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The photoionization cross section of the hydrogen negative ion is computed using a discrete-basis-set

expansion to represent both the ground and continuum states of the system. This discrete-basis-set

representation is used to construct an approximation to the dynamic polarizability, which in turn is used in

an analytical continuation procedure for complex values of the frequency. This "discretization" of the

continuum makes the method potentially applicable to larger systems, and a study of the basis-set

dependence is made. The final results are in good agreement with more elaborate calculations and with

experimental results. The dynamic polarizability in the normal dispersion region is also computed.

I. INTRODUCTION

The photoionization cross section of the hydrogen
negative ion has been the subject of several cal-
culations since Wildt' first suggested that it could
be responsible for the visible and infrared opacity
in the atmosphere of cooler late spectral type
stars.

Ghandrasekhar' and his co-workers pioneered
these studies in a series of papers investigating
the dependence of the cross section on the accuracy
of the bound-state wave function. They also in-
vestigated the effect of the central field approxi-
mation for the free state. ' The importance of,tak-
ing into account exchange effects in the free wave
function was first investigated by John' using the
Hart-Herzberg 20-parameter wave function for
the ground state and the "1s"exchange approxima-
tion continuum function. A number of subsequent
calculations have appeared. Geltman' employed
the 70-parameter bound-state wave function of
Schwartz and variationally determined symme-
trized continuum functions, containing terms cor-
responding to excited states of the hydrogen atom.
This allowed him to treat both correlation and dis-
tortion of the residual hydrogen atom. Doughty et
al. ' employed a close-coupling approach for using
a Hartree-Pock eigenfunction expansion for the
continuum states which included up to 3d atomic
orbitals of the hydrogen atom. Bell and Kingston'
used the method of polarized orbitals to obtain a
representation of the continuum. More recently
Ajmera and Ghung' used the variational method of
Kohn-Feshbach to obtain free-state wave functions.
A recent review of the photodetachment of H was
given by Risley. '

While many of the above calculations have pro-
duced good results for H, they are generally not
easily extended to large systems, first because
such highly accurate wave functions are not avail-
able for systems with more electrons, and second-

ly because the generation of continuum functions by
the methods used above becomes very cumber-
some '0

Our interest is in developing a method w'hich

could be equally applied to larger systems. Thus
we use highly accurate wave functions and methods
practicable for polyatomic molecules, and w'e avoid
the explicit use of continuum functions. " The
method is based upon the relation between the
cross section for photodetachment and the imagin-
ary part of the frequency-dependent polarizability.
As first suggested by Reinhardt and co-work-
ers," we used a discrete basis-set representa-
tion of the frequency-dependent polarizability
which is used to make an analytical continuation in
the complex plane. Details of the method and the
calculations are presented in Secs. II and III. This
method has been successfully applied to other
small systems, "but systematic studies of the
basis set for the unbounded orbitals have not been
reported. This is an important part of the prob-
lem since basis-set expansions represent the most
convenient approach to the treatment of large sys-
tems. Once we understand how to select small but
adequate basis sets for the unbounded orbitals, the
method is automatically extendable to larger sys-
tems, since the use of basis-set expansions for
the bound part of the system is well established.

II. METHOD

The basic difficulty with using a discrete or fi-
nite basis set for photoionization calculations is
that we obtain only a finite number of transitions
which are supposed to represent the continuum.
That the discrete set does represent the contin-
uum in some sense is indicated by the fact that the
calculated sum over the discrete transitions (1)
and its moments,
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(where f,„ is the oscillator strength), is approxi-
mately equal to the integrated absorption for the
continuum, (2), and its respective moments,

g&d6 (2)

o.(z) =P, '",+ (~)
~0 (don 8 6 6 Z

The complex polarizability o'.(z) is analytical
throughout the complex plane except for an infinite
number of poles along the real axis (the ones in
the positive region corresponding to the transition
frequencies) and a branch cut in the photoionization
interval ei ~ Re(z) &~. Since the cross section can
be written as"

o'((u) = (2v'/c)g(&u)

and since

o'(&u +i7l) = g —,'"
n~o Cuon

"g(&)de . vg((o)+ 2 2 +Z as' 0—(d 2I

we obtain the relationship

c(u)) = lim (4v(u/c) Im[o((o + i@)], (8)g~ 0

between the total cross section and the imaginary
part of the dynamic polarizability on the real axis.

