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We show that the minimizai:ion of the variance integral provides a method for the determination. of scattering

wave functions which uses discrete basis functions exclusively. By using a separable representation of the

scattering potential only one new class of matrix elements appears in the evaluation of the variance integral

which is not already required in the diagonalization of the Hamiltonian, The choice of gaussian basis

functions for the expansion of the scattering wave function should make the method particularly applicable to
electron-molecule scattering. Some advantages and limitations of the method are discussed.

I. INTRODUCTION

The use of discrete basis sets offers consider-
able advantages in the calculation of electron scat-
tering processes. ' For example, these methods
require only standard matrix techniques in their
applications rather than the more usual approach .

of numerical integration of the differential equa-
tions. Moreover these methods can be extended to
the calculation of scattering amplitudes for non-
spherical potentials, thus avoiding the need for
single-center expansions of the nonspherical po-
tentials or their scattering wave functions. We
have recently proposed one such method which is
based on the use of Gaussian-type orbitals in the
direct solution of the Lippmann-Schwinger equation
for the full elastic scattering amplitude. ' With
Gaussian basis functions being the usual choice for
the multicenter molecular problem this approach
can be implemented with standard bound-state in-
tegral programs. Schneider has also developed an
approach to electron-molecule scattering based on
the 8-matrix formalism in which discrete basis
functions are used to expand the scattering wave
functions in the internal region. '

Although these two methods rely'on the use of
discrete basis functions to achieve their critical
simplifications they do not avoid the continuum
completely. Specifically the free-particle Green's
function must be dealt with in the solution of the
T-matrix equation and a numerical integration is
needed in the outer region in the R-matrix ap-
proach. Two methods which use discrete basis
functions exclusively have been developed and ap-
plied to electron-atom scattering. These methods
are the Fredholm determinant method, its related
equivalent quadrature approach of Reinhardt and
coworkers' and the J-matrix technique of Heller
and Yamani. ' However these methods are re-
stricted to systems with spherical potentials and
at present do not seem rigorously applicable to

scattering by nonspherical potentials, e.g. , elec-
tron molecule scattering, without resorting to a
single- center expansion.

In this paper we discuss an approach to scatter-
ing problems which uses discrete basis functions
entirely and which is applicable to both electron-
atom and electron-molecule scattering. The
method is essentially a variational approach to
scattering and is based on the minimization of a
variance integral, U[C ], defined as

1 w(~)[(H- E)4'Pde.
j@4dr

where x represents the coordinates of all particles.
The function w(r) is an arbitrary but positive
weight function. This variance integral is non-
negative for any trial function 4 and is ze.ro only
for the exact wave function. Minimization of the
value of this variance integral obviously provides
a criterion for the determination of the parameters
appearing in 4. The method is referred to as the
minimum variance or least-squares method and
has been applied to the determination of bound
states' and more recently to potential scattering
problems. ' However, in this work' trial func-
tions 4 of the Kohn type explicitly containing con-
tinuum functions are used and hence, in this form
the method would not be practical for applications
to electron- molecule scattering.

In our proposed method we will use Eq. (1) to
determine scattering wave functions but these
functions will be expanded entirely in discrete
basis functions. This procedure leads to a simple
matrix equation which determines the linear pa-
rameters in the expansion of 4. Scattering infor-
mation can then be extracted from the approximate
scattering wave function which is known to be pro-
portional to the true scattering solution over the
region of space spanned by the discrete basis func-
tions."Our choice of Gaussian basis functions
as the discrete basis set for the expansion of $
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makes the method particularly applicable to mole-
cular problems. Moreover by using a separable

. representation of the scattering potential, the
evaluation of the variance integral, U[4 ] of the
quadratic variational principle, leads to only one
new class of matrix elements in addition to those
already required in the direct diagonalization of
the Hamiltonian. This is an important considera-
tion since the method can provide approximate
scattering wave. functions at arbitrary energies
whereas the direct diagonalization of the Hamil-
tonian in a discrete basis yields such wave func-
tions only at the discrete eigenvalues. Thus in
contrast to the Harris method, "a single choice of
an expansion basis can give scattering informa-
tion over an arbitrary number of energies.

