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Theory of the vibrational structure of resonances in electron-molecule scattering
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We derive a simple Hamiltonian representing the coupling of an electronic level of positive energy to the

continuum of scattering states as well as to the molecular vibrations. By summing the perturbation series for

the S matrix to infinite order in the bound-state —continuum interaction, an effective non-Hermitian boson

Hamiltonian describing the dynamics of vibrational motion in the resonance state is obtained. It is shown

that the effective Hamiltonian can be diagonalized, yielding explicit expressions for the vibrational excitation

cross sections. The theory is applied to two representative examples, the 3.8-eV shape resonance in CO,

and the 2.4-eV shape resonance in N, . The results exhibit a clear improvement over those obtained with

existing theories, which express the cross sections in terms of conventional Franck-Condon factors. The

influence of the anharmonicity of the potential functions on the structure of the vibrational excitation

functions is discussed.

I. INTRODUCTION

The occurrence of resonances in the scattering of
electrons from atoms and molecules is a well-
known phenomenon. " The vibrational excitation
of molecules by low- energy electrons proceeds
most effectively via resonant processes. While
resonances in diatomic molecules have been ex-
tensively investigated for a long time, ' most of the
recent experimental work concentrates on. poly-
atomic molecules. ' '

It has been found that a variety of resonances is
usually associated with a given molecule. The
resonances can be classified according to the
molecular parent state from which they derive by
the attachment of an electron. ""In the context
of vibrational excitation, a classification of the
resonances according to the ratio I'/a, where I'

is the resonance width, and ~ the vibrational fre-
quency, has been found useful. "'" In the limit
I' «&, which has been termed the compound-mol-
ecule limit, ' the cross sections in the elastic and
the vibrationally inelastic channels exhibit narrow
peaks corresponding to the vibrational levels of
the temporary negative ion. The resonance thus
decomposes into a number of vibrational subreso-
nances, similar to the spreading of the oscillator
strength of an electronic transition over a number
of vibrational levels according to the Franck-Con-
don principle. " In the opposite limit, I'»co,
usually called the impulse limit, ' there are no
well-defined vibrational levels of the negative ion.
Correspondingly, the various vibrational cross
sections exhibit a broad and structureless hump.
The intermediate case I'=& has been found to be
of particular interest. "'" The prototype example
is the 2.4 eV shape resonance in N, .' The vibra-
tional cross sections exhibit an oscillatory struc-
ture which changes in a peculiar manner as the

vibrational quantum number of the final state in-
creases. The maxima and minima shift towards
higher energy and the separation and the width of
the peaks increase markedly. Recently, the 3.8-
eV shape resonance in CO, has been found to ex-
hibit this behavior in an even more pronounced
form ""

We confine ourselves in the present work to the
discussion of the vibrational phenomena in reso-
nant electron-molecule scattering. We shall not
be concerned with the calculation of absolute cross
sections, angular distributions, and rotational ex-
citation. Methods to calculate absolute-scattering
cross sections for small molecules have been de-
veloped and applied by Temkin and Vasavada, "
Henry and Lane, "Burke et al. ,

"Schneider, '
Morrison gt al. , Hescigno et gl. , and. Chandra

and Temkin. " Cross sections for simultaneous
excitation of vibration and rotation Bs well as an-
gular distributions have been calculated by the lat-
ter authors, and by Henry' and Brandt et al."
While the rotational structure of the scattering
cross section cannot be resolved in present exper-
iments and the determination of total cross sec-
tions is difficult, ' the vibrational structure of the
elastic and vibrationally inelastic cross sections
is easily observable and of considerable current
interest. In view of recent experimental work on

larger molecules such as formaldehyde' or ben-
zene, 4 a theoretical approach which is general and

simple enough to be applicable to such complex
systems is of interest.

II. CALCULATION OF VIBRATIONAL-EXCITATION

CROSS SECTIONS

Instead of starting from the full scattering wave

function and the associated Schrodinger equation
2nd introducing approximations to the wave func-
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tion, our approach is to formulate a model Hamil-
tonian which describes only those processes we
are interested in and which is simple enough to be
amenable to an exact solution.

A. Hamiltonian

Restricting ourselves, for the moment, to the
one-particle approximation, the electronic Hamil-
tonian takes the form

H" = d'r gt (r)H" (r,R) P (r),

As is we1.l kn. own, resonances are —from the
conceptual as well as from the computational point
of view —best described as bound states embedded
in the continuum. The mathematical formulation
of this idea is due to Feshbach" and Fano." The
approach of Feshbach is to introduce two projec-
tion operators P a.nd Q

P+Q=l, P =P, Q =Q

with the requirement

PC-. =4,

where

el el el el=H@+ Hp~+ H~@+ H@~,

&',. R a~a, ,

H~'~ = d'r g~ (r)H" (r,R)g~(r)

Qkak + ~ Vkk, Q„Q
k'W k

H'q'q= d'r g~q(r)H" (r,R) jbq(r)

(4)

where 4 is the tota1. scattering wave function and
r refers to the position of the scattered electron.
PC thus exhibits the correct asymptotic behavior
whi1. e Q4 vanishes asymptotically. The full Hamil-
tonian of the system is now decomposed according
to

H= (P+Q)H(P+Q) =Hqq+H~~+H~q+Hq~, (1)

where Hqq stands for QHQ, etc @ca.n be chosen
such that ".he eigenvalues of H& are discrete, "
while H» has a continuous spectrum. H~@ and

H@~ represent the coupling of the discrete states
to the continuum.

Guided by these ideas, we now formulate a Ham-
iltonian which is suitable for the description of the
vibrational phenomena in the resonant scattering
of electrons from molecules. To describe the
electronic motion for a fixed nuclear configuration
characterized by a set of M internal coordinates
8, the field operator"" t/r(r), which annihilates
an electron at the position r, is expanded in terms
of a suitable basis set of one-particle functions,

g(r) = g (p,.(r, R)a, + Q y~(r, R)a~
k

k, i
Vk,. Ra a, ,

and the &', , ek, V»„and V,-k are the corresponding
matrix elements of H" (r, R), i.e. ,

e', (8) = d'r y,*(r,R)H" (r,R)y, (r,B),

etc. 7he bound state orbitals p,. have been as-
sumed to diagonalize H@@. Since the continuum
orbitals y» are subject to the condition (3), they
cannot be freely chosen to diagonalize H». In
addition, it is assumed t,hat 6k and Vkk, are in.—

dependent of the nuclear coordinates R.
To include the vibrational degrees of freedom we

have to augment this Hamiltonian by the nuclear
kinetic- energy operator and the electrostatic repul-
sion energy of the nuclei. Expanding this latter
energy and the orbital energies e', (8) in powers
of R —R„where R, is the equilibrium geometry
of the molecule in the electronic ground state, we
obtain in the harmonic approximation for the closed
channel part of the Hamiltonian'

where a,. and ak are the annihilation operators""
for a particle in the orbital y, (r, 8) and y~(r, 8),
respectively. The y, (r, R) are square-integrable
one-particle wave functions corresponding to dis-
crete one-particle states and the y„(r, 8) are con-
tinuum one-particle wave functions. The contin-
uum states

f y,& are chosen to form an crthonor-,
mal set orthogonal to the bound one-particle states

hf

Hqq P&', (0)a, a, +g—-(u, (b, b, +&)
i s=l

+ g g tc;, (a;a, —n, )(b, +bt)
s=l

+ Q Q y',. „,(a)a,. —n,. )( ,b+b)( ,,b+b)t,
sls'=1

where n. , is the occupation. number of the orbital i, i.e.,
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n, = 1(0) for orbitals occupied (unoccupied) in the elec-
tronic ground state. The b, and b~ are a,nnihila-
tion and creation operators for vibrational quanta"
and related to the (dimensionless) normal coordi
nates Q,

