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Many-body perturbation theory is applied to calculate double-electron photoionization for neon and argon.
Cross sections for the outer-shell np and nsnp pair excitations are included in both the dipole-length and
dipole-velocity formulations. Results are in generally good agreement with recent experimental data.

I. INTRODUCTION II. THEORY

Current interest in the phenomena involving
multiple electron ionization is evidenced by recent
experimental work in the rare gases, ' ' where it is
known that these processes can contribute a sub-
stantial percentage of the total ionization cross
section. For neon and argon, independent studies
in multiple ionization from both photon and electron
impact have shown relatively good agreement and

provide the impetus for careful theoretical analysis
by means of calculations which include correlation
effects. Theoretical calculations which include
these effects are desirable for an accurate des-
cription of multiple yhotoionization processes, and

important work has been done for helium, ' bery-
llium, ' and neon. '~'

In this paper we present the results of a calcu-
lation of the total double-electron photoionization
cross sections a"(~) for both neon and argon in the
energy range extending to 200 eV above threshold.
We have applied the many-body perturbation theory
(MBPT) of Brueckner" and Goldstone" using the
techniques developed for application of this theory
to atoms. ' As in previous work" we have extended
the MBPT prescription with a supplemental de-
veloyment in Hayleigh-Schrodinger perturbation
theory (HSPT) using I-S-coupled wave functions for
the basis set. The numerical techniques used in ap-
plying MBPT to atoms are equally applicable in ap-
plying BSPT to many-electron systems. Use of
RSPT in this work allows one to distinguish I.S
core-structure effects and to make use of ex-
perimentally determined two-electron removal en-
ergies. New insight into the double photoionization
process is provided by detailed analysis of multi-
ple partial-wave excitations from both np' and nsnp
outer-shell electron pairs, where it is found, in
particular, that the nsnP transitions contribute a
substantial fraction of the total v"(ur).

Details of the theory are presented in Sec. II.
Section III contains a discussion of special com-
putational techniques and numerical results for the
total o"(u). A summary follows in Sec. IP.

To calculate o"(~~), a perturbation expansion is
developed for the imaginary part of the frequency-
dependent dipole polarizability" o. (v) for use in the
relation"

a "((o)= (4v/c)(u Imo. (~~),

where (d is the photon energy and c is the speed of
light. Atomic units are employed throughout except
where noted otherwise.

Neglecting the spin-orbit interaction and other
relativistic effects, the expansion for Imo. (&u) is ap-
plied to an atom with atomic Hamiltonian

H=H +H,
where

Q2 g
If, = ——' ——+ V(r;)

2

and

The term v,.f represents the Coulomb interaction
between electron pairs, and the single-particle po-
tential V(r,.) is chosen to account for the average
interaction of the ith electron with the other N- 1
electrons.

In the dipole approximation, a perturbing electric
field I'zcoszvt adds to H, a term of the form

which leads to an expression for Ima(&u) in terms
of the dipole matrix element. For double-electron
photoionization, the dipole-length matrix elements
are given by

where 4, and 4
&

are many-particle ground and con-
tinuum states, respectively, with 4& representing
the excitation of an electron pair from ground-state
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orbitals P and q to excited-state orbitals k' and k.
The dipole velocity-form matrix element is ob-
tained by replacing the matrix element in Eq. (6) by

(E, —E ) '(4 )g (4,},
where Eo and F& are energy eigenvalues corres-
ponding to +o and +y

In lowest order, 4o becomes the unperturbed
state C, given by

(6)

where 4, is represented in the Bussell-Saunders
L,Sllf~M~ coupling scheme as a linear combination
of determinants, each containing N different single-
particle states Q„which are solutions of

(c)

In this representation, for example, the lowest-or-
der energy E,"' of Eq. (8) is given by

(e)

FIG, 2. Second-order diagrams associated with
electron screening effects. The cross ind';cates inter-
action with the potential {included in &, j. Exchange dia-
grams are al.so included.

(c)

The excited-state single-particle continuum or-
bitals are normalized in the k scale" according to

P„(x)= rR, (r)
= cos[kx+ (q/k) 1n(2k') ——,

'
m(l —1)+6, ],

where V(x) -q/x as x- ~. With this choice of nor-
malization Eq. (1}becomes

16& max iZ(p4' k k) i

c k'

(e)

k'
q k

k
II

$k"'

FIG. 1. Diagrams contributing to the matrix element
Z{pq —&', &). Full circles indicate matrix element of &;
broken lines represent Coulomb interactions. Exchange
diagrams are also included.