The outline of the paper is as follows: In Sec. II
we review the minimum variance method and some
previous applications of the method to scattering
problems. There we will also derive the simple
matrix eigenvalue equation which results from
Eg. (1) if 4 is expanded exclusively in a. discrete
basis set. In Sec. III we present the results of the
application to some model potentials and to s-wave
scattering for helium in the static-exchange ap-
proximation. Finally in Sec. IV we discuss future
applications of the method.

II. THEORY

The minimization of the variance integral and of
the related variance sum has been used to deter-
mine the energies and wave functions of bound' and
autoionizing states and more recently has been
applied directly to scattering problems. ' In these
applications both Bardsley' and Miller" employed
trial functions, 4, of the Kohn type in the variance
integral to obtain s-wave phase shifts for an at-
tractive exponential potential and for the hydrogen
atom in the static approximation with and without
exchange. The trial functions 4 are hence of the
form (for s-wave scattering),

minimum variance method to develop a purely dis-
crete basis set approach for obtaining scattering
wave functions at arbitrary energies. For appli-
cations of the minimum variance method to elec-
tron-molecuLe scattering trial functions of the
form of Eq. (1) containing continuum-like functions
are clearly not practical since they lead to intract-
able integrals. However, a number of studies
have shown that approximate scattering wave func-
tions can, be obtained by diagonalizing the Hamil-
tonian in a large discrete basis set since the eigen-
functions are proportional to the scattering wave
functions over the region spanned by the basis."
Unfortunately one can obtain such information only
at scattering energies equal to the eigenvalues of
the Hamiltonian matrix. For many applications
this is a severe limitation. We can cite two ob-
vious examples. In a distorted-wave formalism,
to obtain the electronically inelastic amplitude in
electron-impact excitation we would require the
scattering wave functions at specific incident and
final energies. Furthermore, a sum over all par-
tial-wave amplitudes at one energy is required
just to evaluate the total elastic cross section;
with the phase shifts obtained only at a discrete
number of points, an interpolation would be neces-
sary since it is not in general pgssible to make the
various partial-wave eigenvalues coincide. Such
an interpolation is particularly difficult in the vi-
cinity of a resonance. Our goal then is to use the
quadratic variational principle, i.e. , the minimum
variance method, to generate scattering wave
functions at arbitrary energies in a completely
discrete basis set representation at any energy.

The formulation is straightforward. We expand
4' in a discrete basis set, i.e. ,

and substitute this expansion into Eq. (1) to obtain

4(r) =g c„y„+S(ar)+tan~C(ur),
n=l

where P„are bound-like functions and S and C be-
have asymptotically like sine and cosine, respec-
tively. The minimum variance method obviously
leads to integrals which do not arise in the Kohn
and Hulthen variational procedures. For these
simple one-dimensional problems the additional
iritegrals are tractable. In these cases the method
can offer some advantages since the positive defin-
ite character of the variance integral eliminates
the occurrence of false resonances which appear in
the Kohn procedures and the variance integral can
be used to derive bounds to the phase shifts.

Our purpose is to exploit certain features of this

Qc c, f y;&~dr
Cfg

(4)

QC= USC,

where C is the vector of coefficients $c, ) and

Sgg
=— pg+~dT .

Minimization of U with respect to the linear coef-
ficients [c,]. leads to a set of equations which can
be written in matrix form as
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E is the scattering energy. For the exact solution .

the variance integral is zero. To minimize the
variance we simply obtain the solution of the eigen-
value equation, Eq. (5), corresponding to the
smallest eigenvalue. Writing H= T+ V, we obtain
for Q, ~

((u J ~("((&pg&ps+ ( pr('pg + &pg('p~+ vp, Tp,

-2E(y,.Tp &+ y, V y z) + E'S,.&] dr .

