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An expression is given for the (n;,l;= 0— n,I; = 0) excitation cross section in terms of a single one-
dimensional integral with the aid of a transformation to prolate spheroidal coordinates. Results are given for
the 1s-25s excitation of arbitrary-Z hydrogenic targets. For our choice of wave functions the cross sections
are found to scale as Z ~* at fixed E;,/Z 2 The principal difference between the Coulomb-projected Born-
approximation (CPBA) and Born results is in the large-angle portion of the differential cross section. This,
however, leads to CPBA and Born momentum-transfer cross sections which differ by less than 20% at high

energies for 1s-2s transitions.

I. INTRODUCTION

Distorted-wave calculations are becoming more
widely used in atomic-scattering theory, partially
due to interest in plasmas where the presence of
long-range electrostatic interactions suggests a
need to include Coulomb distortion. Geltman and
Hidalgo!™® have introduced a distorted-wave Born
approximation (DWBA), the Coulomb-projected
Born approximation (CPBA), which they have used
to compute excitation and ionization cross sections
for electrons on hydrogen and helium. Junker®
has pointed out that the CPBA is a special case of
a more general class of distorted-wave Born cal-
culations and has applied this generalization to ex-
citation of atoms by electron impact. Stauffer and
Morgan’ *® have used a generalized CPBA to calcu-
late cross sections for the excitation of sublevels
of hydrogen. In the case of excitation, the dis-
torted-wave calculations of Geltman and Hidalgo,
Junker, and Stauffer and Morgan retain some of
the characteristic simplicity of the Born approxi-
mation.

In this paper we use prolate spheroidal coordin-
ates to reduce the number of numerical integra-
tions necessary to compute the 7' matrix for atomic
excitation in a generalized CPBA. We apply our
method to the case of (n;,7; =0 —ny, I, =0) atomic
excitation by a projectile of charge Z,, where the
atomic states are represented in terms of Slater
orbitals. The transformation to prolate spheroi-
dal coordinates allows us to express the 7' matrix
in terms of a single one-dimensional integral. As
an example we consider in detail the case of 1s-2s
excitation of hydrogenic targets by electron im-
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pact, for which we discuss the dependence of the
differential and total cross sections on the atomic
number Z of the target in terms of a scaling rela-.
tion in Z. We also present calculations of the mo-
mentum-transfer cross section. The momentum-
transfer cross section is equal to the differential
cross section multiplied by an angularly dependent
weighting factor which increases with scattering
angle (). Thus the CPBA is particularly well
suited to determine momentum-transfer cross
sections, since the Coulomb distortion included in
the CPBA is most significant at large angles. Mo-
mentum-transfer cross sections are pertinent be-
cause they may be used to calculate certain plasma
transport coefficients for processes such as diffu-
sion and electrical conductivity.®™!

In Sec. II we summarize the theory giving the
distorted-wave T matrix. In Sec. III we reduce the
1s-2s hydrogenic T matrix to a formula requiring
no integrations. Sec. IV contains a discussion of
the results obtained from the formula of Sec. III in
terms of differential, momentum-transfer, and
total cross sections, and a scaling relation in Z.
In the Appendix we present the details of the reduc-
tion of the integrals. Atomic units will be used
throughout except where otherwise specified.

II. THEORY -
The Hamiltonian of a projectile of charge Z,
with momentum k, which is interacting with an

atomic system of nuclear charge Z, containing »
electrons may be written as

H=H,+V,=H,+U+W, (1)
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where
1 z 1 Z 1 1
H=--—V2%4 (-—vz- by )
0 2#“; 2 e 24F vy )
U= Z“Z”, W=n ~Za
R i=1 Yia

The transition matrix element 7;; may be expanded

ale

Tiy =(x7l Vo= W o) +(x7 [ W) (2a)
~0G 1 5 00+ 10 S [y, (2

where the eignefunctions ¢;, X, ¥{ are defined as
Hypi =Edi, (Hy+U)Xs=EXs, (Ho+V)¥;=E¥;,
(3)

and satisfy the appropriate boundary conditions.