Individual terms in the perturbation expansion for
Z(Pq-k'0) involve single-particle states and may
be represented by open diagrams of the form shown
in Figs. 1 and 2. The lowest-order double photo-
ionization diagrams contain one dipole interaction
and one interaction with the electron-correlation
perturbation H, of Eq. (4) as shown in Figs.
1(a)-1(d). The time ordering of the interactions
proceeds graphically from bottom to top, with dia-
grams 1(a) and 1(b) representing ground-state cor-
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relations (GSC) and diagrams 1(c) and 1(d) repre-
senting final- state correlations (FSC). Particular
higher-order diagrams of interest are shown in
Figs. 1(e)-1(g).

Exchange diagrams are always understood to be
included; For example, the exchange diagram of
Fig. 1(a) corresponds to an interchange (at the
Coulomb interaction vertices) of either the p and q
hole lines or the k' and k" particle lines. A si-
multaneous interchange of both pairs does not form
a diagram distinct from Fig. 1(a).

Certain exclusion-principle-violating (EPV) dia-
grams may arise from interactions with the po-
tential (included in H, ) and from the factorization
of unlinked diagrams" in the expansion for Z(Pq
-k'k). Such diagrams can represent important phy-
sical effects and usually appear in the form shown
in Fig. 1(d) with r=p. The Coulomb interaction
portion of this diagram, for example, in the case
where r =p, and q and k have the same angular mo-
mentum quantum number, is closely related to the
monopole transition (electron shakeoff)' matrix ele-
ment.

The general form of the energy denominators oc-
curring in GSC diagrams is

through the dipole interaction. An outer-shell P
electron then fills the unoccupied x orbital with a
simultaneous ejectiori of electron q to the con-
tinuum orbital k. The unperturbed energy de-
nominator for this "virtual-Auger""' process of
diagram l(d) is given by

D = 6„—&~~ + ( —6p —e + eg~ + cp), (15)

where the term in parentheses corresponds to the
photon energy (u. Equation (15) is the lowest-order
approximation to the energy difference between the
final and intermediate states and can vanish for the
special case when

6~= —6„+&AD+6 . (16)

R = [ —i ,' I'((o)—+n. ((u)]/D,

where

Since energy is then conserved between the inter-
mediate and final states, diagram 1(d) also ac-
counts for the possibility of certain Auger tran-
sitions.

The singularity in Eq. (15) can be removed by in-
cluding higher-order diagrams such as shown in
Fig. 1(e). Diagrams 1(d) and 1(e) together form the
first two terms of a geometric series with ratio

D= (Ep —t~ )

and for FSC diagrams,
N

D = (~~ —~, )+&a,

(13a)

(13b)

(18)

where &~ and &„are single-particle energies for
a hole-particle energies for a hole-particle pair,
and N' is the number of pairs excited In Eq.. (13b)
the cases in which the denominator may vanish are
treated according to

lim(D+ig) '= PD ' —im5(D),
tl ~0

(14)

where P represents principal-value integration.
Certain classes of diagrams may be summed ge-

ometrically to produce shifts" in the single-par-
ticle energies corresponding to energy correl-
ations. They are included semiempirica1. ly by re-
placing the sum over single-particle energies &~ of

Pg
Eq. (13) with minus the experimental removal en-
ergy. Shifts should also be applied to the excited-
state single-particle energies. However, in most
cases these shifts are small, and in this work all
excited-orbital energies were taken to be Hartree-
Fock (HF) frozen-core calculated values.

A special type of denominator shift can be illus-
trated in Fig. 1(d). The physical excitation pro-
cesses for this diagram might be described as fol-
lows. The inner-shell electron x is the primary
photoelectron excited to the continuum orbital k'

77 6 + 6 —E~' —eg" + ~e
(19)

(q,
a'a

iz i@a')(@a'[z i@ ) (20)

where the (d dependence of —,
' I" and D' is under-

stood. Note that both real and imaginary pieces
contribute in the expansion for Z(Pq-k'k).