"of the molecule in its electronic ground
state according to

b, = 2 ' '(Q + 8/BQ ), b~ = 2 'i'(Q —8/sQ ) .

The set of dimensionless normal coordinates Q
is connected with the set of internal coordinates
R —R, by the usual linea. r transformation I."

8 —8 = I~ '"Q, (8)

where denotes the diagonal matrix of ground
state vibrational frequencies ~„s= 1. . . M. The
zo, and yo, ~ are the linear and quadratic coupling
constants" describing the interaction between the
electronic and vibrational motion and are given
by

0 1 ~& 0 1'"=~ sq' "-=4 sqsq,
The subscript 0 indicates that the derivative is to
be evaluated at the equilibrium geometry of the
electronic ground state.

Some remarks on the Hamiltonian (5) are ap-
propriate. Firstly, it must be admitted that the
harmonic approximation may be a poor or even
inappropriate one in some cases. However, the
restriction to the ha, rmonic approximation is in-
dispensable to render the problem solvable in a
closed and transparent form. The influence of an-
harmonic effects will be discussed in some detail
in Sec. IIIB. Secondly, we sha, ll adopt the adiabatic
approximation. " It consists in the assumption that
the electronic operators a„a~ commute with the
boson operators b„b~, although they depend on the
nuclear coordinates, as can be seen from Eq. (2).
In the usual phraseology, the a„a~ are assumed
to depend "only pa, rametrically" on the nuclear co-
ordinates. " Finally, it is important to note that
using the Hamiltonian (5) we are by no means tied to
the one-particle picture introduced for the deriva-
tion of Eq. (5). In the adiabatic approximation and
provided that a quasiparticle picture' is appli-
cable, the &', , ~', , and y',. „,ca.n be "renormalized"
to include reorganization and correlation ef-
fects.""The linear and quadratic vibrational
coupling constants are still given by Eq. (7), but
with the one-particle energy e,'. (Q) replaced by the
corresponding renormalized level energy. Thus,
all previously developed bound state methods for
calculating resonance energies' ' can be used to
obtain the renormalized e', (0) and the renormalized
coupling constants z', , and y',. „,.

For the ensuing calculation we rewrite our final
Hamiltonian, (4) a.nd (5), in the form

H=H +H,
M

H, =Q c', (0)ata, +Q c„a~ta„+Q (u, (b,'b, +-,')

+ g P tc', ,(ata,. —n, )(b, +.b~)
S S=1

+ P g yo „,(a;a; —n, )(b, + bt)(b, , +bt, ),
SyS =l

H; = ~ (V,.„a, a + V„.a a,.)+ ~ V„„,a a, .t

ttk ky k'

(8b)

The first term in H, , which causes electrons to
"hop" between the one-particle states

~ p, ) and

I p&) and thus converts the closed-channel states
~y, ) into resonances, is analogous to the hopping
interaction in the well-known Anderson Hamil-
tonian, ,

"widely used to describe magnetic impurity
centers in metals" and atoms chemisorQed on
metal surfaces. " As noted above, the Ek and the
direct scattering potential t/"», are assumed to be
independent of the nuclear coordinates Q, which
means that electrons in the continuum states

~ y~)
do not couple to the molecular vibrations. We are
thus neglecting direct vibrational excitation through
the dipole and polarization mechanisms. "' The
direct vibrational excitation is usually weak com-
pared to the vibrational excitation via resonances.
Finally, it should be noted that the matrix elements
V,.k are in general functions of the nuclear coordi-
nates Q, and thus, do not commute with the boson
operators b„b~.

(

where ~4'z") is the ground-state wave function of
the target with N electrons. In the adiabatic ap-
proximation"

(10)

Correspondingly, the target state vector after the
interaction is

B, Transition probability and cross sections

For definiteness, we consider shape reso-
nances" associated with the electronic ground
state of the target molecule. The incident elec-
tron is captured temporarily in the field of the
target molecule; after its reemission, the mole-
cule is left in its electronic ground state, but pos-
sibly vibrationally excited. The asymptotic initial
and final states are then
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M

El = Eo + ~ 2 ('ds+ 6 p )
s=l

)If

Ez=Eo+ , n, + & +ep, ,

(12)

Eo denoting the electronic-ground-state energy.
With these definitions, the total transition prob-
ability from the initial to the final state is given
by"

iso& denotes the ground state of the N-electron
system,

i
0) the vibrational ground state of the

target molecule and in, . . .n„& a vibrationally ex-
cited state with n, quanta of the sth normal mode
excited. The corresponding initial and final- state
energies are

(4)
W)),p (B~~. . . , B~)

(F,P iT&2) il, P&=(n, . . .n„ i V,„.
x (e~-H+irt) 'V,~ i0), (20)

=2nD ~p, —&p+ n, (d, I,P' T"' I,P
s=1

(F,P' iT"'if, P& =(F,P iH, (E, K,+zg)-' H, if, P&,

(19)

where g is a positive infinitesimal. Using the ex-
plicit form of the states iI, P& and iF, P'& given in
Eqs. (9)-(11) and the commutation relations for the
electronic creation and annihilation operators, "
we obtain in the adiabatic approximation

s(v) = &exp (-i
~ 00

dt H, ())) (14)

W, .,(n„. . . , n, )= iim (1/r) i(F,p iS(T) ir, p& i'

(13)

with the S matrix

Av

where H is a pure boson Hamiltonian,
N Sl

H=~',.(0)+ g ~,b,'b, + P )).", ,(b, +b,')
s=1 s=l

+ Q y',. „,(b, +bt)(b, , +bt, ).
s, s =1

(21)

H (t) = e'"O'K e '"o' (15)

cup, ,(n„. . . , n„)

=2n6 &p, —&p+ ~ ~ FP' T I P
s=l

(17)