The first term in T;; can be shown to vanish
since the perturbation U depends only on the rela-
tive separation of the centers of mass of the target
and projectile. In the case of a hydrogenic target
the distorted wave x; is exactly known and is sim-
ply a product of a Coulomb wave function and a
hydrogenic wave function if exchange is neglected
‘when the projectile is an electron. In general, x;
may be written as

X_f— =X;azb(Ef, ﬁ)xf(Fly ey Fn)

where Xz z, is a Coulomb wave function'® of charge
parameter Z,Z, and X/%,,...,T,) is the final-state
atomic wave function. Again exchange has been
neglected if the projectile is an electron. If
XAT,,...,T,) is approximated by a variational con-
figuration-interaction (CI) or self-consistent-field
(SCF) wave function constructed from Slater or hy-
drogenic orbitals, the results in the Appendix can
be used to compute the integrals required to eval-
uate Eq. (2b).

If in addition one neglects the interaction between
the active electron and the rest of the electrons in
the target, X; may be approximated by

oy Tasy) (4a)

where Uz is a bound-state wave function of effec-
tive charge Z}, and I} represents the undisturbed
atomic electrons.

In the normal Born approximation ¥ is expanded
in terms of plane waves, but as has been previous-
ly discussed® ¥ can be expanded in terms of Cou-
lomb waves of charge-parameter 6, so that, re-
taining only the first-order term,

Ui =X 5Ky, B)Uzg (F)Tu(Frs v oo, Fama) s (4b)

where the bound electrons have been approximated
as in Eq. (4a).

Xr =X2azb(Ef, ﬁ)UZE"(Fb)I‘f(FD =

The transition matrix element may now be writ-
ten as

-Z,
Ja

ngUz*Pi> .

n
TRYBA :<X2azb Uzékrfljz_; 2

(5)
If in addition, Uz# is orthogonal to Uz, then
TEYA = XE,,Z,,UZC* | = Za/7al XE UZE"> , (6)

where the ascumption is made that I'; =T;. It has
been pointed out'® ™ that it is not necessary to re-
quire I'; =Ty as long as a sum over the probability
of scattering into all final states I' is understood.

For 8 =0 this approximation reduces to the CPBA

of Geltman and Hidalgo.

III. APPLICATION

In the case of an /; =/, =0 atomic target the re-
duction of the expression for T to a one-di-
mensional integral is given in the Appendix. In
this section and the following one we will be con-
cerned with the special case of 1s-2s excitaticn of
a hydrogenic target by electron impact. We have
chosen 6 =0 so that our initial incoming wave be-
comes a plane wave, and our calculation therefore
reduces to the CPBA. The initial and final wave
functions then become™

XE oihye = (252N )& o R e=20mn, (7a)
X7a2, Yos =(Z3//2V3T (1 = Zy7, /2)e' 5 R e™ 7o/
X T(1-ia)

X Filia, 1, —i(kR +K; « R)) e~ %7 /2 |
(7o)
where @=2Z,Z,/v;. If we substitute Eqs. (7a) and
(7b) into Eq. (6), then TPBA becomes
i = C [af [ ame Ty
x 1 Fi(=ia, 1,5 (kR +K; + R))
X(1=2y7,/2), (8)

where

->

qzﬁo_Ef: Az%Zb;
C=(=Z32,/20V2)e" "' (1 +iq).
We can put TP/BA in the convenient form

-237 _ . Z, 0
THVBA = Wg "0‘/21‘(1 +za)(1 +Tb ﬁ)l(’\,@’

(9

X F(=ia, 1,i(k; R+K;*R)) .
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The integration over dT, is made easier by first
transforming to prolate spheroidal coordinates®®
(see Appendix), and the resultant integral over dR
is a simple case of the type of integral considered
by Nordsieck,!® so that we are left with the final
expression for I(, §)?%

