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Electron gas exchange for atoms
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Current use of electron gas theory for exchange allows calculations of Hartree-Pock (HF) energies through

the use of local potentials. A recent proposal of Gopinathan, Whitehead, and Bogdanovic to use a realistic

pair correlation function f tt (1,2) that incorporates the boundary conditions of Kutzelnigg, Del Re, and

Herthier, which consider the finite number of electrons of a given spin, showed much better agreement with

atomic HF calculations. This paper explores the use of an improved f & t (1,2) either with the electron cloud

form (exponential) or with a modified Wigner form. The total energies obtained from this method are in

excellent agreement with HF total energies. The calculated total energies lie above the HF values; we

interpret this as an open possibility for the inclusion of refinements such as the inhomogeneity corrections.

I. INTRODUCTION

The solution of the Hartree-Fock equations, es-
pecially for larger atoms, is complicated by the
nonlocal nature of the exchange potential. A sim-
plifying assumption, due to Slater, ' consisted in
averaging the exchange terms in the total (Har-
tree-Pock) energy expression over all occupied
one-electron states; in a further approximation,
these averaged terms were replaced by the inter-
action of the spin-up (0) and spin-down(4) elec-
tronic charge densities, p& and p&, with two total
exchange potential functions U& and U& according
to

Z,„,„=— [pi(1)Ut(l)+ p)(l)U)(l)]de, .

The expressions for U& and U& were derived by
assuming that the local behavior of the p's was
that of a uniform free electron gas.

Hohenberg, Kohn, Sham, and Tong' and Gaspar'
ha, ve shown that the exchange potentials appearing
in the one-electron Schrodinger equations that are
variationally derived from the approximate total-
energy expression are not U& and U&, but these
functions multiplied by a constant factor C«s = 3

(GKS stands for Gaspar-Kohn-Sham). The study,
by many people in different fields of computationa. l
physics, employing different values for CG„~ led
to the development of the so-called X method' in
which the total exchange potential is given in ryd-
berg units by

Ui(l) =-9n[(3/4w)p)(1)]'~' .

with a similar expression for U&.
Several methods have been proposed to deter-

mine empirically or theoretically the parameter
e that should replace CG~ for atomic, molecular,
and solid-state computations"', it was found that

the n values should change from atom to atom if
Hartree-Fock accuracy is desired. For isolated
atoms, Schwarz' determined the n values (o.'„F)
using the ad hoc theoretical criterion that the to-
tal energy in the X method should equal the Har-
tree-Pock energy; he found a smooth variation of
n with Z (atomic number). Berrondo and Goscin-
ski' proposed the use of the virial theorem to de-
termine n (o.v~), and found that ovr =o.».
Unfortunately there is no unique way to extend
these criteria to molecular calculations.

Herman ef a/. ' proposed the use of n =-', (Gas-
par-Kohn-Sham) always, and included terms in U

depending on the gradients of the charge density
to account for the inhomogeneity. This was also
intended to avoid the problem of using different
values of e in different regions of a molecule or
solid. Nevertheless, the use of the inhomogeneity
terms remains a heuristic approach.

Recently however, Gopinathan, Whitehead, and

BogdanoviP (GWB) have demonstrated that the
parametrization of Schwarz can be correlated
with the finite number of electrons in an atom.
These authors assumed a functional variation of
the Fermi hole density, with the proper boundary
values [following the statistical analysis of Kutzel-
nigg, Del Be, and Berthier' (KDBB)].

Here, we consider the relation between the func-
tional form of the Fermi hole density and the elec-
tron gas exchange for atoms.

II. THE FERMI HOLE

In terms of the one- and two-particle density
matrices

p(1) = n
i P(l, 2, . . . , n) i' d&, . . .d~„ds, d$, . . .ds„,
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m(1, 2) =n(n- 1)

x 1
~

2 ) ~ ~ ~ ) n dT3 o ~ ~ d&fldS] dS~ o ~ ~ dSf7

p(1) = p~(1)+ p~(1), (6)

v(1, 2) = v) i(1, 2)+ v) )(1,2)+m) i(1,2)+ v ) )(1,2).

where d7,. represents the volume element of the
ith electron and dS,. the spin coordinate, n is the
total number of electrons, and g is the electronic
wave function. p(l), the charge density at point
1, is the probability of finding any of the n elec-
trons at this point. v(1, 2) is the pair density and
gives the probability of finding any of the n elec-
trons at point 1 and simultaneously another at point
2. The total electron-electron interaction energy
is given by

(Q~-,.') = — 2,",2((, 2) d2, d2, .1

i&j

The one- and two-particle density matrices may
be written in terms of their spin components as

trons move independently. Therefore,

7)
'" (1,2) = p(1)p(2) —p(1)p(2) /n,

to preserve the correct normalization in finite
systems (as pointed out by KDRB).