In Eqs. (18) and (19), C ~ is the HF wave function
for the intermediate state in which the inner-shell
electron x has been excited to the continuum orbital
k'. Similarly, 4 ~~,

~ represents the HF wave func-
tion for the state in which electrons P and q have
been excited to continuum orbitals k' and k". The
term & is interpreted as a contribution to the cor-
relation energy" of the 4„state. The term —,

' F is
a lowest-order width associated with the 4~ state
and determines the Auger rate for that state. Both
of the terms & and —,

' I' arise from the integration
over k" in diagram l(e) in which the energy de-
nominator is treated according to Eq. (14). In final
form, with D' =D+ &(&u), diagram 1(d) may be ex-
pressed as
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TABLE I. Argon dipole transitions.

State

3s 3p S 3s3p (P, D S)

3s 3p S—3s3p (P, ~P)

kskp(L') P
kpkd
kskf
kdkf
k'pkp(L') P
k'dkd
kskd

6.7
64.1

1.8
6.7
9.8

9.5

m (eV) =89.8

5.6
59.8
2.4
9.4
9.7
1.7

11.4

2.4
46.1
1.7

24.2

7.9
7.2

10.5

Contribution" (%)
100.7 239.5

Notation (L') indicates that all allowed terms of the k'k electron pair are to be included which
are consistent with the intermediate- and final-state coupling.

Geometric mean of length and velocity curves (see Ref. 23).

III. CALCULATIONS AND RESULTS

A. Methods of calculation

For both neon and argon, the transition matrix
elements Z(p, q-k'k) of Eq. (6) were calculated for
two principal cross sections. The first cor-
responds to photoejection of the outer-shell nP'
electron pair leaving the np4 core configuration
coupled to 'P, 'D, or 'S. The second corre-
sponds to excitation of an nsnP electron pair
leaving the nsnP' core coupled to either 'P
or 'P. 'The allowed dipole-transition final-state
configurations and terms are listed in Tables I and
II for argon and neon, respectively. Also listed
are the calculated relative contributions of each
configuration to the total cross section. The sel-
ected angular-momentum quantum numbers of the
excited k'lkl electron yairs were the ones expected
to give the largest contributions to o "(&u). In a.

more complete treatment, additional combinations
from higher l values and from other inner-shell ex-
citations should also be included.

Sets of excited bound and continuum orbitals were
calculated using the Hartree-Fock V~ ' po-

tential. "~" Where appropriate, a projection-oper-
ator technique" was used to ensure orthogonality
of excited- and ground-state orbitals. For each /

value, eight bound excited states were explicitly in-
cluded, with the contribution from the remainder
approximated by the n ' rule. ".For sums over
states, the continuum was approximated by 30 or-
bitals ranging from k=0.0625 to 24.0.

In the MBPT apyroach, the lowest-order cor-
related matrix element Z(pq -k'k) is constructed
from the sum of the first four diagrams of Fig. 1
with one calculation for each pq -k'k excitation in
which the individual ls m, m, electron quantum num-
bers are consistent with those of the single ground-
state determinant. Using the RSPT method, Z(Pq
-k'k) is constructed for each of the possible tran-
sitions listed in Tables I and II using LS-coupled
wave functions for the basis set. In both methods
the final matrix element Z(Pq-k'k) is numerically
represented as a square matrix of ten preselected
continuum k values ranging from k = 0.0625 to 5.0.
The finer k mesh required for the integration in Eq.
(12) is developed via a, four-point Lagrange inter-

TABLE II. Neon dipole transitions.

State
Contribution" (%)

cu (eV) = 130.6 160.5 278.0

2s 2P6 $—2s 2P (P, D, $)

2s 2p S—2s2p (P, P)

kskp(L') P
kpkd
k skf
kdkf
k'sks(L') P
k'pkp
kskd
k'dkd
kpkf
k'fkf

4.3
74.0
1.9
2.2
0.5

13.9
2.9
0.2
0.1
0.01

3 4
69.9
1.9
3.1
0.5

15.1
5 4
0 4
0.3
0.04

3,1
52.4
1.8
5.8
0,4

21 ~ 6
10.5
2.7
1.2
0.5

Notation (L') indicates that all allowed terms of the k'k electron pair are to be included
which are consistent with the intermediate- and final-state coupling.

Geometric mean of length and velocity curves (see Ref. 23).
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polation procedure which can be appropriately ad-
justed for each photon energy &.

