2IP/J(J +1)J'(J'+1), '

we obtain Eq. (4.5) of text.
For other multipolar forces the calculations of

p is completely analogous and can be derived from
Refs. 5 and 16.
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