So far we converted the problem of obtaining
g(&u) to that of obtaining the imaginary part of o.(z).
This latter task is accomplished by an analytical
continuation procedure'~ as follows: (i) we con-

[where ei is the ionization potential and g(e) is the
oscillator strength for the continuum]. On the
other hand, it is clear that the oscillator strengths
at every transition energy &,„must be associated
with a band of transition near +,„. The problem
then is how to proceed from the theoretical results

Q.„,(o,„,n= i, n

to a, continuum function g(&).
The approach we follow makes use of the rela-

tionship between g(&u) and the complex dynamic po-
larizability o.'(z).

The frequency-dependent polarizability is given
by

~( ) g fon (4)2 ~2 q2 ~2 y

where f,„and g(e) are the oscillator strengths for
the bound and continuum transitions, respectively,
&,„ the transition frequencies, and E, the first ioni-
zation threshold. Extending this definition to com-
plex frequencies leads to

struct an initial guess for n(z) from Eq. (3) as

o'(z) = g (9)
n$0 on

this is approximate since each discrete f,„re-
presents a band of the continuum and thus should
not be associated with a single a&,„; (ii) using Eq.
(9) we calculate n(z) at a number of points in the
complex plane; (iii) these points are fitted by a,

Pads approximant, providing a representation of
a(z)in the complex plane; (iv) using this represen-
tation we calculate c.(z) on the real axis where it
is equal to n(&u); and (v) the imaginary part of n(z)
on the real axis thereby provides the cross section
by Eq.(8). Having the representation for o.'(z), we
can evaluate o(&u) at a very large number of points
with little effort.

The crucial point in this process is the fitting
procedure. In this respect it is important to no-
tice that the analytical form of the frequency-de-
pendent polarizability is such that it can be written
as a Stieltjes series. " Consequently, Pads Bp
proximants" can be used as a very efficient way
to perform the continuation. For this type of ser-
ies, any sequence of [N+ J'/N] Pade approximants
(with Z~ -1) will converge, as N goes to infinity,
to the function o.'(z) in the cut. Of course, we hope
to achieve convergence with small values of N.

There are two ways of using Pade a.pproximants
to fit n(z) One is t.o use its analytical form and
expand it in a Taylor series around some point z0.
The coefficients of the series can be used to con-
struct the approximants by equating

f(z) =f(zo)+a, (z —zo)+a, (z —zo)'+ ' ' '+a„(z —zo)'

where P„dang„are polynomials of degree m and
n in (z —z,). Notice that for the particular case of
f(z) = o.'(z) and z, chosen at the origin, the coeffi-
cients a, are the sum rules. Although the approxi-
mants are determined by the information in f(z)
at only one point, these unipoint-multipiece ap-
proximants have been successfully used to con-
tinue Taylor-series expansions out of its range of
convergence. In addition, inside the circle of con-
vergence of the Taylor series, they usually con-
verge faster than the series itself. Among several
applications, this type of Pade approximant has
been used to calculate second-order optical prop-
erties of atoms and molecules. "However, there
are some cases where this type of Pade approxi-
mant presents numerical problems. For example,
small errors in the coefficients can produce un-
controllable divergences far from the point of ex-
pansion. This implies that the use of higher-order
Pade approximants (to obtain better convergence)
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can be seriously affected by increasing error in the
coefficients. "

This type of divergence can be circumvented by
the use of multipoint-multipiece pade approxi-
mants. In these cases, instead of expanding the
function around one single point, we expand it at
several points, with a subsequent matching of the
series. The extra points can be picked, for in-
stance, in the regions where the Pad& approxi-
mant constructed from the previous series starts
diverging. Multipoint-multipiece Pad& approxi-
mants have been the subject of recent theoretical
investigations, "mainly in their relation to Stielt-
jes series, and many of the results for the normalr
Pade approximant can be extended to the multipoint
case. Several recent applications of two-point Pade
approximants have been reported in the literature. '
In principle, this type of Pad& approximant should
provide the best way of fitting the function since
it contains several pieces of information about the
function at each point. Increasing the number of
points leads to additional algebra involved in the
matching of the various seri.es. Here, the approach
is most useful if a small number of points is sufficient
to assure convergence over the range of interest.