Since shape resonances in actual molecules are
usually well separated and do not interact ap-
preciably with one another, it is sufficient to con-
sider only one resonance orbitali. In addition, we
restrict ourselves to pure resonance scattering,
i.e. , we neglect the direct scattering term in H,
[the second term in Eq. (8b)]. Expanding now the
8 matrix in a perturbation series in II,

S(r) = 1 —i dt Hi(t )

where F is the Dyson time-ordering operator. "
Introducing the T matrix

(F,P IS(,) II, P&

= -2~ib (E~ E,) (F,P'
i
T if, P&, (18)

we have for the transition probability per unit
time '

= H, + H, (EI —H, + ig) 'K, + ~ ~ ~ . (22)

Only the terms containing even powers of H, con-
tribute to the resonance scattering. Considering,
for example, the term of fourth order in H„we
obtain within the adiabatic approximation

The physical meaning of these expressions is the
following. The 5 function in Eq. (19) describes the
energy conservation in the scatte ring proce ss,
while the square of the matrix element (20) governs
the distribution of the intensity over the final vi-
brational states. The Hamiltonian H describes the
vibrational motion in the intermediate (resonance)
state. However, there appears no width associated
with the resonance state in the above lowest-order
expressions: H of Eq. (21) describes vibrational
motion in a stationary electronic state. Eqs. (19)
to (21) are thus not capable of giving an adequate
description of resonance phenomena.

Obviously, we have to include higher-order
terms in the perturbation expansion of the S ma-
trix. The series for the S matrix (or, equivalently,
the T matrix) can indeed be summed exactly within
the approximations introduced above. The T ma-
trix satisfies the equation"

T =K~+K~(E~ —Ho+i') T

dt H, (t)H, (t )+ ~ ~ ~, (18)
(F,P'

i

T"' if, P& = (n, . . . n„ i Vp, , (e~ —H+ivt) '

it is clear that the lowest term giving a nonvanish-
ing contribution is of second order in II,. The cor-
responding lowest-order expression for the tran-
sition probability per unit time is

x(~, K+i7i) 'V„io)

with H given by Eq. (21) and

(23)
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df

H, = g &u, b~b, . (24)

-1
X & —H- Vk eP- &k —H+Sq Vki Vq

(25)

Rewriting this equation in a more compact form
we arrive at our final result

(E,p'
I
7 II, p) =(n, . .n„.

I
v., (6 —x) 'v, I0)

The series represented by Eqs. (20) and (23) and
the higher- order terms can now be summed ex-
aeItLy, giving

N M

X= &,. +g v, b~b, + g tc, ,(b, +bt)
s=ls=l

used by Bardsley, Herzenberg, and Mand14' to
calculate vibrational- excitation cross sections.
Our expressions Eqs. (28) and (29) for &, and I',
contain nonadiabatic corrections to this approxi-
mation.

In what follows we neglect these nonadiabaticities
and the energy dependence of 4,. and I', and re-
tain only their Q dependence. As first shown by
Birtwistle and Herzenberg, "the consideration
of the Q dependence of I',. is essential for an under-
standing of the structure of the cross sections.
Expanding ~,. and I; about the equilibrium geometry
of the molecule in its ground state up to second
order i.n the normal coordinates Q, , K takes the
form

with

(26) M

+ Q y,. „,(b, +b~)(b, , +bt, ),
sy s'-"l

(31)

3C =H+ &; —2i I';,

~,. =pP v, , v„,
k P k Ho

(2'7)

(28)

where we have introduced a complex vertical reso-
nance energy &, and complex vibrational coupling
constants K,. „y,- „,

i Ei +2&i

r, =2wg v, , b(~, ~, a)v„. .
k

(29) R
~~, s-~~, s+~~i, s ~ (32)

The difference between Eq. (26) and the lowest-
order approximation, Eq. (20), is evident. The
resonance has now received a width, given by
Eq. (29), and has been shifted by an amount &„
Eq. (28). The vibrational motion in the inter-
mediate state is now described by the non-Hermit-
ian Hamiltonian 3C.

The vibrational excitation cross section is, apa, rt
from kinematic fa,ctors, "given by

"',„-"" - (I&'l~l&l) I&»p'I&I&» I'

e,. = &',.(0)+ 6,.(0), e',. = —' I',.(0),
1 Bb.

~R ~0 + i
'l S t ~ S 7

2 .'ss 0

'"= —.~(:::).
g2Q

(33b)

R ' I
ss ~ s

In terms of the previously introduced quantities
the real and imaginary pa.rts of q, ~, and y are
given by

x v, , , (~, Bc)-'v,, I0) I'.

(30)

j. 9 I',.
8 BQ,BQ,,

(33c)

Note that the intermediate state vibrational Ham-
iltonian X is of a rather complicated nature, since
~,- and I',. are not simply functions of the nuclear
coordinates Q (due to the Q-dependence of V,„),
but are operators in/ space. To a first approxima-
tion, however, one may omit the operator H, in
Eqs. (28), and (29) and consider &; and I', as
functions off. Neglecting further the energy de-
pendence of ~,. and I', , the Hamiltonian X de-
scribes the vibrational motion in a complex ad-
iabatic potential. The concept of vibrational mo-
tion in a complex adiabatic potential has first been

The relevant equations which are used in the fol-
lowing are Eqs. (30) and (31). Starting from the
Hamiltonian (8), which describes the coupling of
a molecular quasiparticle level of positive en-
ergy to both the nuclear vibrations and the con-
tinuum of scattering states, and eliminating the
electronic degrees of freedom within the adiabatic
approximation, the non-Hermitian effective boson
Hamiltonian (31) has been generated. The calcu-
lation of the vibrational cross sections has thus
been reduced to a pure boson problem. The com-
plex resonance energy and coupling constants
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appearing in the effective Hamiltonian are by Eqs.
(33), and Eqs. (28) and (29) uniquely related to
the quantities characterizing the initial Hermitian
Hamiltonian (8).

It remains to evaluate the squared matrix ele-
ment in Eq. (30). This is most conveniently done

by introducing a second quantization formalism
for the multidimensional harmonic oscillator with
complex potential energy, i.e. , creation and anni-
hilation operators for complex vibrational quanta.
The details of the calculation and the gener31 solu-
tion are given in the appendix. Herewe quote only
the final result for the most simple case of linear
coupling (y= 0) and one vibrational coordinate

e-a/2
( 1)n-m n-mL"™(a),for m ~ n,

2m-n
=e — L "(a) for m o n

-a(2 'fI IC

Vl J (d n (34)

III. APPLICATIONS

As mentioned in the Introduction, the vibrational
phenomena associated with resonances depend on
the relative magnitude of the resonance width I'
and the vibrational frequency +. The theory de-
veloped in the preceding sections is, of course,

where a= (x/~)' and L„denotes the generalized
I aguerre polynomial. " In the case of linear coup-
ling to several normal vibrations the matrix ele-
ments of the T operator are given by Eqs. (A20)
and (A24). In the general case of linear and quad-
ratic coupling to several vibrational coordinates
the result is given by Eqs. (A20) and (A21).