The individual diagrams of Fig. 1 are normally
evaluated in the usual manner by a sum over inter-
mediate bound states and integral over the con-
tinuum. Diagram 1(a), however, is difficult to
evaluate by this technique because of the radial in-
tegrations in the k" to k dipole matrix elements
when both k~ and k represent continuum spin or-
bitals. An alternative method involves application
of the differential-equation or effective-operator
approach which has been used successfully by other
authors. '~""&" In radial form (quantities with sub-
script A refer to radial parts only) diagram 1(a) be-
comes

(21)

where v represents the radial part of the Coulomb
interaction and where the sum over k» is limited
to excited single-particle states. If one defines
I4'~ )a such that

Applying closure, one obtains the equation

(E —H, ) I@~ &a=F(x),

where

r
F(r& = ( „., dr'~' I', (~'&P, (r'&

0

(25)

fl OCC

(26)

In Eqs. (24) and (25), H, is defined as in Eq. (9).
The term P, (x) is th. e radial part of the ith spin or-
bital contained in the Coulomb matrix element of
Eq. (24), and z is the appropriate kappa value. The
sum over nI'„refers to any bound, occupied or-
bitals which must be projected out of Eq. (24) to ef-
fect closure. For large x the function E(r) ap-
proaches zero, and since E&0, the solution I4~&„
has the nature of a bound function. Substitution of
I@„&„into Eq. (23) completes the evaluation of the
diagram.

I&"&„&8+"Iv Ipq&„
&& B Ep+ E —E~' —E'~&&

a
(22) B. Argon

then D~ is evaluated according to

Letting E= e~ +, —ee~, Eq. (22) takes on the form

(24)

The total o "(&o) for argon is shown in Fig. 3 for
both dipole-length and dipole-velocity matrix ele-
ments (a preliminary account of these results was
presented previously" ). These curves are the dir-
ect sum of 30 individual cross sections represented
according to the LS-coupled terms and config-
urations of Table I. The net contribution of each
par'tial-wave configuration (as a percentage) is also

27
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FIG. 3. Total 0 '(~)
for neutral argon. Full
curves are lowest-order
results for dipole-length
(L, ) and dipole-velocity
(V) matrix elements.
Broken curves include
second-order correla-
tions. Exper imental
data points are from
Schmidt et aL. (Ref. 1),
full circles; Wight and
Van der Wiel (Ref. 2),
open circles; Samson
and Haddad (Ref. 3), ,
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son (Ref. 5); full tri-
angles. Arrows mark,
respectively, exper i-
mental (Ref. 24) ex-
citation thresholds for
the 3s'3p'('P, 'D, 'S)
and Bs3P (3P, P) core
configurations.
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is the possibility that further addition of higher-or-
der FSC diagrams such as shown in Figs. 2(a)-2(f)
might produce significant correlations.

Experimental data yoints in Fig. 3 were nor-
malized with the total argon yhotoionization cross
section of West and Marr, "using values for the
ratio 8 =o "/o' as determined in the experi-
ments, ' ' ' and assuming that g" is approximately
zero. The data from Samson and Haddad' have been
included only for the energy range below the triple
photoionization threshold at 84.3 eV, since above
this value their results presumably show a large
amount of q".

The correlated length-form curve of Fig. 3 shows
the best overall agreement with experiment; how-
ever, the interpretation that the length-form curve
is more accurate is probably incorrect. It is more
likely that, for the partial-wave configurations in-
cluded, the true cross section is bracketed by the
correlated curves of Fig. 3 and is thus below ex-
periment. It is expected that inclusion of other ex-
citation channels (e.g. , 3P'-kPkg, kfkg, etc ;.3s3p
-kPkf, kdkg, etc. ; and 3s'-k'k) might contribute
the additional 10-15/p increase necessary for
closer agreement. Figure 5, for examyle, shows
length and velocity curves for the four 3P'-k'k
channels listed in Table I. Based on the general
form and amplitude of these curves, it is not un-
reasonable to expect that contributions from higher
E-value partial waves and from other inner-shell
excitations would improve agreement with experi-
ment. Addition of the second-order diagrams of
Fig. 2 is also expected to shift the maximum pos-
ition and initial slope of the calculated curves to
more closely match the experimental result. Fur-
ther discussion of these diagrams is presented in
the next section.