An alternative approach is to construct a Pade
type-II approximant. This Pads approximant is
built not from the coefficients of a Taylor-series
expansion but from values of the function at differ-
ent points. In the nomenclature Used above, this
is a multipoint-unipiece Pade approximant, and is
thetype of ipad6 approximant used in the present
work. Here we do not have problems associated with
uncertainties in the coefficients. Besides that, since
we can, in principle, pick points covering most of
our range of interest, it seems to be more effi-
cientfor the continuation than the usual unipoint-
multipiece Pads approximant.

III. WAVE FUNCTIONS AND BASIS SETS

A. Wave functions

The Hartree-Fock wave function of H is unboun-
ded, i.e. , above theenergy of the H atom, and hence
inappropriate to our studies. The simplest accept-
able wave function is the five-term expansion:

1418 2425 3(4 2pg 42py 42pg)

We solved for the orbitals and coefficients of this
MC -SC F wave function using the GVBTWO pro-
gram. " The resulting energy is -0.5251 hartree
which is 0.0026 ha, rtree (0.07 eV) above the exact
energy but 0.0372 hartree (1.012 eV) below the
Hartree- Fock energy.

As an approximation to the 'P continuum states,
we solved for the wave functions

(12)

where P„ is taken as the 1s orbital of the hydrogen
atom and P„~, are the variational solutions of Eq.
(12) (given fixed g„).

The final wave functions for the calculationwere
obtained from CI calculations using the above or-
bitals. " For the 'S state we used the five orbitals
from Eq. (11) plus the P„orbital from Eq. (12)
(orthogonaiized), including all the allowed config-
urations (nine configurations). For the 'P states we
included the nine p, orbitals from Eqs. (11)and (12)
plus the three s orbitals (p;„p;, ,p „),allowing a full
CI over these states (27 configurations). " These so-
lutions were used to evaluate the oscillator strengths
for the various'P-'S transitions. The basis set is
discussed below.

B. Basis sets

All calculations were carried out using the Huz-
inaga [6s/3s] expansion for the 1s orbital (i = 1.0)
pius the inner two components of the (4p) expansion
of the 2p orbital (g =0.5)." To this ba.sis set we
added diffuse s and p basis functions, as indicated
below.

The uncertainty in choosing the basis set con-
cerns what to include for the continuum wave func-
tions. We cannot optimize the basis sets as we do
for bound states. Instead we want an expansion
leading to a good description of (at least) the re-
gion of the continuum most involved in the process.
One criterion which we used to determine the qual-
ity of the basis sets is to require them to produce
a distribution of oscillator strengths and transition
frequencies which satisfy the sum rules (see Sec.
IVB for a discussion of the sum-rule criterion).

It is important in this type of study to have a sys-
tematic way of changing both the number of basis
functions and the range of exponents of the basis
sets. We accomplished this by considering each
member of the diffuse s and p basis sets to have or-
bital exponents as

r, pk, p'K, . . . ,

that is, each orbital exponent is the geometrical
factor P times the previous exponent. Various
geometrical factors, P, were used with diffuse s
and p functions lying in the range 0.04-0.002 56.
Explanatory calculations indicated that the diffuse
s and p basis functions should have the same dis-
tribution of exponents, and hence we took

p, =p,

In Table I we show the spectra (f,„and &u,„) re-
sulting from three different basis sets, all covering
the same range (out to 0.002 56) in exponents.
From this table it is clear that the smoothest spec-
trum is the one generated by the basis set [lls/
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TABLE I. Dependence of the spectra upon basis set. f« is the oscillator strength, ~on the
transition energy (eV).

[7s/7p; P =1/2. 5]

fon on
[9g/9p; P = 1/1.75]

fon on

[1is/1 ip; P = 1/1.5]
fon ~on

0.043039
0.215733
0.454171
0.437477
0.418858
0,051405

0.841215
1.250041
2.279275
4.896766

11.379151
63.118341

0.025572
0.114370
0.246037
0.294583
0.322565
0.282310
0.108864

0.813537
1 ~ 082266
1.585558
2.495641
4.155460
7.315295

14.017534

0.017101
0.076601
0.168768
0.212764
0.250749
0.228296
0.227801
0.211064
0.137689

0.793612
1.002800
1.356880
1.916556
2.784818
4.140133 .

6.289182
9.859149

16.633445

The diffuse functions of these three basis sets cover the exponent range of 0.04—0.00256
for both s and p spaces. Since the geometrical factors are different, the first diffuse basis
of each basis set are not exactly equal. They are 0.04000, 0.04202, and0;04374for p=1/2. 5,
1/1.75, 1/1. 5 respectively.