The evaluation of the various terms appearing in
Q, &, for a many-particle Hamiltonian, will un-
doubtedly involve very difficult integrations. I,et
us assume that H is a single-particle Hamiltonian
determined by an effective one-body target poten-
tial, e.g. , the Hartree-Fock static-exchange or
optical potential. Assuming for the moment that
a convenient form can be chosen for the weighting
function, w(r), the last three terms in the integral,
Eq. (8), correspond to elements of the kinetic en-
ergy, potential energy, and overlap matrices aris-
ing in normal variational calculations. The re-
maining integrals are greatly simplified if we as-
sume a nonlocal, separable form for the potential
V, i.e.,

The phase shift can be extracted by examining the
quantity

tan5, (r) = W[R(,j,]/W[R, , n(]

as a function of x until it acquires a nearly con-
stant value. This value is obviously the phase
shift. In Eq. (13)R, is the radial function derived
from 4, j,(kx) and n, (kr) are the Bessel and Neuman
functions, respectively, and TVis the Wronksian.
This procedure has been discussed in recent ap-
plications to the scattering of electrons by H„
N„' and F,." One may also use the approach re-
cently suggested by Dalgarno for obtaining phase
shifts from these approximate scattering wave
functions. " In using Eq. (13), we have assumed
that the analytic radial functions, R„are accurate
in the potential-free region and can therefore be
matched to Bessel and Neuman functions. Al-
though we have not done so, one could clearly
modify this procedure to match R, to any numeri-
cally generated zeroth-order distorted wave, e.g. ,
those generated by a quadrupole field. If there is
significant off-diagonal long-range coupling, a
more general matching procedure such as that in-
volving the solution of coupled equations in the ex-
ternal region would have to be employed.

III. RESULTS

The scattering potential is thus represented by an
N &&X matrix with elements V z. With this form
of V we have

(12)

These quantities again require just the potential
energy and kinetic energy matrices. We empha-
size that the assumption of a separable interaction
has only been made with respect to the scattering
potential and not the kinetic energy. However the
integral containing Tp,.Tp - is a new integral not
appearing in ordinary variational calculations. In
the next section we will see that with p, and y&
chosen as Gaussian functions this integral is very .

simple and can be done analytically.
Once the vector of coefficients, C, correspond-

ing to the minimum eigenvalue of Eq. (5) is ob-
tained the scattering wave function 4 is known.

We have used this discrete basis set approach to
the minimum variance method to study the scatter-
ing of electrons by several model potentials and by
helium in the static-exchange approximation.
These potentials incl.ude the attractive exponential
potentials, -e and —e, and the screened Cou-
lomb potentials of the form e /r. Although we
present results for s-wave scattering only, the ap-
proach is clearly applicable to the higher partial
waves. Our primary purpose is to test an approach
which may have specific advantages in future appli-
cations to electron-molecule scattering.

All the results except those for the exponential,
V(x) = -e ", were obtained using a basis set of
Gaussian functions. We choose Gaussian basis
functions since this choice is the most convenient
for future applications. The integral containing
(——,V'y, )(-2V'y&), which is the only new integral
appearing in this method if we assume the separ-
able form for the potential, has a simple form.
For basis functions of the form

y,".;("= (y A„)~(y -A,)'(z -A,)' exp[ n(r -A)']-,

(14)

where A is the vector locating center A. and j, k, l
determine the order of the Gaussian, i.e. , s, p,
d. . . , we have



160 LEVIN, RESCIGNO, AND McKOY 16

TABLE I. Phase-shift. values for the potential V(r)
-r= —8

k (a.u. )

0.3
0.4
0.5
0.6
0.7

6.6xip 4

1.8 x 10-'
2.4x 10 3

5.1 x 10"3

6.7x fp 3

1.56
1.31
1.14
0 ~ 99
0.91

1.57
1.36
1.20
1.08

-0.98

Value of the variance integral defined in Eq. (4).
"Phase shifts calculated by the minimum variance

method with a basis set of nine Slater functions of the
form r"e ~" with n= f.

