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Resonant multiphoton ionization induced by pulsed excitation
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The object of this paper is to study the influence of the characteristics of the excitation pulse on resonant

multiphoton ionization. A classical description of the field is introduced in the exactly solvable model initially

developed by Beers and Armstrong. A detailed solution is given for square pulses, The case corresponding to
a highly excited resonant level is particularly studied both analytically for square pulses and numerically for
different amplitude-varying shapes.

In a recent paper, Beers and Armstrong' devel-
oped an exactly solvable model for describing
resonant multiphoton ionization processes. They
give the ionization probability as a function of
time, light intensity, and a few atomic param-
eters. This result allows them to point out the in-
fluence of the characteristics of the excitation
field (light intensity and duration) on the ioniza-
tion cross section near a resonance. The recent
development of experiments using picosecond
pulses' shows the great interest in such a calcula-
tion. However, this model utilizes a quantum de-
scription of the driving field, and it is well known
that this approach is not convenient for charac-
terizing fields with an amplitude varying in time
and thus for taking into account the influence of the
excitation pulse shape.

We have previously adapted, in a particular case,
the model proposed by Beers and Armstrong, by
using a classical description of the driving field.
An analytical result was given for square pulses.
Numerical calculations have been performed for
different pulse shapes. We have demonstrated the
influence of the pulse shape on the characteristics
of the resonant curves. '

The object of this paper is to show that, starting
from the same basic assumption, one can use, in
the general case, a classical approach for the
driving field. This allows us not only to obtain the
same results as Beers and Armstrong for a square
pulse, but also to study the influence of the pulse
shape by performing numerical caLc ulations.

We first derive the basic equations (Sec. I) and
give the exact solution for a square pulse, in the
general case, without any restrictive assumption
concerning the relative importance of the different
processes appearirg in the description of resonant
multiphoton ionization (Sec. II). The result is
rather complicated and could be useful only in
very rare cases when the two steps of the resonant
process have similar transition probabilities. We
have analyzed, in greater detail, the case of a
weak first step and a strong second step; the direct

process is always assumed to be weak. As in our
previous paper, we derive a simple result and dis-
cuss the analytical formula for a square pulse
(Sec. III). We study the influence of the pulse shape
by looking at the results of numerical integration of
the basic equations (Sec. IV). Finally, we apply
our result to the case of experiments on Cs.

I. BASIC EQUATIONS

Exactly as in the model introduced by Beers and
Armstrong, we describe the multiphoton ionization
near a resonance in the following way: (a) A non-
resonant n-photon process is induced by an ef-
fective interaction H „, which is obtained from
perturbation theory to nth order; and (b) a two-
step process occurs, where first there. is aP-
photon transition from the ground state i to the
quasiresonant state y (this first excitation is in-
duced by an effective interaction H~), then a (n —p)-
photon transition from p to a continuum state gs
occurs (this second excitation is induced by an ef-
fective interaction H„~). For reasons of simpli-
city, all the considered states are assumed to be
nondegenerate and only one continuum is introduced
in this model. Since we are essentially interested
in the description of short light pulses, we have
omitted the relaxation phenomena such as spon-
taneous emission or collisions which are char-
acterized by times longer than the duration of the
pulses of interest. Under these conditions, if one
uses a classical description of the driving field,
the Hamiltonian can be written H= H~+ H„F where
H~ is a reduced atomic Hamiltonian and H„F an
effective interaction between the atom and the
field. H„can be written as

where hO, and hQ„are the energies of the states i
and cp, possibly light-shifted by nonresonant pro-
cesses, and I is the ionization energy of the atom.
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If v/2v, $(t), and y(t) are, respectively, the fre-
quency, the amplitude, and the phase of the field
(these last two quantities varying slowly with re-
spect to v), and if we keep only the energy-con-
serving terms in the Hamiltonian (rotating-wave
approximation), H„z reduces to