C. Neon

The total cr"(&u) for neon is shown in Fig. 6 for
both dipole-length and dipole-velocity matrix ele-
ments. These curves are the direct sum of 40 low-
est-order cross sections represented according to
the terms and configurations of Table II. As in ar-
gon, the net percentage contribution of each par-
tial-wave excitation is listed for three repre-
sentative photon energies. Experimental data
points in Fig. 6 were again normalized according to
the total neon photoionization cross section of West
and Marr" using values for the ratio 8 = o "/o' as
determined in the experiments. ' '

The neon results are qualitatively similar, to
those for argon with the exception that the dis-
crepancy with experiment of the neon o"(~a) max-
imum position and initial slope is more pronounced
than in argon. For higher photon energies, how-

30-

25-
E~20

O

0 ]g
+

b 'lO

0
h

0
~ g

600

PHOTON ENERGY (EV)

I

310

FIG. 6. Total 0 (+) for neutral neon. Lowest-order
results are shown for both dipole-length (solid curve)
and dipole-velocity (broken curve) matrix elements. Ex-
perimental data points are Rom Schmidt et al. (Ref. 1),
full circles; Wight and Van der Wiel (Ref. 2), open cir-
cles; Samson and Haddad (Ref. 3), open triangles; Carl-
son (Ref. 5), full triangles; Lightner et al. (Ref. 4), open
square, Arrows mark, respectively, experimental
(Ref. 24), excitation thresholds for the 2s22p4(3P, ~D, ~S)

and 2s2p5(3P, ~P) core configurations.

ever, the agreement is generally better. The dis-
placement of the calculated maximum position to
the right in Fig. 6, and to a lesser degree in Fig.
3, may be due to screening effects. Since all con-
tinuum wave functions are calculated in the HF V" '
potential, the one-electron orbitals are not par-
ticularly appropriate for use in evaluating matrix
elements corresponding to double excitation pro-
cesses. This is reflected by the asymptotic form
shown in Eq. (11), where V(x)-1/y as x-~. More
correctly then, the outgoing electron wave functions
could be calculated in a V~ ' potential so that asym-
ptotically, at least, the orbitals would more ap-
propriately account for the net plus two charge of
the residual ion. The picture is further compli-
cated by the energy spectrum of the excited pair
which shows that, in general, the available kinetic
energy is unequa1. 1y distributed. The faster elec-
tron may therefore be screened to some extent by
the slower one, so one might argue that the faster
electron "feels" a residual charge of approximately
+1 while the slower electron sees a residual charge
of approximately +2.

Provided that enough terms in the perturbation
expansion are included, the actual choice of po-
tential should not affect final results. In lowest or-
der, however, results can be quite different. It can
be shown, for example, that the RSPT angular fac-
tors for the first four diagrams of Fig. 1 are iden-
tical for both the V~ ' and V~ ' potentials when used
in conjunction with the projection-operator tech-
nique. " Since the radial wave functions of the ex-
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FIG. 7. Velocity-form cross sections for the neon
2p'-kPkd excitation. Curve labeled V (V ) corres-
ponds to orbitals calculated in the HF V (V ) poten-
tial. Curve labeled CP is from the calculation by Chang
and Poe (Ref. 9).

cited-state orbitals are quite different for the two
cases, the lowest-order o"(~) calculations will al-
most certainly be different. Details of the potential
should affect the second-order diagrams of Fig. 2

in which electron- correlation interactions depend
sensitively. on the form chosen for V(x) in Eg. (4).
These diagrams are of the type associated with
electron screening effects and would probably need
to be included to produce agreement in o "(&u) cal-
culations for both choices of potential.

The curves shown in Fig. 7 may help to illustrate
these points. Shown in the figure are two lowest-
order, velocity-form calculations for the neon 2P'
—kPkd dipole excitation. For the curve labeled
V" ', all excited-state orbitals were calculated us-
ing the HF V" ' potential. The curve labeled V "'
corresponds to orbitals calculated in a HF U~ ' po-
tential based on the average configuration energy.
The shift in size and position of the maximum is
immediately apparent. Near threshold the slope of
the V" ' curve agrees better with experiment but
is, in fact, too steep. The V~ ' maximum position
also occurs earlier than that shown by experiment.
Presumably, the correct o "(&u) curve for the 2p'
-kpkd excitation lies somewhere intermediate be-
tween these two cases and should follow in either
calculation from inclusion of the diagrams in Fig.
2. Since the areas under the V" ' and V~ ' curves
are approximately the same, the lowest-order os-
cillator strength appears to be relatively indepen-
dent of the choice of potential. The overall shape
of the cross section, however, is sensitive to the
detailed structure of the potential and therefore de-
pendent upon higher-order terms in the pertur-
bation expansion for which this structure may be
important.