We have thus arrived at explicit algebraic ex-
pressions for the vibrational-excitation cross
sections. In this respect the present approach
differs from the theory of Birtwistle and Herzen-
berg, "which requires the numerical solution of the
Schrodinger equation for a complex potential. This
difference is of p3rtieular importance when more
than one vibrational eoordin3te is considered, since
the numerical solution of the nuclear wave equation
is hardly possible in the multidimensional case.
Physically, the present theory is closely related to
the approach of Birtwistle and Herzenberg in that
the compound- state picture'~ is adopted and the
scattering problem reduced to the problem of vi-
brational motion in a complex adiabatic potential.
The relationship between the compound-state ap-
proach, the adiabatic-nuclei theory, "and the
hybrid theory of Chandra and Temkin" has beep
recently discussed by Schneider. "

applicable for arbitrary values of I' and (d and com-
prises both limiting cases I'« ~ and I"»~. A
simplified treatment of these limiting cases has
been given recently, "showing that the strength of
vibrational excitation is determined by (~'/~)' in
the limit I"«~, whereas in the opposite limit I'
» e„ it is given by (v'/I')' [see Eq. (7) for the
definition of «']. Here we concentrate on the in-
termediate case I'=(d, which has already received
much attention in the literature. ' ' ' Two ex-
amples which have been extensively investigated
experimentally are the 2.4-eV resonance in N, and
the 3.8-eV resonance in CO, . Both resonances are
of considerable practical interest in connection
with the CO, laser. " The resonance in CO, will
be first dealt with, treating the complex reso-
nance energy e and the complex coupling constant
v Idefined in Eqs. (32) and (33)] as adjustable pa-
r3meters. As a result of the smallness of the
anharmonic constant of the symmetric- stretching
coordinate of CO„"we expect the present har-
monic theory to give good results. To be able to
study the influence of anharmonicity we further
consider the 2.4-eV resonance in N„where an-
harmonic effects are significant. " For N, the
coupling constants required within the present
approach can be determined from existing data,
allowing the calculation of the vibr3tion31-excita-
tion functions without any adjustable parameter.
Therefore, the influence of anharrnonic effects
can be quantitatively assessed by comparing the
results of the harmonic theory with experiment.
It will be shown how to extend the harmonic theory
to partly include anharmonicity.

A. 3.8-eV resonance in CO2

The 3.8-eV resonance in CO, has been observed
in electron transmission"'" and elastic scatter-
ing" experiments. The vibrational excitation of
CO, via the 3.8-eV resonance has been. investigated
by Boness and Schulz, ""Danner, "and Cadez
et al." The theoretical work on this resonance is
relatively scarce. Potential energy curves for
the CO, system have been computed by Claydon
et al."and by Krauss and Neumann. " Morrison
et al."computed total and momentum-transfer
cross sections, neglecting, however, the vibra-
tional motion. The angular distributions of the
vibrationally inelastic scattered electrons have
been calculated by Andrick and Bead."

The experimental situation is complicated by
the fact that nonresonant vibrational excitation
is also present in the case of CO, . Both the anti-
symmetric stretching (v ) and the bending mode
(v, ) are excited via the dipole mechanism. ""
Direct excitation of the symmetric stretching
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stretching coordinate.
The excitation functions for the symmetric-

stretch vibrational channels n = 0, 2, 4, 6, 8 as mea-
sured by Cadez et al."are shown in Fig. 1. As
noted by Cadez et al. the outstanding features are
the. regularity of the oscillations of the cross sec-
tions with the incident electron energy and the
steady increase in the peak separation and the re-
lative intensity of the oscillations with the channel
number n. The whole phenomenon is similar to
that observed in N, around 2.4 eV and extensively
discussed in the literature (see below). lt has been
recognized" that the above mentioned behavior of
the cross sections cannot be simply understood
within the compound- state model, where the peaks
are expected to occur at the vibrational levels of
the compound state and thus should be independent
of the exit channel.

When applying the theory developed in the pre-
ceding sections it is natural to first approach the
problem within the linea, r- coupling approximation,
i.e. , to use the very simple formula (34) to calcu-

FIG. 1. Excitation functions for symmetric-stretch
vibrational channels of the ground state of CO2 measured
at a scattering angle of 20' {after Cadez et al. in Ref. 16).
The channel and the ordinate zero for each curve are
indicated on the right. {Arbitrary ordinate scale for
each channel. )

vibration(v, ), which is dipole inactive, has been
found to be extremely weak. "'"

In the resonance region, from 3 to 5 eV, exci-
tation of the symmetric- stretching mode dom-
inates. Resonant excitation of the bending mode is
also observed. ""This is not unexpected, since
the calculations"" predict a significant increase
in the CQ distance and a nonlinear equilibrium
configuration for Co, in its ground state. The
linear- nonlinear transition occurring upon electron
attachment to CQ, ca,nnot be treated within a har-
monic theory. We therefore omit the bending co-
ordinate and consider only the vibrational motion
in the stretching coordinate. This is justified as
long as the excitation functions for the symmetric-
stretching vibrational channels are considered.
Since the bending vibrational frequency is definite-
ly smaller than. the resonance width I.i5, i6 an
since the force on the nuclei vanishes at the initial
state equilibrium geometry, only small deviations
from the linear conformation are expected to occur
during the lifetime of the compound state. Indeed,
we shall see that the measured excitation functions
for the symmetric-stretch channels can be re-
produced by considering only the symmetric

C0
O
@
ill

N
lh0
O

a I ) i s I t i s i l

3.0 4.0 5.0
Electron energy (eV)

FIG. 2. Excitation functions for the symmetric-
stretch vibrational channels n =0, 2, 4, 6, 8 of the
ground state of CO2 calculated with Eq. {34) and E'

= 3.80 eV, e =—0.27 eV, v = -0.40 eV, v = 0.03 eV.
{Arbitrary ordinate scale for each channel. )
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late the vibrational excitation functions. This
equation contains four adjustable parameters: the
real and imaginary parts, &~ and &', of the verti-
cal resonance energy &, and the real and imaginary
parts of the coupling constant, K and II. . & mere-
ly determines the position of the resonance on the
energy scale. We are therefore left with three
parameters which determine the structure and re-
lative intensity of the vibrational excitation func-
tions. The ground- state symmetric- stretching
vibrational frequency ~ is well known for CO, (v
= 1354 cm ' = 0.168 eV) "

Figure 2 shows the excitation functions for the
symmetric- stretch vibrational channels n = 0, '2, 4,
6, 8 calculated with Eq. (34) and e"=3.80 eV, e~

=-0.27 eP, z = —0.40 eP, I(. =0.03 eP. The values
of the pa.rameters $ K K were determined as
follows. We first put K equal to zero. & then. de-
termines the width of the individual peaks, as can
be seen from Eq. (34). From test calculations, it
is found that I('~ determines the strength of vibra-
tional excitation in the resonant- scattering pro-
cess, i.e. , the dependence of the cross section on
the final-state vibrational quantum number n as
well as the number of peaks in the excitation func-
tions. With a suitable choice of & we can thus fix
v~ by reproducing the observed number of peaks in
the various excitation functions. Next, we vary K .
As shown in detail below, v is responsible for the
peculiar regula, r structure of the excitation func-
tions. The structure of the excitation functions is
rather sensitive to changes in z . Therefore v

can be determined accurately from the fit to the
experimental data. Since z contributes to the
width of the individual peaks [see Eq. (34)], e' has
finally to be readjusted. The cross sections for
the different channels have been individually nor-
malized to equal maximum intensity, since no data
on the relative magnitude of the cross sections for
the various channels are reported by Cadez et al." .