11p; P= 1/1.5]. Of course smoothness is not a rig-
orous criterion for choosing a basis. A more fun-
damental criterion is the agreement with the sum
rules arising from the spectra. We proceeded then
by computing the sum rules for several basis sets
using various sized basis sets with various geo-
metrical factors. In some cases the s basis set
was insufficient to describe the ground-state S,
and the basis set was discarded.

Table II shows some typical results for several
cases. For the three basis sets of Table l (which
cover essentially the same range of exponents),
we see that [7s/7P; P= 1/2. 5] exceeds sum rules
S„S„a.nd Ss, while both [9s/9P; P= 1/1.75] and
[1ls/11p; P = 1/1. 5] exceed the S, and S, sum rules.
On the basis ot this comparison, [7s/7p; p= 1/2. 5]
is clearly unsatisfactory.

We next considered variations in the number of
s and p basis sets while keeping p fixed. From
Table II it is clear that (a) for the geometrical fac-
tor P = 1/2. 5 no improvement is obtained; (b} for
P = 1/1.75, the addition and subtraction of ba.sis
functions to the basic [9s/9P] basis do not show any
improvement; on the contrary, worse sum rules
are obtained; (c} for P = 1/1. 5 substantial improve-
ment is obtained when the number of basis sets of
the s space is reduced.

On these considerations we selected P= 1/1.5 as
the optimum geometrical factor. Figure 1 shows
the resulting cross sections for some of the bases
which violated the sum-rule criterion.

Once the optimum geometrical factor was chosen,
we turned our attention to the size, i.e. , the num-
ber of basis functions in the basis set. Assuming

TABLE II. Sum-rules dependence on the basis sets.
45.0

H PHCLTG I GNI ZRT I QN CRQSS-SECT I CjN

Basis sets Sp S, S2
40.0—

[7s/7p; P = 1/2. 5]
[7s/9p; P = 1/2. 5]
[9s/9p; P = 1/2. 5]

i.625 15.06 228.1 4535.4
1.574 14.95 227.9 4537.6
1.574 14.96 227.9 4526.3

4536.8
4505.4
4505.1

[7s/7P; P = 1/1.75] 2.048 15.61 228.9
[9s/9P; P = 1/1.75] 1.394 14.54 226.5
[iis/iip;P= 1/1.75] 1.849 15.44 228.3

35.0 — '
l

I

30.0 —
(

t

(A I

I

cc 25.0 —
i

CC
CQ
CI: 20.0 —'

[1is/1 ip; P = 1/1.5]
[9g/1 ip; P = 1/1.5]
[7s/1 ip; P = 1/1 .5]

1.531 14.81 227.2
1.829 14.84 210.7
i.51 14.2 208.3

4511.4
3983.7
3940

15.0—

10.0—

Bounds 15.0' 217~7" 4000~300'
206 0

5.0—

0.0
0.75

I I3.15
I I I I I I I5.55 7.95 10.35 12.75

ENERGY (eV)
C. L. Pekeris, Phys. Rev. 126, 1470 (1962).

"C. Schwartz (unpublished) (cited in Ref. 5).
Reference 28.

FIG. 1. Effect of different basis sets on the photo-
ionization cross section of H .
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TABLE III. Energy of the ground state 'S of H for
various basis sets (p =1/1.5).

TABLE V. Spectrum obtained with the (7s/1 ip) basis
set. Oscillator strengths f,„and transition frequencies
&on.

Basis sets Energy (hartree)

(1is/1 ip)
(9s/1 ip)
(7s/iip)
(6s/iip)
(7s/iip) after CI
Hartree Fock ~

Weiss S+P
Exact

-0.525099
—0.525098
-0.525097
-0.524980
—0.525494
—0.487930
-0.526470
-0.527750

C. C. J. Roothaan, L. M. Sachs, and A. W, Weiss,
Rev. Mod. Phys. 32, 186 (1960).

"A. W. Weiss, Phys. Rev. 122, 1826 (1961).
'C. L. Pekeris, Phys. Rev. 126, 1470 (1962).