H„=
f y) (y /H

f
i) ( i

f

+ E g H ~ p P cP dE
I

+ E E +~ 'E 'E dE+c C. ~I
(2)

(y(H~ (i) =@%exp{ip[~t+y(t)])
= h a S~ exp {ip[(et+y(t)]),

(yz[H„', (q) =mLzexp{i(n-p)[cot+@(t)])
=AXE" ~ exp{i(n-p)[cot+ p(t)]),

(y, )H„]i) =Iffy exp{in[~i+a(f)])
= 0 y 8"exp {in [ (et+ q (f)]),

where v, A., and y are atomic parameters which
are assumed to be real. The wave function can be
written as

~
e(t)) = a,.exp( —in,.t)

~
i) + a „exp[ —i(A,.+P ~)t]

~ y)

vary rapidly with E. The Fourier spectrum of a,-
and a, has an extension of the order of K, JE, or
L2E, which are the characteristic frequencies of
the atom-field interaction. One can consider JE
and LE as constant over a range of variation of the
order of E, JE, or LE. Moreover, if ne+0; —I
is much larger than the mean value of K, JE, and

LE, the integration range can be extended to —~
without introducing significant errors. With these
approximations, which are valid of course in most
realistic cases, the solution corresponding to
square-pulse excitation,

KK, JE =J, LE =L, if0~t~T,
(~)

E= JE =IE =0, if t& 0 and t&T,
can be obtained by the following method:

ln Ref. 3 we first resolved the equations and then
integrated over energy. Here we integrate over
energy first. We must calculate the two terms

[Jza, (t')+ Lza„-( t')]

x exp[ i6z(t —f')] dp

Jz dE [Jza; (f')+ Lza„( f')]

xexp[i6z(t —f')]dt' .
dE az exp[ —i(Q, +neo)t] ]E) . (4) The Fourier transform of a term such as

The equations of motion for the wave-function com-
ponents become

LEdE LEa„ t' dt'exp i5E t —t' Sa

ia; =Ka, + dE JEaE, (5a.)
ls

I E+—(P E dEta E (8b)

i(a, —i5a, )=lfa,. +j dEL a

g(az —g6zaz) = elza ~ + Lzay

with

6=n; —n, +p[(u+ j(t)],
6z=Q,. —E/8+n[&u+ j(t)]

(5b)

(5c)

L2

0
(8c)

where 6'„(E) is the Fourier transform of a„(f) and
0' stands for the principal part. By looking at the
extension of 8„(E), one can replace E by Eo
=@0,-+ n@~ in the term between brackets. Expres-
sion (8a) becomes

The total number of produced ions is given by

@=p dE aE (6)

We then derive a new set of equations:

id; =4 a,. Ka+„—i(dz2 a;+Lz Jz a,),Eo S Eo Eo

ia„=(&~—6)a„+Ra; —i(dz Lz a, +Lz' a ),
where P is the number of atoms interacting with
the field.

II. RESOLUTION OF THE EQUATIONS: GENERAL CASE

The only difficulty encountered in solving this
system of equations comes from integration over
energy. One can 'assume that JE and LE do not

where
J2Ez dEt

m E —E'

Et
E, E'

E E dEt+ (P
0
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which can be solved in a straightforward way. The total number of produced ions is given finally by

J2+ J2 -J
N=P 1 ———+K'+ + —— cosy — A sinq) exp[ —(L'+ J'+A sinq))t]A2 4 2 4 2 2

L2+ J2 L2 J2
A2 4 2

—+K'+' + —+ cosq)+ A sin9) exp[ —(X'+ J'-A sinq))t]
4 2 2

1 52 A2 L2+ J—+ K' ——— 2 cos(At cosq)) exp[ —(X'+ J')t]~2 4 4

[Il» sin(o —(L —J')» oosp] 2 sin(Ai oosp) sop[ —(L's p')t]),

where

g2 L2~ J2 2 g2 2
—K2 ——

4 2 4

Z/2

+ —(J' —L')+ 2KJL

studied this case in Ref. 3; this treatment is
equivalent to the former one.