We therefore confine ourselves to the study of the
energy dependence of o(n, e&).

From Figs. 1 and 2, it is seen that all relevant
features of the experimental curves are reproduced
by the calculation. The calculated excitation func-
tions show the observed highly regular oscillatory
behavior, the decrease in the number of peaks
with the corresponding increase in peak separation
for increasing n, and the marked increase in the
intensity of the oscillations for higher channel num-
bers. Obviously the linear- coupling approximation
is sufficient to explain the experiment. The peaks
in the calculated excitation functions are some-
what better resolved than in the experimental
curves due to the larger peak spacing in the calcu-
lated functions. This larger spacing results from
the neglect of anharmonic effects and of the change
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FIG. 3. Excitation functions for the symmetric-
stretch vibrational channels n=l, 3, 5, 7 of the ground
state of CO2 calculated with Eq. (34). The parameters
are the same as in Fig. 2. (Arbitrary ordinate scale
for each channel. )

of vibrational frequency upon electron attachment
in the linear- coupling approximation.

The excitation functions calculated for the odd n
channels up to n = 7 with Eq. (34) and the above
choice of pa, rameters are shown in Fig. 3. The
general behavior of these functions is the same as
that found for even n: the number of peaks de-
creases and the oscillatory structure becomes
more pronounced with increasing channel number
n. A closer examination reveals that the peaks in
the odd n excitation functions are shifted system-
atically by about half a spacing against the peaks
in the even n excitation functions.

It is interesting to compare these results with
those obtained for z = 0. Setting v equal to zero
means that the variation of the width I' with the
symmetric stretching coordinate is neglected. In
this "constant I' approximation, " Eq. (34) reduces
to the following expression used previously by
various authors ""'"

~ p ~
[ (n ) m) (m ) 0)

o(n, ~,)-, , (35)
IP I &~- &, —~+a&~

where (n ~m) and (m
~
0) denote the usual overlap

integrals between vibrational wave functions in the
initial and the intermediate (resonant) electronic
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both experimentally and theoretically. For a re-
view of the work up to 1971, see Ref. 2. The pecu-
liar oscillatory structure of the elastic and inelas-
tic cross sections and the shift of the peak posi-
tions with the channel number first noted by
Sehulz" ha, s stimulated considerable theoretical
interest in the phenomenon. The early at-
tempts""'" to explain the experimental observa-
tions, based on the constant I approximation, Eq.
(35), could reproduce qualitatively some of the ob-
served features, but were unable to explain the
regularity of the oscillations and the shift of the
positions of the cross section maxima and minima,
(see Ref. 14 for a, detailed discussion of this earli-
er work). Accounting for the anharmonicity of the

1potential-energy curves by using Morse vibrationa
wave functions" did not lead to significant im-
provement over the results obtained in the har-
monic approximation. ""

The boomerang model" of Herzenberg" was
able to explain the observed I:eak shifts, but did
not yield excitation fun, ctions to be compa, red with
experiment. Birtwistle and Herzenberg' finally
succeeded in developing a theory which was able to
reproduce quantitatively the experimental facts.
The essential new ingredient was to allow explicitly
for a, variation of the resonance width I' with the
internuclear distance B. Parametrizing the func-
tion I'(R) in a. suitable way and approximati. g the
real part E (R) of the complex electronic energy
of the N, ion by a Morse function, Birtwistle and
Herzenberg solved numerically for the vibrational
wave function in the ionic state and calculated the
overlap integrals with the vibrational wave func-
tion of the electronic ground state (approx!mated
by appropriate Morse vibrational wave functions).
By adjusting the parameters contained in E (R) and
I'(R) they obtained for all channels a, quantitative
fit to the observed excitation functions.

Ab initio calculations of E (R) and I'(R) have also
been performed, "'4 yielding results in good agree-
ment with the parametrization of Birtwistle and
Herzenberg. In particular, the rapid decrease of
I with inc rea sing internuclea r separation postu-
lated by Birtwistle and Herzenberg has been con-
firmed by the ab initio calculations.

The recent hybrid theory of Chandra and Tem-
kin" has allowed the calculation of absolute cross
sections for both rotational and vibrational exci-
tation. The vibrational substructure of the 2.4-eV
resonance could be reproduced by a close- coupling
calculation for the II partial vrave. The relation-
ship between the c'.ose-coupling approach and the
theories based on the compound- state picture'4
has been established by Schneider. 4'

After all this work the vibrational structure of
the 2 4-eV shape resonan. ce in N, is a well under-
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FIG. 7. Cross sections for resonant e-N2 scattenng
calculated with Eq. (34). e and v have been determined
from the parametrized resonance energy E „,and

width 1 g) of Birtwistle and Herzenberg (Ref. 14). The
ordinate s=ale is the same for all channels.

stood phenomenon. It represents, therefore, a
useful example to study the possibilities and de-
ficiencies of the present theory, especially with
respect to the influence of anharmonicity. In con-
trast to the above discussed example of CO„where
anha, rmonic effects play a minor role, anharmon-
icity i known to be important in the case of N, .

Knowing E (R) and I'(R) from the parametrization
of Birtwistle and Herzenberg, "we can calculate
the required coupling constants. Restricting to the
linear coupling approximation, we need only the
two complex quantities e and!! entering Eq. (34).
With the data given in Ref. 14 we find

= =2 35 eV, &'= 0 285 eV,

0.382 ey, I.'= 0.051 eV.

The excitation functions obtained with these param-
eters are shown in. Fig. 7. The ordinate scale is
the same for all channels. Figure 7 thus exhibit the



1476 W. DOMCKE AND L. S. CEDERBAUM- 16

fl =7

M

C

J3
0
C'
0
U
Qp
U)

I
N
0—
U

n=6

Ii=7

I l l I I I l l

2.0 2.5 3.0 3.5 2.0 2.5 3.0 3.5
Electron energy (eV)

FIG. 8. Cross sections for resonant e-N& scattering
measured by Ehrhardt and Willmann (Ref. 65) at a scat-
tering angle of 20' and by Schulz (Ref. 63) at a scattering
angle of 72 . Differences in the intensity distribution
may be due to the different scattering angle or due to
instrumental factor s.

dependence of the cross section on both the chan-
nel number n and the electron energy e~. The ex-
citation functions of Fig, 7 should be compared
with the experimental curves of Schulz" and Ehr-
hardt and Willmann" which are reproduced in Fig.
8.