(fon)length

0.00888214
0.06835403
0.15545195
0.22477895
0.24558997
0.23131597
0.22792494
0.20792662
0.13857175

0.00869698
0.06603274
0.15523099
0.22949153
0.24070119
0.23283304
0.22992260
0.20578687
0.13693591

~,„(ev)

0.79335322
1 .002 54140
1.35662122
1.91629754
2.78455907
4.13987423
6.28895075
9.85880897

16.63336036

that we have enough diffuse p functions in the basis
set, the question to be answered is how many s dif-
fuse functions are required'P Table III shows the
dependence of the H ground-state energy on the
size of the s basis, for P = 1/1.5, using the basis
sets listed in Table IV. From Table III we see that
only 7s basis functions are required. We selected
this basis set [Vs/11p, p= 1/1.5] as the optimum
one. This basis set was the one used for the cal-
culations of the cross sections and dynamic po-
larizability.

IV. RESULTS

The final spectra obtained are shown in Table V.
These spectra were used to produce all the results
described below.

A. Cross section for photodetachment

Following the procedure outlined in Sec. II, we
performed the analytical continuation to obtain the
cross sections. Figure 2 shows the results for two
different analytical continuations, indicating the
convergence of the calculation. The convergence is
good for both velocity and length forms. Figure 3
shows our results in both forms compared with
other theoretical results. The agreement among
all calculations is good in general except in the re-
gion very near the threshold. Our best agreement
over the entire range (Fig. 3), in both forms, is
with Geltman, ' who used true continuum wave func-
tions in his calculations. This suggests that we are
representing the continuum well, at least for the
region most involved in the process.

Comparing our results with the experiment in

s exponents p exponents

TABLE IV. Largest basis set used (iis/11P) with the
best geometrical factor P =1/1.5. Exponents above the
solid line are contracted together with relative coeffi-
cients as in the H-atom basis functions. Exponents be-
low the dotted lines are considered as diffuse functions
(modified in various basis sets).

45.0

40.0—

35.0—

(A

fL- 25 ~ 0—
CC
CCI

20.0—CZ

LLI

H PHUTG IGNI ZRT I GN CRG55-SECT I GN

68.16
10.2465
2.34648
0.67332

0.22466
0.082217

0.04374
0.02916
0.01944
0.01296
0.00864
0.00576
0.00384
0.00256

0.73
0.17
0.113

0.04374
0.02916
0.01944
0.01296
0.00864
0 ~ 00576
0.00384
0.00256

i5.0-

i0.0-

5.0—

0 ~ 0
0.7

I I I I I I I I I I I2.7 4.7 6.7 8.7 10.7
ENERGY ( eV )

12.7

FIG. 2. Dependence of the calculated II photoiomza-
tion cross section on diff@rent analytical continuations
(dipole velocity form). The points in the complex plane
used to calculate e(z) were chosen as previously IBefs.
12(a)-(c)j with 8e@;)= (~p~g —&p )/2 and Im@.&) =B(copg+i
—cup;). The figure shows results for R = 0.75 (solid) and
R = 1.00 (dashed). No appreciable changes are noticed
as long as the points are near the real axis.
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g. Sum-rules
45.0

40.0—

35.0—

(A

FV 25.0—
CE
(Xl

20.0—
W
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10.0-'

5 0—

H PHUT(3I GNI ZRT I GN CROSS-SECT I GN
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16 THE PHOTODETACHMENT CROSS SECTION OF THE. . . 1565

TABLE VI. Sum rules for H [see Eq. (13)]. Except as noted, " all theoretical results are for the single channel in
which the H atom is left in the is state. Thus the S; should be less than the bound (which includes all processes).

sp
Length Veloc ity

s(
Length Veloc ity

sp
Length Veloc ity

S3
Length Velocity

Geltman
Doughty et pl.
Bell and Kingston
Langhoff et al. "
Present work
Bounds

1.99
1.51

1.72

1.50

14.0'
14.4
14,7
14.95
14.2

15.0'

14.2
14.2
16.0

14.1

202.4
202
227

198I
201
205
206.1
208.3 206.8

217 +7
206.0

3570 ~

3630
3700

3742
3720
4150

3940 3894
4000 +300

Reference 5 ~

Reference 6.
Reference 7.
C. Schwartz (unpublished) (cited in Ref. 5).

'Reference 28 ~

C. L. Pekeris, Phys. Rev. 126, 1470 (1962).
From Ref. 7.

"Reference 11(d). These sum rules include the process
where the residual hydrogen atom is left in the 2s excited
state.