A second interesting case is L»Z', J, which
generally corresponds to n —p«p, n. The re-
sponse to a continuous excitation has been studied
by Armstrong, Beers, and Feneuille. '

(5/2)(J' —X')+ 2KJL
K'+ (5'/4) —[(X'+J')/2]' '

5=5 —4 +~
This result was already obtained by Beer and

Armstrong, who used a quantum approach for the
driving field. Equation (10) is rather complicated,
an4 only the study of some limiting cases is actual-
ly useful.

A first one is K» J, L. This condition is ful-
filled if n-p»P or if n=2. We have already

III. RESOLUTION OF THE EQUATIONS IN THE

CASE L))K, J
In this case, Eq. (10) can be simplified by

making a first-order expansion in terms of the
small quantities K/I ', J~/L', JL/L' Howeve. r,
a perturbative treatment of Eqs. (9) and (5c),
using as zeroth-order solutions the ones obtained
for J'= JL=K=O, is equivalent to the expansion
of the exact formula and in fact is simpler. This
leads to the following result:

2 L2J2+ ~2
e'+ J.'

2L (5+ KL/J) gr, 2(t') + KL/J)(L» ML/J)—
2 4 e szn5T

5 +I 5 +L

It is possible to recognize in the term 2PJ'[(5+KL/
J)2/(52+ I.»)] T the result obtained by Armstrong,
Beers, and Feneuille for the response to a con-
tinuous excitation. The resonant response is the
sum of an even part (Lorentzian profile) and an
odd part (dispersion type); the width of these two
contributions is L'. The parameter K/JL=q
characterizes the relative contribution of the even
and the odd parts and thus the asymmetry and the
sharpness of the profile. The continuous regime
is established after a period of the order of L '.

The transient curve is characterized by L', q,
and a third dimensionless parameter 8 =L2T.
When 8»1, the continuous regime has been
reached within the duration of the pulse. When
6«1, the spectral width of the pulse, 4 =1/T,
is larger than L', which is the frequency

extension of the resonant phenomena, and there-
fore the resonant response becomes quite flat and-
has the excitation width. We study here the inter-
mediate situation corresponding to 0 of the order
of one, that is to say, the transition from con-
tinuous monochromatic excitation to impact ex-
citation. Figure 1 shows the evolution of the
transient curves for q = (10)')' with different values
of 8. We have plotted N/ND as a function of y
=5/qX =5J/KL N being the intensity of the dj

rect process (One can re. mark that KL/J is an
atomic parameter; thus KL/J does not depend
strongly on the characteristics of the field pulse).

As can be seen in Eq. (11), the continuous re-
gime is reached faster for the large values of 5

than for the maximum of the curve.
It is particularly interesting to consider the
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exact values of parameters such as 4~, which can-
not be calculated ab Aritio with sufficient accuracy.
On the other hand, 'one could imagine extracting
these parameters from experimental shapes of k
vs 5, but the number of these parameters is too
high with respect to the precision of available ex-
perimental data, which still are very few. Never-
theless, k(5) exhibits in any case a very rapid
variation for the value of 5 corresponding to a
null value of ionization cross section. This result
is in qualitative agreement with the experiments of
four-photon ionization of Cs performed by the
Saclay group. ' In transient regime, the minimum
value of E is always different from zero. The
variation of N and accordingly the variation of k
are expected to be smoother than in the continuous
regime.

IV. NUMERICAL RESOLUTION

FIG. 1. Resonance curve induced by a square-pulse
excitation: evolution with 8 =I. 2T. Fine curves, tran-
sients; bold curve, continuous.

cases where the resonant process is more im-
portant than the direct process (Othe. rwise the
resonance is too small to be detected. ) This oc-
curs when q' is larger than a few units. For the
continuous regime, in this case, the wings of the
curve depend essentially on the value of KL/J,
which is quite independent of the field intensity,
while the maximum is 1+@', which strongly de-
pends on the field intensity. The previous study
shows that by using short excitation pulses and by
ignoring transient effects, it is possible to mea-
sure a correct value of KL/J by analyzing the
wings of the curves, but in this case, one would
certainly Underestimate the va.lue of q.

