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Time-dependent Hartree approximation for a one-dimensional system of bosons with attractive
8-function interactions*
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The time-dependent Hartree approximation is compared with an exact solution for the scattering between
two N-particle bound states in the case of a 1-dimensional system of bosons with attractive 8-function
interactions. It is shown that to leading order in X., the approximation is exact, and arguments are
presented relating this asymptotic agreement to the nonsaturation of the bound states.

I. INTRODUCTION

The time-dependent Hartree-Fock (TDHF) ap-
proximation, introduced by Dirac in 1930, pro-
vides a theoretical framework for the micro-
scopic treatment of the dynamics of self-bound
composite systems. Although this approximation
offers the intuitive appeal of a mean-field theory,
it is subject to two serious limitations. The time-
dependent variational principle' yields a statioriar-
ity condition, rather than a minimum condition,
and thus provides no bound or rigorous constraint
on the true wave function. Secondly, the TDHF
approximation specifies the evolution of the one-
body density matrix, which is insufficient for de-
termining S-matrix elements between asymptotic
many-body eigenstates, so the formulation and
interpretation of scattering theory in this approxi-
mation is conceptually unclear. Hence, in view of
recent applications of TDHF to the nuclear many-
body problem, ' this work attempts to explore
quantitatively the validity of analogous approxi-
mations in the context of an exceedingly simple,
exactly soluble model problem.

Exact analytic solutions" have been obtained
for the bound states and scattering states of one-
dimensional systems of bosons or fermions inter-
acting via attractive 5-function potentials by ex-
tension of the Bethe ansatz. ' Since 5-function in-
teractions require totally symmetric spatial wave
functions for bound states, fermion systems pos-
sess many-body bound states only upon the addi-
tion of an extra quantum number such as spin. To
avoid the added complication of spin, this initial
investigation is therefore restricted to the ease of
bosons. The most general analog of the TDHF ap-
proximation for bosons would be to approximate
the N-body wave function by a symmetrized pro-
duct of N different arbitrary single-particle wave
functions. In fact, guided by previous results for
the bound-state problem, we shall require that all
the single-particle wave functions be equal, in
which case the totally symmetric trial function is

a single product and is thus equivalent to the Har-
tree approximation.

H = —— —2-g 5(x; —x,), g &0 (2.1)

This system has a single N-particle bound state,

with ent'rgy

E„=-N(N'- 1)g '/24

and density

(2.3)

N-).

(x+ n —1)!(!v-n -1)!
(2.4)

In the large N limit

(2.5)

The Hartree equation for the ground state is ob-
tained by choosing the trial wave function,

II. STATIC HARTREE APPROXIMATION

The static Hartree approximation for this sys-
tern has been studied by Calogero and Degasperis, '
who show that the energy and one-body density are
exact to the leading order in N. As a prelude to
the time-dependent case, we shall review their
results and show that the large N asymptotic be-
havior follows from the nonsaturation of the N-
body bound states.

The Hamiltonian for the N-boson system is
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N

q„"=WN
'
P,(x,.), (2.6) the second-order correction to the energy is

and minimizing (H) with respect to the normalized
single-particle wave function (t),(x). The resulting
single-particle equation

where

(E."' E-',")(C."~C.")(C, ~C.&' (2.14)

(
1d'

, -g(U-t)/(', (&)/' —t) t'z(&)=U (2.7)

has one bound-state solution

(t),(x) = [(N—l)g]'~'/2cosh[~(N- 1)gx]

with energy eigenvalue

E, = -(N- 1)'g'/8 .

The resulting Hartree energy

E„"= N(N —1)'g '/-24

and Hartree density

(2.8)

(2.9)

(2.10)

p„"(x)=N(N- l)g/4cosh'[2 (N- 1)gx] (2.11)

agree with the exact results, Eqs. (2.3) and (2.5),
to leading order in N.