One may assume that near position 1, p(2) may
be replaced by p(1); thus, the exchange density
changes because f& &

changes. This was the start-
ing point of GWB.

Now, assuming that the Fermi hole centered at
position 1 is spherically symmetric and has the
finite radius x„Eq. (12) becomes

To

47) p')"(~)~' d~ = -1,
0

(16)

and the potential at the center of the sphere due
to the exchange density is (rydberg units)

ro
Ui(1) = 8v p'i"(r)~d~

0
(17)

Even though an exact form of p'"(x) as a function
of p&(1) is not known for an atom or a, molecule,
one may assume some functional variation with
distance and impose the boundary conditions of
KDRB. That is,

)T) )(1,2) = p (t1)p)(2)+ pi(l)pI(2) f) )(1,2), (9)

with similar expressions for v& &(1,2) and v&&(1, 2).
The f 's are the correlation factors.

In Hartree-Fock theory it is assumed that
f&&(1, 2) = f&&(1, 2)=0, and one obtains, by sub-
stituting Eqs. (7) and (8) into E(l. (5), the exchange
potential for spin-up electrons:

U1(1) fr, ,'2 ( f 1=1(21), 21) d2„ (10)

with a similar expression for spin-down electrons.
This corresponds to the potential set up by an ex-
change charge p'" at position 2, given by

p)*(2) = p)(2)f) i(1,2),

with the following properties:

%hen the electronic motion is correlated, the
pair-density distribution v(1, 2) may be expressed
as

v) $(1,2) = pi(1)pi(2)+ p)(1)pt(2)ft i(1,2) (8)

and

p'i*(~) = ~a(~)+ &,

with a and b determined so that it satisfies Eqs.
(13) and (14).

GWB found that assuming g(~) to be a straight
line from zero to xo leads to z-dependent values
of n proportional to the a» or n». Their results
are plotted in Fig. 1. The agreement with Q.„F or
n» was closer when the obtained values were
multiplied by a constant factor of 0.972, but this
does not satisfy the boundary conditions. Also,
it may be pointed out that the chosen linear varia-
tion forces f& &(1,2) to the asymptotic value at
small distances from the first electron.

Now, in the electron gas approximation one may
assume that since the total amount of exchange
charge removed from the distribution as far as
electron 1 is concerned is -1, the exchange charge
the electron carries in its movement should not
be very different from a hydrogenlike distribution;
such a Fermi hole density with exponential behav-
ior is given by

p'&"(1) =-p&(1)[(1—1/n&)e "~"'+1/n&].

pi*(2) dr, = -1, (12)

p'i*(1) =-p)(1),

p ("(2)——p„(2)/n ),
(»)
(14)

for large x» when it may be assumed that the elec-

The last term in the square bracket conforms to the
KDRB boundary conditions for f& &, and the param-
eter b may be determined by requiring that the
exchange approach the free-electron gas value as
the number of electrons becomes infinite. Replac-
ing E(l. (19) in E(l. (16) and E(l. (17) gives for the

1
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electron gas exchange potential

U)(1) =-2(4)))" p'i"(1)

the final expression being

1+2.5148/n )
(1+3.7723/n )' ' ' (23)

=CiUts) ~
(1). (20)

Comparing with Eq. (2), this is equivalent to using
an exchange constant factor

2 1+2.2321/n&
3 (1+2.9212/n, )2i' ' (21)

&&ie "" 1+ —+5 — i+ —i,
0 'ro j n& j

(22)

including in the last term of the curly brackets
the KDRB boundary condition for f& &. Determin-
ing b by requiring the free-electron-gas limit
when the number of electrons goes to infinity, we
find that C& has a minimum value, lower than —,',
around ~ =10. This may be avoided by determining
b so that the minimum of C& occurs for n& -~,

where b =1.925 was used. The values of C obtained
with this equation are plotted in Fig. 1.

We now explore the use of a modified Wigner
approximation" to the pair correlation function
of free electrons with parallel spin, in a seem-
ingly more realistic form,

1
p) ))) =-o&())I()——

Ã)

with b = 5.029. Values obtained with this expres-
sion are also plotted in Fig. 1. They are, in gen-
eral, very close to ~„F.