Another parameter which measures the effective
. order of nonlinearity is often introduced to char-

acterize resonant multiphonon ionization pro-
cesses: 0 = &Iog1V/&logI (I being the field intensity).
For continuous excitation, N is given by

J2 - KLK=I' 2 4 5+5+L J

L4 g gI gI
k(6) = n —2 (n —p), , —,—,+

Q +L 5+L 5+KL J
In deriving the previous formula, we have ne-
glected the contribution of nonresonant light shifts
of i and y which vary as I'. Even with this ap-
proximation which could not be valid in some
cases, the shape of k(5) is very sensitive to the

Equations (9) have been derived in the case of
a square pulse, but they can be obtained also for
a pulse with any shape. This is the main advan-
tage of having introduced a semiclassical descrip-
tion of the field. When we consider a pulse of
field with amplitude variation, LE can be written
Lsf(t) and the expression (8a) becomes

f(t) Ls dE Lsa „(t')dt '
mOQ

&& exp[t&, (t t')]= f(t) g(t) .

The Fourier transform of g(t) is

L2
(p

7T

(12a)

(12b)

where h(E) is the Fourier transform of a„(t)f(t).
The extension of h(E) is about the largest va, lue
between K, L~, J 2~, 1/T (T being the width of the
pulse). The description of the light pulse supposes
that 1/T «w', thus even if T is small, the exten-
sion of k(E) is small enough that E can be replaced
by E, in expression (12b). So expression (12a) can
be written

0

and we get again for a pulse with amplitude varia-
tion the system of equations (9). We have per-
formed numerical resolutions of Eqs. (9) for dif-
ferent pulse shapes (carried out on the UNIVAC
1110de I'Universite de Paris-Sud). We have con-
sidered the case p= 6, n= V. Although time-depen-
dent phases appear in the general formalism, we
have considered only field-amplitude variations.
The different shapes are as follows:
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Case 1:
L=2.5(t/T)e ' tr L for t/T~O

L=O for t&0'

Case 2:

L=(t/3T —1)'x1.2VL, for 0 —t/T 3,—
L=0 for t&0 and t/T&3;

Case 3:

L = 1.13 sin(2mt/3T) Lo for 0 & t/T & &,

L=O for t&0 and t/T&~.

(13)

which depends only on the pulse characteristics.
We have calculated the value of ((N/N~) 6 g for the

These pulses correspond to the same half-maxi-
mum width of L and to the same value of

In this particular case, n —p=1. &=(L')T is the
energy of the pulse.

The resolution of the equations was done for dif-
ferent values of T and L,. The results are very
similar to those obtained with the square pulse.
That is to say, when 8 is short, the resonance
disappears, and when ~ increases, the transient
curve tends towards the Fano continuous profile,
faster for the large values of & than for the max-
imum of the curve. As already noted in Sec. III,
the continuous curve is characterized essentially
by the value of KL/J for the wings of the curve
and the value of L' for the maximum. One can ex-
tract from the Fano curve, obtained as a limit of
the transient curve, an effective value of KL/J and
L'. The value of (EL/J), «dedu dcein this way is
close to the atomic parameter KL/J, and the'
wings of the curve appear to be independent of the
shape of the pulse. On the contrary, the maximum
of the curve depends on the shape of the pulse.
This dependence can be easily estimated provided
that the increasing part of the pulse shape does
not suffer a too rapid variation. This can be
achieved by calculating

lim (N/N~) = (N/ND);
Bw oo

the corresponding calculation is given in the Ap-
pendix. The most interesting result is obtained

for 6=0. We show that

I

0 3

N „K' L' dt

CD

while in the continuous regime

(N/ND)6 0 K /L'J——
I

I0
I I

P 3
Therefore ((N/ND) 6 g is proportional to the pa-
rameter

FIG. 2. Resonance curves obtained for different pulse
shapes [see Eq. (13)], for (a) 8=2 and (b) 8=10.
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different pulses considered in numerical calcula-
tions and compare them below with the result of
numerical integration.