To understand the validity of the Hartree, or
mean-field approximation, for large N, it is use-
ful to consider the leading correction to the energy
in Rayleigh-Schrodinger perturbation theory. De-
fining the unperturbed Hamiltonian to include the
mean field

V=-g 6x; —x, — Ux; .
icj=l

The states p, are a complete set of excited eigen-
states of II, constructed from symmetrized pro-
ducts of single-particle eigenfunctions satisfying

(2.15)

and the energies E',"are the sums of the eigen-
values & of the occupied single-particle states.
In addition to the bound-state eigenfunction speci-
fied by Eqs. (2.8) and (2.9), the continuum solu-
tions to Eq. (2.15) are'

(N 1)g
y„(x) = exp[ik(N-1)gx/2]

(2.16)

1 d'
H, =Q —

t „,+ U(x,.)),2d' (2.12)

with eigenvalues

e~= s(N-1)'g'k'. (2.17)

where

U(x) = —(N 1)'g '/4co-sh'[-, '(N- 1)gx], (2.13)
With these definitions, the form for the seeond-
order energy correction simplifies to

nE(» = —'N(N 1)g' xP', (x)(t),(x)P,, (x) (2~,—e,—~,, ) . (2.18)

As shown in Appendix A, explicit evaluation of Eq.
(2.18) yields

AE( "=——0.9956N(N- 1)g '/24 (2.19)

accounting for almost half of the order N' dis-
crepancy between Eqs. (2.3) and (2.10).

From the evaluation of &E") in Eq. (2.18), it is
evident that the presence of a gap in the spectrum
of order N' between &~ and the first continuum
state plays a crucial role in limiting the contribu-
tion of 4E"' to order N'. This suggests that it
should be possible to catalog systematically the
N dependence of all higher-order perturbation con-
tributions. By means of a diagrammatic technique'
in which Goldstone diagrams are used for boson
systems, the N dependence of diagrams for the
expectation values of the energy and one-body

density is derived in Appendix B. The main re-
sult is that, using the Hartree definition of the
single-particle potential, Eq. (2.13), the contri-
bution to the energy of any linked Goldstone dia-
gram containing C closed boson loops and I inter-
actions is of order N " . Thus the only contri-
bution of order N' is the direct Hartree term, '

diagram a of Fig. 1, which is included in Eq.
(2.10). The contributions of order N' are the
lowest-order exchange term (diagram 5) which is
included in Eq. (2.10) and the direct RPA ring
diagrams, shown in diagrams c, e, and f

Diagrams c and d of Fig. 1 correspond to the
N(N —1) contribution in Eq. (2.18). Combining
b, E~') from Eq. (2.19) with the spurious center-
of-mass (c.m. ) energy correction' n. E, = N-
(N —1)g'/24 yields a'residual discrepancy of
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order 2&&10 'R'g-', which presumably arises from
the omitted ring diagrams.

Note that the choice of the Hartree potential to
define the basis is essential to the present argu-
ment. Otherwise, as indicated schematically in
diagram g of Fig. 1, a Hartree insertion in an
arbitrary diagram introduces one closed loop and
one interaction, thereby leaving the order of N
unchanged. Only by systematically cancelling all
Hartree insertions of the form (g) by the corre-
sponding single-particle potential contribution (h)
is the leading N' contribution restricted to a. single
diagram.

From this analysis, it is evident that the domi-
nance of the Hartree contribution depends crucial-
ly on the N' gap in the single-particle spectrum
which suppresses all higher-order graphs relative
to the mean-field terms. This gap, in turn, arises
from the fact that the Hartree potential becomes
deeper and narrower with increasing N, a situa-
tion which cannot occur for saturating systems. "
Thus the asymptotic accuracy of the static Har-
tree approximation is associated with the collapse
of bound states for large systems in this model,
and unfortunately does not generalize to saturating
systems. "

III. SCATTERING OF BOUND STATES

Having established the asymptotic accuracy of
the static Hartree approximation, we now con-

P(i) =P'(i, + 1), P(z+ 1)=P'(i.) . (3.3)

The (2N)! (2N —1) equations of the form (3.2) are
internally consistent and sufficient to determine
all coefficients if one of them is given.

For the case of two N-particle bound states, we
choose the incoming state to be in the center of mass
frame

(2N)1

Q=s

sider the scattering between two N-body bound

states.
The scattering matrix for distinguishable par-

ticles interacting via 5-function potentials has
been derived by Yang. ' Applying his formulation
to the scattering of N bosons by N bosons, the
symmetric wave function must be of the form

(2N) I (2N)i

q(X„.. . , X,„)=g Q OQ(X„. . . , X,„)a,
Q=l P=l

2N

x e&&&& i& Se&;&xe&,. &),j=l
(3 1)

where Q and P are elements of the permutation
group S», and

l, Xf Xq(y) ~XQ(p) +Q(2N)
8Q (X( X2N)

0, otherwise.