The comparison with experiment shows that the
dependence of the cross section on the channel
number n is well described by the calculation.
Moreover, the observed regularity of the oscilla-
tions of the excitation functions, which could
not be understood within the constant I' ap-
proaches, ""'"is reproduced. . Our result;s
underline, in agreement with the results of Birt-
wistle and Herzenberg, "the necessity to account
for the variation of I' with the internuclear separa-
tion. As already found for CO, above, it is suffi-
cient to consider the linear dependence of I' on the
internuclear distance [i.e. , the leading term in the
Taylor expansion of I'(R)] in order to explain the
regularity of the oscillations. Figure 7 exhibits
also the observed shifting of the peaks to higher
energy and the increase in peak spacing and peak
width with increasing n. Similar to the resonance

in CO, discussed above the relative intensity of the
oscillations increases with the channel number.

Although the over-all agreement with experiment
is remarkable in view of the simplicity of Eq. (34),
there are several deficiencies which deserve a
closer examination. Most obviously, the ampli-
tude of the oscillations drops off too fast with in-

creasing electron energy. It can be shown that
this is an immediate consequence of the neglect of
the anharmonicity of the negative-ion potential-
energy curve E (R) in our calculation. The same
effect is observed when the vibrational structure
for transitions between stationary electronic states
is calculated within the harmonic approxima-
tion.""Apart from this too rapid drop-off of the
oscillations, the calculated excitation functions up

to n = 4 are in good agreement with experiment;
even the detailed shape of the peaks is reproduced.
For the higher n, however, the shape of the first
broad peak is less weH. reproduced. In addition,
the shift of the first peak with the channel number
n is not in agreement with experiment. Upon closer
examination the experimental peak positions show

a systematic behavior (see Fig. 8}:when going
from an odd n to an even n channel, the first peak
shifts only slightly to higher energy; going from
an even n to an odd n channel, a large shift of the
first peak is observed. As indicated by the dashed
vertical lines, the cross sections in Fig. 7 exhibit
this feature correctly up to n= 4, but not for the
higher n. The fact that the excitation functions are
for larger n less well reproduced by the present
calculation is not surprising when keeping in mind
that the final vibrational states ~n) cannot be well
described within the harmonic approximation for
large n. The deficiencies in the excitation func-
tions appearing for higher n are due to the neglect
of the anharmonicity of the electronic ground state
potential energy curve E,(R), whereas the general
too rapid drop-off of the oscillations is due to the
neglect of the anharmonicity of the potential ener-
gy curve E (R) of N, .

Before entering a more detailed discussion of
anharmonic effects, it should be pointed out that
the harmonic expansion on which the present theo-
ry is based is principally different from the har-
monic expansion in its traditional form, as widely
used for calculating Franck-Cordon factors for
electronic transitions. " In the traditional approach
the potential energies of the two electronic states
involved in the transition are expanded into a Tay-
lor series about their respective minima. In the
present approach, on the other hand, both potential
energies are expanded about the sante internuclear
distance, namely the electronic ground- state equi-
librium distance. In formulating a harmonic theo-
ry we are of course free to choose the point of ex-
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pansion R, at our convenience. If the potential-
energy curves were truly parabolic, the results
would be the same for all choices of R,. Since
actual molecular potential functions are never
parabolic, the results obtained within a harmonic
theory depend on the choice of R,. We can use
this freedom in the choice of R, to obtain the "best"
harmonic approximation for each problem in ques-
tion (see Ref. 33 for a detailed discussion of this
point in connection with the vibrational structure
in photoelectron spectra).

In the resonant scattering process two electronic
transitions are involved: the capture and the re-
emission of the electron. With the first transition
there is associated a vibrational overlap element
(O~m) and with the second an overlap element
(m ~n), where ~n) denotes the vibrational states
of the molecule in its electronic ground state and

~m) the vibrational states of the negative ion.
These overlap elements determine, according to
the Franck-Condon principle, the population of the
vibrational states of the temporary negative ion
and of the molecule after the scattering process.
It can be shown that the optimum harmonic expan-
sion for the calculation of the first overlap element
(0~ m) is to expand both the ground-state potential
energy E,(R) and the complex negative-ion energy
E (R) —zii'(R) about the ground-state equilibrium
geometry.

The vibrational wave function corresponding to
the initial state

~

0) is fairly localized and defines
a narrow Franck-Condon zone. It is the behavior
of E (R) ——,ii'(R) within this zone which determines
the distribution of the transition probability over
the vibrational states ~m). Therefore, the opti-
mum choice for the expansion point is the center
of the Franck-Condon zone. This choice is, how-

ever, not necessarily suitable for the calculation
of the second overlap element (m ~n). If the final-
state vibrational quantum number n is large, the
corresponding vibrational wave function oscillates
rapidly except in the vicinity of the classical turn-
ing points. In this case the relevant Franck-Con-
don zone is near one of the classical turning points
and, by the same argument as above, the optimum
choice for the expansion point R, is within this
Franck-Condon zone. It is clear that with this
choice of R, the first transition is less well de-
scribed.

A useful compromise will be to choose the ex-
pansion point just midway between the above two
extremes. Using in this way a different harmonic
expansion for each channel n, we are in a position
to account partly for the anharmonicity of the
ground-state potential curve without losing the
simplicity of the harmonic theory. The formulas
derived in the appendix remain valid, but the pa-
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FIG. 9. Cross sections for resonant e-N2 scattering
obtained by using a different harmonic expansion for
each channel n (see text). In contrast to Fig. 7, the
shift of the first maximum with the channel number (in-
dicated by the dashed vertical lines) is in agreement
with the experimental observations.

rameters in these expressions now -depend on the
channel number n. Note that we have a fixed
prescription to calculate this dependence of the
parameters on the channel number, provided the
potential energies of the molecule in its ground
state and of the negative ion are given.

We have performed such a calculation for N,
using the parametrized potential functions of Birt-
wistle and Herzenberg. '4 The results are displayed
in Fig. 9. The excitation functions for the lower
inelastic channels n = 1 to 4 change only very
slightly compared to Fig. 7 and are not drawn
again. The higher excitation functions, however,
exhibit distinct changes. For n = 5 and n = 7, in

particular, the shape of the first broad peak is
altered: the peak maximum moves from the left
to the right hand side of the peak. The shape of
the peaks is now in better agreement with experi-
ment (see Fig. 8). Moreover, the shift of the first
maximum with the channel number n is now in
agreement with experiment. As indicated by the
dashed vertical lines, there is a large shift from
n=4 to n=5, a small shift from n=5 to n=6, and
again a large shift from n=6 to n=7. This behav-
ior was not exhibited by the excitation functions in
Fig. 7.