Exact phase shift obtained by Calogero's method.
See text.

ce(r) = 1 —ct e ' ~, 1)o) 0 g)0 (16)

which does lead to a variance integral, Eq. (4)
that can be evaluated with multicenter Gaussian
integral programs. This function increases from

( 2 +2yBy t )( +2yAy a)dr

~2 2~3/ 2 4~2 2D2
e "D,—20 + 15, (15)(~+p)'" (~+ p)' o+ p

with D = (A —B)' and q= nP/(n+ P). Integrals invol-
ving other Gaussian functions can be determined
by taking the appropriate derivative of Eq. (15)
with respect to. the coordinates of a particular
center. "

For several applications, particularly those of
scattering by potentials with a Coulomb behavior
at short distances, the use of an appropriate
weighting function, co(r), proved very helpful. Our
choice of weighting function was fixed by requiring .

that the resulting variance integral still be evalu-
ated by standard bound-state molecular integral
programs for Gaussian basis sets. This is a rea-
sonable choice to keep the method applicable to
realistic problems. This suggests the weighting
function

a value of 1 —o. as x-0 to unity as r becomes
large. Hence w(x) weights the outer region more
than the inner. This choice of weighting function
yielded approximate scatter ing solutions which
show significant amplitude in the physically signi-
ficant inner regions and hence are simpler to
analyze for scattering information. In this way we
avoid the apparent tendency of the least-squares
method to yield solutions with small amplitudes in
those regions where the scattering potential is
large. Since it is precisely in this inner region
where one desires a solution with large amplitude,
we choose a weighting function which forces a
small amplitude at large x. By varying the param-
eters n and w we can change the relative weights
of the outer and inner regions so as to obtain a
lower value for the variance integral.

Tables I and II show results for several model
potentials. The phase shifts in Table I are for the
attractive exponential potential V(r) = -e . We
used a basis set of nine Slater orbitals and did not
use a weighting function, i.e. , av(r) =1. Comparison
of the calculated phase shifts with the exact phase
shifts at increasing values of k shows the obvious
trend that solutions with small variances yield
more accurate phase shifts. This basis set ob-
viously cannot represent the scattering functions
at larger incident momentum as well as those at
lower k. For this potential we also solved the
minimum variance equations without assuming a
separable form for the potential. These calculated
phase shifts agreed well with those derived by as-
suming a separable form for V indicating that this
representation of the potential is adequate.

Table II gives the s-waVe phase shifts for several
potentials and the effect of the weighting function
on the value of the variance integral and the phase
shifts. Comparison of the phase shift at k= 0.5
demonstrates the advantage of using an adequate
weighting function. In this case a basis set of 17
Gaussian functions along with a weighting function
gives the same value of the phase shift and vari-

TABLE II. Phase shifts for various model potentials.

0 (R.U. )

0.287
0.287
0.287
0.287
0 500
0.500

V(r)

-r2 :—8
-r2—8

-e "/r
8-r /r2

28-"'/r
-2e "/r

1.45x,10 4

1.03 x 1p-4

1.42x fp 4

1.51x1p 4

2.21 x 10-3
2.45 x ip-'

P 798 28+2

p 99 -0.28r

1 —0.79e
f

P 888-0 28&2

0.62
0.64
0.42

—0.14
2.64
2.63

0 ~ 65
0.65
0.4f

-0.14
2.65
2.65

~A set of 28 Gaussian basis functions was used in this calculation. All the other calculations
were done with a set of 17 Gaussian functions.

Value of the variance integral.
zo(r) is the weighting function used in minimizing the variance integral.
The phase shift extracted from the approximate scattering w'ave function. See text.
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TABLE III. Phase shifts for e-He scattering in the
static-exchange approximation.

k (a.u. ) gb

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

4,5x f0
2.3x 10 5

f.f x10-4
6.0x 10-4
2.4x 10 3

5.9x 10 3

8.,7 x10-'
.1.9x10 2

2.98
2.84
2.69
2.58
2.40
2.33
2.17
2.08

3.00
2.88
2.72
2.59
2.45
2.33
2.19
2.10

Calculated from the minimum variance method with a
basis of Gaussian basis functions and a weighting function
of the form of Eq. (16) with j.=0.28 and 0.79 + 0. & 0.99.