Continuity of the wave function and the discontinuity
of itS derivative impose the following condition
on the coefficients:

~[~P(i) ~P(i &)e(+g (3.2)
i[kP(;) —kP(;e()] -g

where P and P' are related by

2N

x exp LK xq(g) +Q(j)
j =N+1

N"w-—El;-"„l)g
i &j=1

2N

X eXP ——~ Xq(k) —Xq(l ) ~

k&l =N+1

The final state is the outgoing wave

(2N)f

4f Q ~Q(X( X2N)T2N

(3.4)

FIG. 1. Goldstone diagrams for the ground-state en-
ergy of a bose system. Boson single-particle propaga-
tors, two-body interactions, and one-body potential
insertions are denoted by solid lines, dashed lines, and
crosses, respectively.

N 2N

xexp (K Q x—Q( ) Q xQ( '

i=y j =N+&

x exp ——~ xq( ) — Q(j)2 i&i=1

2N

Z lee& & "e& &l)
k& ll=N+Z

with transmission coefficient given by (3.2)

(3.5)
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(3.6)

Thus only elastic scattering occurs in this model
and is completely specified by the phase shift 5(K)
=. {I/2i) ln(T»). For subsequent comparison, it
will be useful to calculate the time delay,

~t=
NK 8KB(K)

which, from (3.6), has the following form

NK ~3 4K'+ m'g K(4K'+N'g')

(3.7)

(3 6)

Formulation of the analogous TDH scattering
problem requires specification of an appropriate
initial condition. Given the fact that an isolated
system is well approximated by a product wave
function in which all particles occupy the same
single -particle state, two trial functions appear
natur al:

~2E( 13 ' 3X2N) f)

'3'=Y V 2
0'(x;, t)+ 0 (x;, t)) (3.0)

(4.)(((x,

where

2N

0(x;, t) [ 0'(x„t)), (3.10)

p'(x, f) = e 'x" p, (x —R), (3.11)

x p(x 3x, x,„,f}3 (3.13)

however, differs for the two initial states:

p2„(x3 x', t) = N[Q'(x3 t)*(f&'(x f) + (Q3(x, i)*Q (x', i)

+ y'(x, t)+y-(x', f) + P {x,t)*y'(x', t)],

(3.14)

p .„(x,x', f) = N[p'(x, t)*(II)'(x', f) + p (x, t)*p (x', I}].

y (x, f) = e' * y, (x+ It), (3.12)

8 is the symmetrization operator, E is the initial
center of mass (c.m. ) velocity of each system, and
A is the initial displacement of each system. Both
ansatze have the property that prior to the col-
lision, the equation of motion uniformly translates
the static Hartree density distributions with velo-
city K. The one-body density matrix,

p(x, x', t) -=f xx, . 3*,„3"(x,x, x,„,t)

Thus as in the case of the initial state for the
exact solution, p3(.„(x,x', t) has no long-range off-
diagonal components, whereas p»(x, x', I) has un-
physical off -diagonal correlations arising from the
cross terms in Eq. (3.14). A priori, one would
therefore prefer g„,„as the more physical initial
condition.

Unfortunately, application of the time-depen-
dent variational principle to a wave function of
the form (3.10) is intractable. In contrast to the
case of determinants, the space of symmetrized
products of arbitrary functions is much larger than
the space of symmetrized products of orthogonal
functions. In general, the equations of motion do
not preserve the orthogonality of P' and P, and
the action involves overlaps of &f&' and Q raised
to all powers up to N, rendering analytic solution
impossible and numerical solution extremely com-
plicated. For asymmetric collisions, it is pos-
sible to introduce constraints which enforce or-
thogonality, although such constraints are quite
unphysical because they inhibit boson condensa-
tion. For symmetric collisions even introduction
of an artificial constraint is useless, since the
instantaneous change in one single-particle wave
function turns out to have no component orthogonal
to the other orbital. Thus we are forced to relin-
quish the preferred form („,))t in favor of the much
more tractable ansatz g». At the present time we
do not, understand the implications of the unphysical
off-diagonal correlations in the one-body density
matrix p N.