We mention in passing that the anharmonicity of
the real part E (R) of the negative-ion potential
function, which is responsible for the enhancement
of the oscillations in the high-energy tail of the
cross sections, can also be partly accounted for
in a simple way: we just have to replace mx in
the denominator of Eq. (34) by P„",&u„and e in
the numerator by co, where e„ is the true spac-
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ing between the (p —1)th and the pth vibrational
level. The decrease of ~ with increasing m
causes a steady increase in ~/~ and leads to the
required enhancement of the high-energy tail of
the excitation functions.

We have also studied the influence of the quadra-
tic coupling constant y= y~+iy~ on the cross sec-
tions, using the general expression (A21). y" and
y~ are easily determined from E (R) and I'(R) as
given by Birtwistle and Herzenberg. " Both the
real and the imaginary part of y are an order of
magnitude smaller than the corresponding part of
the linear coupling constant K. Neither the inclu-
sion of y nor that of y was found to result in a
significant improvement of the calculated excita-
tion functions. This is due to the fact that for N,
the influence of the quadratic coupling constant is
of the same order of magnitude as the influence of
the anharmonicity of the potential functions. It is
in this case of little use to keep y when neglecting
the influence of the anharmonicity. Consideration
of the quadratic coupling constant y is essential,
when the linear coupling constant vanishes due to
symmetry requirements, as is the case, e.g. , for
the bending mode of CO, .

IV. CONCLUSIONS

A simple Hamiltonian describing the coupling of
a molecular quasiparticle state of positive energy
to the continuum of scattering states as well as to
the vibrational degrees of freedom has been formu-
lated. Within the adiabatic approximation the per-
turbation series for the S matrix has been summed
to infinite order in the bound-state-continuum in-
teraction. Neglecting nonadiabatic effects and the
energy dependence of the resonance width and
shift, the vibrational motion in the resonant elec-
tronic state is described by an effective non-Her-
mitian. boson Hamiltonian. Introducing a second
quantization formalism adapted to describe the
creation and annihilation of quanta of complex en-
ergy, the effective Hamiltonian could be diagonal-
ized and the vibrational cross sections calculated
exactly. Particularly simple expressions are ob-
tained when only linear coupling to the vibrational
motion is considered.

The theory has been applied to the 3.8-eV shape
resonance in CO, and the 2.4-eV shape resonance
in N, . In both cases, the resonance width is of the
same order of magnitude as the vibrational fre-
quency, resulting in an interesting and nontrivial
energy and channel-number dependence of the
cross section. The consideration of linear coupling
is found to be sufficient for the understanding of
the experimentally observed phenomena. For CO,
it is found that the introduction of only one addi-

tional parameter, namely the imaginary part v of
the linear coupling constant, leads to a dramatic
improvement over existing theories, which ex-
press the cross sections in terms of conventional
Franck-Condon factors. The discussion of the N,
molecule has been mainly devoted to a study of the
influence of the anharmonicity of the potential
functions. In contrast to CO„where the anhar-
monic constant for the symmetric stretching co-
ordinate is small, "anharmonic effects are signi-
ficant for N, . It has been shown how the anhar-
monic nature of the potential curves can be quali-
tatively accounted for even within a harmonic the-
ory by choosing the optimum point of expansion.

Our results are in full accord with those of Birt-
wistle and Herzenberg'~ who first pointed out that
it is the rapid variation of the resonance width I'
with the internuclear distance which is responsi-
ble for the regularity of the oscillations in the in-
elastic cross sections of N, near 2.4 eP. In con-
trast to the work of Birtwistle and Herzenberg,
which is purely numerical, the present theory
supplies us with simple and explicit expressions
which can be used with negligible computational
effort to reproduce or to predict vibrational-exci-
tation cross sections. In particular, the theory is
easily applicable to polyatomic molecules with
more than one totally symmetric normal vibration.
Most of the experimental work at present is con-
cerned with such molecules. ' '

An extension of the theory is necessary in order
to deal with couplings to nontotally symmetric vi-
brations accompanied by a lowering of the symme-
try of the molecule (CO„ for example, becomes
nonlinear"" and H,CO nonplanar" upon electron
attachment). These processes cannot be described
within the harmonic approximation. Another inter-
esting phenomenon, which can be included by an
appropriate extension" of the Hamiltonian (8), is
the coupling of a degenerate level to Jahn- Teller
active modes. An example is provided by the first
shape resonance in benzene. 4

A final comment concerns the ab initio deter-
mination of the complex coupling constants. Meth-
ods to calculate potential energy curves and widths
for resonance states have been described in the
literature and applied to diatomic and small poly-
atomic molecules. 2 ' "~ ' ' These methods can
be used to calculate the complex resonance ener-
gy & and the complex coupling constants, but may
turn out to be too expensive to be applied to larger
polyatomic molecules. We suggest that for shape
resonances a crude estimate of the quantity ~~,
which governs the strength of the vibrational exci-
tation and the number of peaks in the excitation
functions, may be obtained by neglecting the term
2 '~'(a4/eQ), in Eq. (33b) and by approximating
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K by the derivative of the corresponding Hartree-
Fock virtual orbital energy 2 'i'(&e, /sQ), . For
CO„ for example, we obtain from the near Har-
tree-Fock-limit data of McLean and Yoshimine"
K~=-0.39 ep, in excellent agreement with the val-
ue -0.40 eV obtained from the fit to the experi-
mental cross sections. For N„ the result of a
Hartree- Fock calculation" using a Gaussian basis
set without polarization functions is K = -0.44 eV
compared to the value —0.38 e7 resulting from the
pa, rametrization of Birtwistle and Herzenberg'
and the value -0.46 eV following from the calcula-
tion of Krauss and Mies" on N, . The fact that the
vibrational coupling for the first shape resonance
of CO, is much stronger than for the corresponding
resonance of N, is thus clearly explained. Although
it is known that the Hartree-Fock virtual orbital
energies are poor approximations to the resonance
energies, it seems that the strength of the coupling
of the resonance to the nuclear vibrations can be
qualitatively inferred from the corresponding
Hartree-Fock virtual orbital, at least for the low-
est shape resonance. Of course a careful choice
of the basis set is necessa, ry to obtain reliable re-
sults. Our conjecture is supported by the recent
study of Okzan ef al."on formaldehyde, who found
an almost exact parallelism between the 2b, orbi-
tal energies calculated for H, CO and H,CO, re-
spectively.