( ~No)max
1

Case ((N/N~)6 o)

8.93

(N/ND), ,

13.81 17

11.75

For cases 1 and 3, where the field increases slow-
ly, the agreement is rather good, but for case 2
this prediction leads to too small a value of the
resonance. This is not surprising since in the
latter case the maximum of the field appears at
the beginning of the pulse. These results are il-
lustrated in Fig. 2. Figure 3 shows the evolution
of the resonance for different values of I9.

V. APPLICATION: CESIUM

20

FIG. 3. Evolution with 8 of the maximum of the reso-
nant curves (excitation by a square pulse).

For a complete comparison of our results with
experimental curves, we would have to obtain re-
liable values of the atomic parameters 0 and /E

and know exactly the value of P; such parameters
are not available in the literature. Thus we de-
termine only those conditions in which the effect
of the duration of the pulse becomes important.
We consider the case of Ref. 5, where multipho-
ton resonant ionization in Cs is described in a
sufficiently detailed way. However, we have no
information about the pulse shape, and therefore
only the influence of the pulse length can be dis-
cussed. In the first step, the resonant level
Sp'6 f (28 329.7 cm ') is reached by a three-photon
process. The second step is a one-photon ioniza-
tion. The resonance was observed for laser inten-
sity of 10'-10' W/cm'. The ionization cross sec-
tion from the 6f level calculated by Aymar' is
1.4 x 10 "cm'. Thus for a laser intensity of 10'

W/cm', the value of L' is 3 x10' sec '. In these
experiments the duration of the pulse was 30
nsec, leading to the value 8= 2000.

The resonance curve observed was very similar
to the Fano curves obtained in a continuous regime.
This fact is in agreement with our interpretation
of the role of 6). We have noted in Sec. III that the
effect of pulse duration becomes important when
6) becomes smaller than 10. Thus one can think
that these effects would appear in experiments
using pulses of duration smaller than 3 nsec.

APPENDIX

Starting from Eq. (9) of Sec. II, we derive the
density-matrix equations. Since L~ «J~, we sup-
pose that n~= a~a~ and n, = a„a*„are much smaller
than n, =a,.a,*. , that is to say e,. =1. By introducing
the new variable q= f L~dt, we deduce

—2J~L~ e"
ko

JOULE-iK „. ga(, . ])d (e e dg +c c.
E

For large values of &, q rapidly reaches large val-
ues, and we can consider that e "'", with q'

&p, have values different from zero only when

q —q' —1. Since q varies very rapidly, the cor-
responding value of Js/Lz varies slowly and the
integral

e-n E en'e&&&t'-f)dql

can be replaced by

& (q) t
e0' nef6&f' f&dqt-

Ls o

J Tf Je-2q eq' E ~ e""dg"
Lz o LE4o

by

The same argument leads one to replace
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Then

An integration by parts leads to
N

ND

Under these approximations we obtain

( Js&+ZLs)'

(ns)~ = 2J~.

The direct process can be calculated by assuming
that A=Is 0 in E——qs. (5) leading to

The assumptions done to calculate the integrals
on g are not valid for small values of q. If large
values of the field amplitude appear when g is
large, the contribution of the small values of q is
negligible. Thus one can understand why the pre-
diction is quite good for pulses where the maxi-
mum appears a long time after the beginning of the
pulse. That is not true for the parabolic pulse
(12b) where the maximum value is obtained just at
the beginning of the pulse.
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