The curve labeled CP in Fig. 7 is the 2P'-kPkd,

velocity-form result from a MBPT calculation by
Chang and Poe.' The large discrepancy between
their result and our V" ' curve is somewhat sur-
prising since both calculations are based on V" '
excited-state o»itals. Because of differences in
computational technique, a detailed, term-by-term
comparison of the two results is difficult. Qne con-
tributing factor to differences in the two curves
could be the omission of contributions to certain
diagrams in the Chang and Poe calculation. In dia-
gram 1(a), for example, the electron labeled k" is
allowed to represent s, p, d, and f excited-state
orbitals, while Change and Poe have included only
the P and d intermediate states. We find in our
work that contributions from both s and f excit-
ations (including angular factors) are non-negligible
in many cases and are, in fact, comparable to
those from the P and d excitations. However, a
calculation in which the s and f contributions were
omitted from the RSPT expansion shows, at most,
a 20/g increase over the original result and there-
fore does not fully account for the discrepancy. As
a further test, because of the algebraic complexity
involved in determining angular factors in both the
RSPT and MBPT formalisms, we carried out a cal-
culation using the usual MBPT formalism. In total,
the MBPT and RSPT angular factors were found to
agree exactly in both phase and magnitude and the
resulting kpkd velocity-form curve was essentially
identical to the RSPT result.

Although our calculated V~ ' curve for the 2P'- kPkd excitation shows less favorable agreement
with experiment, it nevertheless is based on in-
clusion of all first-order diagrams and has been
verified in both the MBPT and RSPT formalisms.
While the CP curve initially shows better agree-
ment with experiment, inclusion of other partial-
wave channels (as shown by Table II) will push their
result considerably above experiment. Further
study of screening effects and choice of potential
will be necessary to resolve the lack of agreement
between calculations and experiment.

As a final consideration, it is of some interest to
examine the kinetic-energy distribution of the
photoejected electrons. Referring to Eq. (12), the
energy spectrum is obtained by differentiating
o"(~)with respect to e,. Since e~=-,' k', we have

do"(&u) dk do"(&u) 16m
~ Z(Pq -k'k) I

dq~ d& dk c k'k

where the matrix elements Z(Pq -k'k) are con-
structed as in Eqs. (6) or (7). Dipole-velocity en-
ergy distribution curves are shown in Fig. 8 for m

= 278 eV. Results are plotted separately for the to-
tal 2P'-k'k and 2s2P -k'k excitations. The curves
are made symmetric by adding the distributions
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from each outgoing electron. Peaks in the two
curves correspond to differences in excitation
thresholds for the five possible core-configuration
terms shown in Table II. The tendency toward un-
equal sharing of the total available kinetic energy
is indicated by the deep minima of Fig. 8, while for
photon energies near threshold the same curves be-
come much flatter. This behavior is typical in the
double yhotoionization process and is in qualitative
agreement with the findings by Carlson' and by
Chang and Poe. '
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IV. CONCLUSIONS

In summary, we find that a low-order perturb-
ation calculation is sufficient to reproduce the es-
sential features of the double photoionization pro-
cess, while providing insight into the excitation
mechanisms involved through electron-correlation
and partial-wave analyses. Appreciable contrib-
utions arise from a number of partial-wave chan-
nels, and it is found that both nP' and nsnp pair ex-
citations must be included to obtain good results.

Calculations for neutral argon show reasonably
good agreement with experimental data although
less favorable agreement is seen in the case of
neon. Discrepancies between theoretical and ex-
perimental results may be due in part to screening
and possibly core-polarization effects which may
not be adequately accounted for in a first-order
calculation. For low-Z atoms in particular it is ex-
pected that inclusion of higher-order terms will be
necessary to provide close agreement with experi-
ment.

0
0 50 100 150

~(eV)
200 250

FIG. 8. Kinetic energy distributions for the neon
2p —k'k (solid curve) and 2s2p-k'& (broken curve) exci-
tations calculated at ~=278 eV. Chain curve is the sum
of the two contributions.

We hope that this paper will stimulate further
study of the multiple ionization process for both
open- and closed-shell systems.
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