10,0 (3) Goaem) (10)

where _
(B =Fk3)'™ (12— k%= 201k, +22)

= q2+2ia - ()\2 +q2)1+ia ’
E=(A% +q?) 7 k2 < k2 = 200k, + M)
P -(1+ia)x o X =1 ky)
A +q? B =k =200k + 22
DWBA

With the above expression for T °* we calculate
the differential cross section given by
do _ Mzkf
aqQ — 4n’k,

| TRy |2, (11)

The total cross section is calculated by numerical-
ly integrating the above expression. Note that for
this special case, the results of which are pre-
sented in the next section, the 7 matrix can be
calculated directly whereas in the case examined
in the Appendix a one-dimensional integration is
required.

IV. RESULTS

The expression derived in the previous section
allows us to calculate the differential and total
cross sections for 1s-2s excitation by electron
impact of any hydrogenic target. We have consid-
ered the atomic number Z of the target as a vari-
able and determined the cross sections for the iso-
electronic sequence H,He*,Li**,.... For the
Born approximation there exists a scaling relation
in Z, such that Z*do/dQ and Z*%0 are independent
of Z when calculated at the same value of scaled
energy, Ecated = Einc /‘Ezs"' E],sl :Einc /(10'2 eV)Zz-
We have found that our CPBA differential and total
cross sections scale in exactly the same fashion.
This scaling relation is also satisfied by the dif-
ferential and total momentum-transfer cross sec-
tions (which we define and discuss later) in both
Born and CPBA calculations.?® It should be noted
that this simple scaling relation is dependent on
our particular choice of hydrogenic wave func-
tions?! where we have chosen the same initial and
final effective charge.

We now compare our CPBA results with those of
the plane-wave Born approximation. In Fig. 1 we
present the scaled Born and CPBA differential

cross sections as a function of the scattering angle

0
L S B e e —

blS
O I0* - T

0% CPBA |

06 |- Born .

10’7 IS IS IO ST S G SN U SIS T
0° 20° 40° ©60° 80° 100° [20° 140° 160° 180°
9 (Degrees)
FIG. 1. CPBA and Born differential cross sections
for 1s-2s excitation of hydrogenic (Z) targets by electron
impact at 20022 eV. ’

6 at 200 x Z2 eV electron-impact energy.?? At
small anges the iwo curves agree, but as 6 in-
creases the CPBA becomes several orders of
magnitude larger than the Born curve. This wide
angle behavior is explained® by noting that in the
CPBA the projectile-nucleus interaction is includ-
ed in H; thus taking into account the possibility of
large-angle scattering off of the nucleus. Geltman
and Hidalgo® have compared CPBA and Born dif-
ferential cross sections to the 1s-2s,2p data of
Williams?® and found that the data more closely
follow the CPBA curve.

Despite the large differences between Born and
CPBA angular distributions, the total cross sec-
tions are generally in agreement. This is shown
in Fig. 2, which is a plot of Z*0 versus the scaled
energy' En. /| E, - Eul. If we consider electrons
on hydrogen (Z =1), then for Ei,. > 25 eV the total
cross sections agree to within 10%. This is due to

0 5 20 25 30 35 40
Einc/(ExsEig)

FIG. 2. Total Born and CPBA cross sections for
1s-2s excitation of hydrogenic targets by electron impact
as a function of the scaled energy Ej. /| Eys— Eys| -
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the sharp drop off of do/dQ with 6, as is shown in
Fig. 1, sothat most of the total cross section is
summed up in the first few degrees where the two
curves agree.