Assuming Schwartz's bound for the static polari-
zability, Table VI shows that all the sum rules are
satisfied. On the other hand, if Chung's" value is
taken for the upper bound, we exceeded this value
in both forms. This may indicate that the cross
sections near threshold are somewhat large. In-
dependently of which bound is used for the static
polarizability, other calculations seem to indicate
low values of the cross section near threshold.
Consequently we expect the exact values near the
threshold to lie somewhere between our results and
the other calculations.

C. Dynamic polarizability

An alternative way of checking our distribution
is to calculate the dynamic polarizability in the
normal dispersion region below the threshold.
Since there are no bound-bound transitions for H,
it can'be seen from Eq. (7) that both the real and
imaginary parts of the dynamic polarizability are
given directly by g(+).

In general, there are several alternate approach-
es to extracting the information contained in the
frequency-dependent polarizability. First of all,
if there is interest only in the absorptive properties
of the system, we can neglect all the bound-bound
transitions because the imaginary part of n(z) is
given solely by the distribution g(&v) which only in-
volves bound-free transitions. Indeed, in the case
of the hydrogen atom, " ' a better description of
the cross section was obtained when two boQnd-
bound transitions were neglected. Another possi-
bility is to construct the full representation for
n(z) including all bound-bound transitions. In this
case we can extract from n(z) both the dispersive
and absorptive properties of the system. There is
still another possibility which is to use the real
part of n(z) Since it is. directly related. to the in-

dex of refraction by

n((o) -1= 2trN, Re[n((u)], (14)
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we could, in principle, use experimental index-of-
refraction data and discrete oscillator strengths to
perform the analytical continuation. Unfortunately
these data are not accurate enough to produce good
cross sections "~ '"

Figure 5 shows our results for the dynamic po-
larizability compa. red with a, variational-perturba-
tion calculation by Chung. " The curves parallel
Chung's values up to 0.01 h and begin to deviate
significantly above 0.023 hartree. Near the thresh-
old (0.0275 hartree)the difference is very large.
Although Chung's results are expected to be very
accurate for lower energies (where they are con-
verged values for a 140 Hylleraas-type wave func-
tion), they are not converged for E& 0.023 hartree
(just the region where our values start deviating
significantly from Chung's). While it is clear from
Chung's results that inclusion of more terms in the
expansion would not affect this region drastically,
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it is important to note that his wave function is con-
tracted and cannot describe well the behavior of a
diffuse system such as H near the threshold.
(this is clear from Chung's results for Li', a much
tighter system, where a rapid increase in the re-
gion near the threshold is found and a faster con-
vergence is obtained. ) More recently, Adelman"
developed an analytical expression for the dynamic
polarizability of H, using Rotenberg and Stein's"
wave function (a 33 Hylleraas term expansion plus
a tail function) and an asymptotic approximation.
His value for the static polarizability was 215.5
a.u. „but if he uses Chung's value of 206 a.u. , his
results differ from Chung's results by about 4.5-
5.0%%u~ for &u ~ 0.025 hartree. Very close to threshold
this difference jumps to 6.6/o, his value being lar-
ger than Chung's, but still much lower than our
present results. We believe that this large dis-
crepancy near threshold is due to the fact that
Adelman's expression for n(~) is poleless, which
could prevent it from increasing sufficiently in the
region very close to threshold. Thus, while we ex-
pect Chung's value of the static polarizability to be
more exa,ct, we expect our dynamic polarizability
to show a more correct behavior over the whole
range.

Based on all the results presented above, we con-
clude that the velocity form of the frequency-de-
pendent polarizability gives the best results, but

that the agreement with the results from its length
form is very good.

V. CONCLUSIONS

The results obtained permit us to conclude that
a discrete-basis-set expansion can be effectively
used to represent the continuum wave functions.
This "discretization" of the continuum together
with techniques of analytical continuation can be
efficiently used to calculate cross sections for
photoionization, once an adequate basis set is cho-
sen. That makes the method potentially applicable
to large systems.

For H there remains some uncertainty about the
region near the threshold. This region remains
unexplored experimentally. Although the uncer-
tainty is not great enough to invalidate any conclu-
sions about the importance of photoionization in
H, it seems that the subject merits a new experi-
mental investigation, using modern techniques such
as tunable dye lasers and modern systems of de-
tection. "
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