The time-dependent Hartree approximation for
the wave function

2N

g,„(x, x,„;t)= ] Q(x, , t) (3.15)

is obtained by requiring that the action

be stationary with respect to variations of Q(x, f).
The resulting TDH equation for the single-particle
state &f& is

and has the property that the norm of P is a con-
stant of the motion. This cubic Schrodinger equa-
tion [Eq. (3.16)] admits a family of solitary wave
solutions which have been studied extensively. "
The solution which satisfies the initial condition
(3.S) is the two-soliton solution"

1
1—+— . +(3X —t)00'(x, t)0(xt))0(x, t)=0,

(3.16)
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y(X t) t[(2N 1)&]t/3e-(t/3)(K a-)t

(eiKx(e a(x-Kt)-[Ifa/(It &(t)3]e-a(3x+Kt)l + e ix(-e a(x-+Et) + [~3/(K+ &(t)3]e-a(3x-Kt))
X

1+ 2e ""-cosh(2alft) 6a-'e ""-Re[e"K"/4(rC+ ta)'] +[If'/(K'+(t')']e "" (3.17)

This solution is in the center of mass frame, with
relative velocity 2K, and parameter a = «(2N
—1)g. It describes the transmission of two solitary
waves through one another with time delay ~I;"
defined by

'The time delay is given by"

(3.19)

For the collision of two large particle wave packets
moving with velocity K,

btK= — [lnN+O(1)], N-~, Z fixed.
NgK

(3.20)

This result agrees with the exact time delay, to
order 1/N Thus w.e see that in the large N limit,
just as in the static ease, the time-dependent
Hartree approximation becomes asymptotically
exact.

IV. DISCUSSION

We have shown that the time-dependent Hartree
approximation using a wave function of the form
(3.15) yields asymptotic agreement with the exact
time delay for large N. Note that this result is
true for all energies, and thus constitutes a much
stronger statement than agreement in the weak-
coupling (or high-energy) limit. "

Since our intent in this work has been to under-
stand the validity of the time-dependent mean-field
approximation, it is essential to evaluate the ex-
tent to which the agreement arises from artificial
and unrealistic aspects of the one-dimensional
5-function model. The fact that the exact scattering
solution exhibits only elastic scattering with no
excitation or breakup is a special feature of the
6-function potential which seriously restricts the
generality of the model. Nevertheless it is sig-
nificant that the 'TDH approximation yielded no
spurious excitation or breakup, so in this sense
the problem constitutes a nontrivial test of the the-
ory.

A far more serious limitation is the degree to
which the result depended upon the nonsaturation
of the bound states. In the static ease, we explicit-
ly demonstrated the fact that the ratio of two-par-

r

ticle-two-hole to one-particle-one-hole admixture
was proportional to 1/N, and this resulted because
of the N' dependence of the energy denominators.
In contrast, for saturating systems in which the
volume is proportional. to the number of particles,
the magnitude of the interior single-particle poten-
tial is independent of N and the separation between
single-particle bound states decreases with N.
Thus the suppression of two-particle-two-hole
components relative to one-particle-one-hole am-
plitudes with increasing N need not, in general,
occur for a saturating system, but rather will de-
pend in detail upon the nature of the two-body in-
teraction.

For the time-dependent 5-function ease, we
believe, but have not explicitly proven, that the
asymptotic validity of the TBH approximation
arises from analogous suppression of many-par-
ticle-many-hole amplitudes relative to the one-
particle-'one-hole amplitudes included in the mean, -
field approximation. Hence there is no reason
to expect that the validity of the TDH approxima-
tion in the model must necessarily generalize
to saturating systems.

In spite of these limitations, it is still significant
that there exists a model system for which the
TDH approximation is va,lid. In particular, the
conceptual questions" one may raise about the
validity of the time-dependent variational prin-
ciple and the interpretation of scattering in this
approximation are completely well posed and re-
solvable in this case for which exact solutions
exist, and provide insight into other applications
of the TDH approximation.

The conclusion which emerges is that, just as
in the time-independent ease, the mean-field ap-
proximation yields an adequate approximation for
the expectation value of few-body operators al-
though it is incapable of describing the full many-
body wave function. Thus the time-dependent den-
sity is as accurate as the static density, and since
the time delay may be extracted from the one-body
density, it is also well approximated. S-matrix
elements require knowledge of the full many-. body
wave function, which is beyond the scope of the
present theory, so scattering must be discussed
only in terms of the much more restricted infor-
mation available in expectation values of few-body
operators. Many experiments, however, deal
directly with such quantities as average excita-
tion energy, mean numbers of particles in frag-
ments, or the dispersion of number of particles,
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APPENDIX A

We calculate an approximate value for the second-
order energy correction

nE(2)= 2N (N —1)g' dk dk'

X (2E), —E), —&~i) (A1)

Upon substituting the eigenfunctions and eigenval-
ues given by Eqs. (2.8), (2.9), (2.16), and (2.17),
Eq. (A1) becomes

so many questions of relevance may be addressed
directly. "

Finally, it is worthwhile to comment on the semi-
classical nature of the TDH approximation. The
Hartree 2N-body density describes two N-particle
wave packets of fixed initial spatial extent L -1/Ng
and c.m. uncertainty ~,=—((R —(R))')' ' -1/Ng which
scatter without change in shape or velocity. If the
TDH approximation is to provide an accurate pic-
ture of the physical scattering process then the
exact density of a relative wave packet describing
the same initial condition must agree with the
Hartree density during the entire measurement
time t. In particular, the spreading of the wave
packet must be negligible. The uncertainty in
a free N-particle wave packet has the following
time dependence:

hR = &R,[1+i'/(&R, )'N']' ~' .