In Fig. 2 we have drawn schematically the dif-
ferent approximations to the Fermi hole.

In order to assess the usefulness of the different
approximations to f& &, we have done self-consis-
tent-field calculations on several closed-shell
atoms and ions with the different electron gas ex-
change potentials.

The self-consistent equations to be solved are
(in rydberg units);

[-V'+ y (r) + V„(r}]y,.(r}=e,.y,.(r), (24)

2Z 2p(r')
[r —r'

i

(25}

the electron density for an atom with N electrons
(closed shell) is

N/2

p(r) = Q n, i g, (r}~', (26)

and the exchange potential for the spin-restricted
case (closed shell) is

V„(r) = —', U(r) = -6C[(3/8)))p(r)] 'i'. (27)

where the electrostatic potential Q(r) for a nucleus
with charge Z, including self-Coulomb terms, is
given by
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FIG. 2. Approxxmatxons
to the Fermi-hole density
distribution (schematic) .
The local approximation
forces p(2)f &'

'=0 after
x, , or ~~ neglecting

the tails of p(2). The dash-
dot line represents GWB.
dotted line, exponential;
solid line, modified Wig-
ner's form. xo (GWB), r, ,
and x are the radii of the
Fermi sphere in the differ-
ent approximations.

The total energy is given by

+ pr ~Ur —Vr dr. (28)

Total energies for the different electron gas
exchange approximations are reported together
with Hartree-Fock values in Table I.

III. DISCUSSION

n„~ was determined to make the approximate
total energy of Eq. (28) equal to the Hartree-Fock
eriergy, and in general e& n» results in lower
total energies as in the case of the GWB values.
On the other hand, the exponential form f& &, and,
in general, the modified Vfigner-form electron gas
total energies are above the HF limit. This situa-

tion is good since, in principle, we still have to
include the effect of the inhomogeneity corrections
which tend to lower the total energy. At present,
we do not prefer one form over the other since
the gradient corrections are uncertain. '

The results for He show a relatively large error,
E~ being below the experimental value. However,
even if convenient for programming, one- and
two-electron systems should be treated in a dif-
ferent way. For one-electron systems the poten-
tial should, of course, include only the electron-
nuclear attraction; thus in any computer program,
one should declare explicitly neither exchange nor
self-Coulomb contributions in the one-electron
Schrodinger equation.

For He 1s' the Hartree and Hartree-Fock theo-
ries are the same; that is, the exchange term can-
cels exactly with part of the Coulombic interaction.
Thus, making the exchange exactly equal to zero

TABLE I. Total energies for different electron gas exchange approximations (in rydberg
units). For a closed-shell system, C~=p$

Atom t", Eq. (21) Q, Eq. (23) Hartree-Pock

He
Ne
Ar
Kr
Ll
Na'
K'
Hb'

-5.6974
-257.0681

-1053.614
-5504.068

-14.4359
-323.335

-1198.079
-5876.464

—5.9489
-257.521

-1054.634
—5510.378

-14.8384
-323.857

—1199.186
-5883.041

—5.9489
-256.3567

-1050.715
-5496.597

-14.8384
-322.517

—i. 194.946
-5868.690

—5.9489
-256.763
1052.437

-5502.871
-14.8384

—322.985
—1196.807
-5875.215

—5.7233
-257.0939

—1053.634
—5504.108

-14.474
-323.4

-1198.0
-5876.44

Values of eHF taken from Schwarz, Ref. 6.
"Hartree-Fock values taken from B. Y. Tong and L. J. Sham, Phys. Rev. 144, 1 (1966); and

Y. S. Kim and R. G. Gordon, J. Chem. Phys. 60, 1842 (1.974).
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in the computer program will result, solving the
Hartree problem, in an energy of —5.723 55 Ry
which is practically equal to the Hartree-Fock en-
ergy'~

From the results on positive ions, it may be
seen that the total number of electrons is not the
only determining factor for the exchange to be
used —it appears to depend also on the atomic num-

ber. The atomic number is otherwise related to
the gradients in the charge density. The effect of
neglecting the exponential tails in p(2) will have to
be reconsidered for molecules. This, together
with the possible improvements introduced by dif-
ferent exchange values for spin-up and for spin-
down electrons (spin-polarized calculations), is
at present under investigation in this laboratory.
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