APPENDIX: THE COMPLEX HARMONIC OSCILLATOR

X= —,'a'na+ a'Z+ a'ra+ &,. ——,
' trn. (A2)

We now consider new boson creation and annihila-
tion operators related to new (complex) coordi-
nates Q, by

(A3)

The index ~„&~ on the operators c~, c denotes
the type of quanta created or annihilated by these
operators. Because these quanta are complex,
four types of operators are necessary instead of
two (b, and b~) in the real case. Furthermore, one
has to distinguish between right-hand side (rhs)
and left-hand side (lhs) states. These rhs and lhs
states are defined by

c„'-~ i. . .n, . . .) = (n, + 1)"i' i. . .n, + 1. . . ),
)

(. . .n, . . . i.t.=(n,)" (. . . n, I. . . i,

(. . :n, . . . ic„- =(n, +I)'~'(. . . n, + l. . . i.
It will now be shown that the operators c,c' can
be chosen to diagonalize R, the states (A4) being
the rhs and lhs eigenstates of the non-Hermitian
operator BC. In analogy to Eq. (Al), we define the
2M- dimensiona, l vector

To simplify the calculation the following matrix
notation is used. Let K denote the M-dimensional
vector of linear coupling constants K, , and y the
matrix of quadratic coupling constants y, „,. We
then define the 2M-dimensional vectors and ma-
trices

ff=f-'&), z i-rri, n= —"

~(r r)
b,

(Al)

C-g4) i

Mb

b t

and its transpose

Cr= (Ct)*= (c~ „.. . c~~c„- . . . c- ) . (A5b)

The new operators c, c~ are supposed to be related
to the b, b~ according to

C=Aa (A6)

where cu is the diagonal matrix of vibrational fre-
quencies introduced above. With these definitions,
the Hamiltonian (31) takes the form

with a complex matrix

(A7)
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We now choose A to diagonalize X, i.e. , to give

K= &C~QC+ C~K+ &,. —4 trQ, (A9)

Requiring the c, c~ to obey the commutation rela-
tions for bosons leads to

The M-dimensional complex symmetric eigen-
value problem (A16) can be replaced by the eigen-
value problem of a real nonsymmetric matrix of
dimension 2M. Writing the complex symmetric
matrix A as A = B+iC, the problem

AX =XA

can be replaced by

with 0 and K defined in analogy to.Q and K. From
Eqs. (A2) and (A6)-(A9) we find C B -iX iX -iX iX 0 A* ' (A17)

J eJ= v+ 4y,

cd = JcoJ
IC=J K

with

(A10)

(A11)

(A12)

J= X~+ X2.

The genera. l solution of Eq. (A11) is

J—~& ~2Z~

with

(A13)

(A14)

Z7T=1

Inserting Eq. (A14) into Eq. (A10) we obtain

(A15)

1 /2
(~ p 4y )~I /2 g T g rg 2 (A16)

Eq (A16) .is the eigenvalue problem for a complex
symmetric matrix. It can be shown that the com-
plex eigenvectors are orthogonal and can be nor-
malized, provided that the eigenvalues are non-
zero and not accidentally degenerate. Thus, ZZ~
= 1, as required for Eq. (A14) to be a solution of
Eq. (All). The eigenvalues ~, represent complex
vibrational frequencies. We have thus shown that
the Hamiltonian 3C, which governs the nuclear mo-
tion in the intermediate state, describes a shifted
[due to the linear term in Eq. (A9) j harmonic
oscillator with complex frequencies. The eigen-
vector matrix Z determines via Eqs. (A14), (A13),
and (A6) the creation and annihilation operators c't,
c and thus the rhs and lhs eigenstates (A4) of H.

U = exp — c— —c~~
S

s +s s s

giving

(A18)

kl

U$CU '= 2, c„-~c„- +c;
S S

(A19)

Inserting the complete set of eigenstates of X, the
matrix element of T in Eq. (30) becomes

which is closely related to the non- Hermitian eigen-
value problems occurring in RpA theories. "

It should be pointed out that the calculation lead-
ing to Eq. (A16) is a straightforward generalization
of the calculation of Franck-Condon factors for
electronic transitions between stationa, ry electronic
states as outlined in Ref. 32. The sole difference
is that complex quantities appear instead of the
usually real coupling constants, frequencies, etc.
It is the advantage of the second quantization form-
alism tha, t the ca,lcula. tion of overlap matrix ele-
ments between vibrational wave functions re-
duces to purely algebra, ic manipulations, which of
course can be done with complex quantities as
well.

It remains to eliminate the shift term C~K in
the Hamiltonian (A9). This is performed by the
nonunita, ry transformation

("x "~ I Vu'(e/, —30) nl ".nN Vp tU1 ml mN ml ".mM UVfp
sty 1 ~ ~ my

—2 1
X && —&;+ ——.— co —co — m

S S S S

(A20)

We neglect in the following the dependence of V,.~ and V~, , on the nuclear coordinates Q. This corresponds
to the well-known Condon approximation in the theory of electronic transitions. Corrections to this ap-
proximation can easily be obtained by expanding V,~ and V~., in powers of Q.

We are thus left with the evaluation of the matrix elements of U and U . This evaluation follows com-
pletely the lines given in Ref. 32 and need not be repeated here. The final result is



16 THEOR Y OF THE VIBRATIONAL STRUCTURE OF. . .

&~„.. .~„~U-' ~m, . . .m )

M g ~ Q
y

~ ]/2, ~, t-
$ ~ - 1/2

=exp(-,'p x,a) I; g '

[
"& a,"; ' 0,". I(. . . n, v. . I. . .m, -l, . . . )

p~ v~ v~ j-'~ v~f vc l j-j I j I j
(A21)

The n, and. P,. are the elements of the complex
vectors

n=-X '(o 'z

P= (1 —X,V„')~ '~. (A23)

In Eq. (A21) the matrix elements of the shift opera-
tor U ' have been expressed as a finite linear
combination of the overlaps of the vibrational wave
functions of the ground state and the unshifted
wave functions of the intermediate state. , These
latter overlaps can be obtained from simple re-
cursion relations which have been given in the ap-
pendix of Ref. 32.

Within the harmonic and london approximations
Eqs. (A20) and (A21) give the complete solution of
the vibrational problem. The expressions account
not only for a shift of the equilibrium position of the
intermediate state (represented by v~, ) and for
changes in the vibrational frequencies and a dis-
tortion of the system of normal coordinates (rep-
resented by yP„.), but also for the variation of the
resonance width I', with Q, and the coupling of
normal coordinates through nondiagonal deriva-
tives (8'I',./BQ, s Q,,).

A considerable simplification occurs when the
quadratic coupling constants y, „,can be neglected
and only the linear coupling is retained. In this
case we have e, = v, (and thus real vibrational
frequencies in the intermediate state) and Eq. (A21)
reduces to

~V

~S 2 S S LfgS ggS g

for m, n„and
(A24a)

&n, . . .n„U '
~m, . . .m„)

(A24b)

for m, «n„where a, = (a,/~, )' and I.„" denotes the
generalized Laguerre polynomial. "
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