In the case of a saturating system where the
initial wave packet is specified by L —~Rp N,
the spread during the time i= mI. /K to travel sev-
eral multiples rn of the system's size with velo-
cityK is negligible in the limit of large N. Thus
the semiclassical approximation will never in-
validate the TDH description of a large saturating
system.

For the 5-function potential, however,

2 2 1/2
&R= ARp 1+

K

where the measurement time is taken to be t
= mL/K since there is no positive time delay. With

this criteron, which may be overly strict, the
TDH approximation would only appear to be valid
in the high-energy limit, i.e., for g'/K'«1.

Thus there remain two gaps in our understanding
of the exact large N behavior of the TDH approxi-
mation. In addition to the fact that the correct
time delay is produced by an initial condition in-
volving incorrect off-diagonal density matrix
elements, one also obtains correct results at ener-
gies for which the validity of the semiclassical
approximation is not obvious.

(~) N(-N —l)g '
16

dk dk, li(k& k') I'
(A2)

ei (k+k' )x

I(k, k') —=
2

dx h, ( /2)

X
(tanh-, x —ik) (tanh —,x —ik ')

(1+ik)(1+ ik')

(k+ k')(k'+ k" -kk'+ 1)
3(1+ik)(1+ ik') sinh-,'(k+ k')v

With a change in variables, k=k, i =k+0',

(A3)

(, ) N(N —-1)g '
16

I(f)
h'(f /2) '

where

1 " (3k'+ l' —3kl+ 1)'
9 „(1+k')[1+ (f —k)'][2+ k'+ (l —k)']

[2 —(l'+ 4)]'"
9 )2 (A5)

Substituting (A5) into (A4),

&E( = 2', N(N —1)—g'(1+ 2I),

where

(A6)

(x'+ 1)'~' —1 1 " x' 1
I = dg . , &— dx~ ~

sinh'mx 2 p sinh'7tx 12m

(A7)

Thus

~(2 ' & N(N —l)g—'/24 = (E„E"„)/2. —(A8)

Numeral evaluation of the integral I in Eq. (A7)
yields the approximate value

&E("= -0.9956 N(N —1)g '/24 . (A9)

APPENDIX 8

A systematic diagrammatic expansion which man-
ifestly displays the leading N dependence of each
term is conveniently derived using the Goldstone
expansion. The spatial wave function of an in-
teracting fermion system with spin degeneracy
2S+1~N will be totally symmetric if a spin-in-
dependent interaction is adiabatically switched on
starting from a noninteracting eigenstate in which
each single-particle wave function has the same
spatial dependence and a different spin projection.
'Thus the Goldstone expansion may be applied to
an N-particle Bose system by simply introducing
a fictitious spin degeneracy 2S+ 1=N and disregard-
ing the totally antisymmetric spin wave function. '

Consider first the Goldstone expansion for the
ground-state energy. Any linked graph in this ex-
pansion has I interactions and C closed loops.
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Every interaction contributes a factor of (N —1)'
which arises from the normalization of the particle
and hole wave functions and a factor of (N —1) '
which arises from the integration over spatial vari-
ables. Note that this latter factor may be extracted
only because all the wave functions are functions
of (N —1)x and the interaction is zero range, al-
lowing one to change variables and remove all N
dependence from the integrand. Every closed loop
contributes a factor of N arising from the sum
over spin projections. For every graph, there are
I —1 energy denominators, each of which contri-

butes a factor of (N 1)—'. Hence the overall N
dependence of any Goldstone diagram in the energy
expansion 1 s (N 1)2-INc Nc-I+2

The expansion for the one-body density is de-
rived from the energy expansion by inserting the
one-body density operator into a particle or hole
line. This modification contributes a factor of
N —1 arising from the normalization of the particle
and hole wave functions and a factor of (N —1) '
arising from the addition of an energy denomina-
tor T.he overall N dependence is thus (N —1)'
~gC I+1
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