Accurate phase shifts from Ref. 15. These values are
those of Ref. 15 rounded off to three significant digits.

IV. CONCLUSIONS

ance integral as a basis of 28 Gaussian functions
used without a weighting function.

Table III lists the phase shifts for the scattering
of electrons by the static-exchange potential of
helium from k= 0.1 to k= 0.8. These phase shifts
were calculated with a basis of 17 Gaussian func-
tions and agree well with the results of Schneider. "
In these calculations most of the matrix manipula-
tions are independent of the impact energy so scat-
tering solutions can be obtained at very many en-
ergies quite economically. While the matrix Eq.
(5) must be solved for each energy, it is only the
lowest eigenvalue and corresponding eigenvector
that are required. For large matrices, this can
represent a substantial savings. Finally Table IV
illustrates the effect of the weighting function on
the phase shift and variance integral for the e-
helium scattering. By increasing the weighting of
the outer region over the inner region the variance
integral can be decreased leading subsequently to
an improved value of the phase shift. We also
noted that, at the same energy, the scattering
wave function obtained by the minimum variance
method is generally a smoother function than that
given by the direct diagonalization of the Hamil-
toniah. It is worth noting that although the Lipp-
mann-Schwinger equations are exactly soluble
with the approximation of Eq. (9), the present ap-
proach does not require the free-particle Green's
function nor the construction of any matrix inverse.

TABLE IV. Effect of the weighting function on the
phase shift.

U,

0.7986
0.8865
0.9899

1.35 x f0-3

1.13xf0
5.98 x 10-4

2.593
2.587
2.580

the continuum. The applications of this method to
scattering by several model potentials and by the
static-exchange potential of helium show that the
method can provide reliable scattering wave func-
tions economically.

The choice of Gaussian basis functions for the
expansion of the scattering wave function should
make the method particularly applicable to elec-
tron-molecule scattering. Moreover by using a
separable representation of the scattering potential
only one new class of matrix element appears in
the evaluation of the variance integral which is not
already required in the diagonalization of the
Hamiltonian. The analysis presented here, which
is appropriate for treating single-channel potential
problems, would have to be modified to handle
problems in which the reactance matrix is not
diagonal. In such cases, no simple formula for the
reactance matrix can be given which is independent
of the normalization of the wave function because
at any energy there may be more than one linearly
independent solution. One possible method for
dealing with this problem in an L' basis has been
discussed by Hazi. " If R linearly independent
solutions are needed at a particular energy, we
can simply repeat the calculations for several
choices of expansion bases and use the appropriate
multichannel extension of Eq. (13). A simpler,
but approximate, approach would be to use a de-

. coupling scheme (low "l spoiling" ) as has been
done by several authors. "

There are several features of our approach to the
minimum variance method which should lead to
significant advantages in solving certain problems.
For example, we found that the approximate scat-
tering wave function obtained from the minimum
variance method is usually a smoother function
than the eigenfunction obtained by diagonalization
of the Hamiltonian in the same discrete basis set.
This feature can be important if one wants to use
these scattering wave functions to obtain informa-

We have shown that minimization of the variance
integral provides a method for the determination
of scattering wave functions which uses discrete
basis functions exclusively and completely avoids

The weighting function is of the form ze(&)=1 ne ~"

with 7 =0.28. The phase shift is for k =0;4 where the ac-
curate value is 2.58. The relative wei. ghting of the outer
region (x=4 a.u. ) to the inner region (x=:f a.u. ) va, ries
from 2.5 to 3.9 for these choices of o. .
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tion other than the phase shifts. Such an applica-
tion would be the use of these wave functions to
evaluate an electronically inelastic scattering am-
plitude in the distorted wave approximation. For
this application one may also use a weighting func-
tion so as to obtain wave functions with desirable
features in the important regions of space.
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