In order to accentuate the differences seen in
Fig. 1, we consider the momentum-transfer cross
section defined by

da,,, _ kf do
a0 —< - ) cos@) a0 - (12)

This momentum-transfer cross section do,,/dQ

is equal to the change in the z component of mo-
mentum (normalized to k) times the differential
cross section. It is clear that the effect of the
1-(ks/k,) cosf term is to amplify do/dQ at large
angles. Thus we expect the momentum-transfer
cross section to amplify the differences between
CPBA and Born calculations. ‘Momentum-transfer
cross sections for excitation, ionization, and elas-
tic scattering are used to define some plasma
transport properties such as diffusion and electri-
cal conductivity.®™*! Qur purpose here is to see
whether the plane-wave Born excitation cross sec-
tion, which is too small at large angles, is ade-
quate for calculation of plasma transport proper-
ties.

In Fig. 3 we compare differential cross sections
and momentum-transfer differential cross sec-
tions in the Born and CPB approximations at
100Z2 eV. Note that at small angles the important
effect is the 1= (k;/k;) cos6 term while at large
angles the greatest differences are due to Coulomb
distortion. The total momentum-transfer CPBA
and Born calculations displayed in Fig. 4 have the
same shape and relative characteristics as the
CPBA and Born total cross sections shown in Fig.
2. The large differences between CPBA and Born
differential cross sections are not evident in the
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FIG. 3. CPBA and Born differential and momentum-

transfer cross sections for 1s-2s excitation by electron
impact of hydrogenic targets at 10022 ev.

0.4 B

CcPBA

FIG. 4. Total Born and CPBA momentum-transfer
cross sections for 1s-2s excitation of hydrogenic targets
by electron impact as a function of the scaled energy
Einc/lEZS_Els l .

total cross sections.

Plasma transport coefficients depend on momen-
tum-~transfer cross sections which in turn are
relatively sensitive to the differential cross sec-
tion at large angles. As has been demonstrated
the plane-wave Born approximation is often orders
of magnitude too low at large angles, suggesting
that use of these Born calculations for the plasma
transport coefficients may lead to large errors.
Our CPBA calculations on the other hand give a
more reasonable estimate of the wide-angle dis-
tributions. By comparing momentum-transfer
cross sections computed in the Born and CPBA
approximations, one may estimate the error due
to the use of the Born approximation in computing
plasma properties. The CPBA Coulomb distor-
tions affect both the total cross section and the
momentum-transfer cross section. Consequently
in Fig. 5 we compare the ratio 0CP8A /o8B for hoth
total cross sections and momentum-transfer cross
sections for 1s-2s excitation. The effect of the
CPBA Coulomb distortions (reflecting large-angle
contributions absent in Born calculations) on the

.7 T T T T T T T T T T T T
1.6 |- B
<15 B
b“?m - B
X
g3t 4
S Momentum transfer cross section
&2k
M Total cross section 7
1.0 1 J I 1 1 | | 1 i 1 I R .
L0 12 14 16 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 38 4.0
Einc/ EosEig)

FIG. 5. Ratio of d“BA/gBom a5 3 function of the
scaled energy Eic /| E9s— E45| for both total cross sec-
tions and momentum-transfer cross sections.
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momentum-~transfer cross section is about 10%
greater than the effect of Coulomb distortions on
total cross sections. It should be noted that of all
possible excitation and ionization cross sections
contributing to plasma-transport properties, 1s-
2s excitation is usually not a major contribution.
Nevertheless, we feel that our 1s-2s excitation
example is typical. Hence we suggest that error in
momentum=-transfer cross sections computed us-
ing plane-wave Born amplitudes, which are inade-
quate for wide-angle scattering, may be about
10%, i.e., not an order-of-magnitude effect.

APPENDIX

An appropriate linear combination of Slater or-
bitals may be used to express either hydrogenic
or nonhydrogenic bound-state wave functions. We
consider only 7;=1,=0. For simplicity of presen-
tation we represent U, (T;) as a single Slater orbi-
tal** of the form

URE,) = Nyry e Y (7)), (A1)
where

N, =[(2Z,°"*/(2n)1 /2.
The Coulomb wave functions have the form?

Xz,z, =€ "2 (1-iay)e' iR

X ,F,(iay, 1, i (kR +K, - R)) ,
Xi=e T /20(1+iey)et iR
X ,F (=i, 1,i(k;R-K;* R)),

where

¥ =Z,Z,/ %, o;=8/v;,

so that Eq. (6) becomes
TRYBA = - f dR f d¥, N, N, F(R)(Za/72)

X7y 2e”Mo(1/4m),  (A2)
F(R)=e'TRemm@ira)2 (1 11T (1 +iay)
X Fy(=iay, 1,i(k;R=K; - R))
X Fy(=ioy, 1,i(k;R+K; - R)),
q=K,-F, A=Zp+2

with Z# and ZF as the effective initial and final
nuclear charges. We then make the transformation
to prolate spheroidal coordinates® given by

7a=3R(E+7), 7,sin6,=3R[(& - 1)(1=-12)]*/?,
7, =3R(£=7), rbcoseb=%R[£n—1], (A3)
dT, =3R7.7, dt dn do,,

l1séso,

-1sn<1, 0s¢,s2m,

so that the T matrix becomes
Ti=A [ dR F@)(R/27"

Xffdndée‘“‘“‘”’/z(ﬁ-n)‘, (A%)

where

== % ZaNn,-an ’

We perform a binomial expansion on (£ - 1)*:

(E=m*=2, (-s

im0 \1

s=n;+n;-1.

>(—1)’1T)j1€"’1 . (A5)

Substituting (A5) into (A4) yields

Ty =A Zs < s).(—l)j1

170 \ j,
1
Xf dﬂn"de F(R)(R/2)*mse* Y E1/2
-1
xf%dge‘“*g/"‘g“’l.
1

With w=AR/2 we have for the ¢ integral:

” -wE g e=j, _ s— L =h ® -w
j; dt e~ S =(=1) jl(dw) f; dte

X d s—jl e—w
=(=1)%" — —
(-1) 1<dw> .
S (=G 2 (ae)
;;) jz 2/* w12+1 ‘

The resultant integral over R can be written in the
form:

f dR F(R)(R/2)"*"(XR/2) ™ e~ AR(1=1)/2

d \ "ithredp
=G(ay, o) <E>

dR e—uR+iE--§ F
R 171

X F,(=iq, 1, (kR +K;+ R)),

(=i, 1,i(k;R=K; - R))

where

A"l d

2"i+";—1-!2 (_1)"i+"f"12

G( g, af) =

XT(1+ia;)T(1 +iaf)e‘"(°ii+ ag) /2
(AT)

and u=3AM1-7).
The R integral is now in the form considered by
Nordsieck,'® so that
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- e—uR+i-a-T2 o
f AR S Fi(=iy, 1, i(kiR = F; - R))

X \Fy(=iay, 1,i(kR +K; + R))

=21T€"a"gl-idi—1g;(ai—af) (gz +g3)ia,

8185 — 84&:;

X, F, <1 +iay, =tay, 1, ;3———3—2>
&1(& +85)

=27e"%J (u,q), (A8)

& =5(q* +u?), g =K; q+iuk; =g

gsEk‘kf+i{>"Ef—g4, g4EEf-('1.—iukf.

Thus the final expression for T;; can be written as

]1 jg

1 R n'.+n -
< f anns (d‘;) w3,
(A9)

where
B=2Z,(=1)itnstigmnlag-a)/2
X T(1+ia)I(1 +z’a,-)712“"'i'"fx"Nn',N,,f,
Ny=[ (22" /(2n) |12,
X=Z§+Z¥, u=3\1-17),

and with J (%, q) defined by Eq. (A8). Note that
generalization of the above technique to include
nonzero angular-momentum states requires the
introduction of a rotation operator.
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