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Comments on the polarization of the quenched radiation from the 2s state of hydrogen*
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This paper examines two theoretical aspects of the measurement of polarization of the quenched radiation
which comes from the application of a weak electric field to the 2s state of hydrogen, SpeciAcally, it
outlines the justification of the Bethe-Lamb phenomenological analysis of this problem from the external field
approximation of quantum electrodynamics. Further, it includes the lowest-order effects of the J-breaking
part of the hyperfine structure in Rayleigh-Schrodinger perturbation theory. While it was expected that these
terms would contribute to the polarization fraction a correction to the lowest order of the relative size of the
ratio of the hyperfine splittings to the fine-structure splitting of the n = 2 state or about one part in 10',
cancellations occur and these J-breaking terms give a correction in the fourth place of the polarization
fraction.

I. INTRODUCTION

The measurement of the polarization of the
quenched radiation that comes from the application
of a weak electric field to the 2s state of hydrogen
has been. suggested as an indirect method of mea-
suring the Lamb shift in hydrogen an.d hydrogenlike
ions. ' It appears that four-place accuracy in the
polarization fraction and thus in. the derived Lamb-
shift values will be possible from this technique.
The theoretical framework which has been pre-
scribed to determine the Lamb shift from the
polarization fraction is the Bethe- Lamb phenome-
nological quenching theory. '

This paper examines two problems. First, we
look at whether the basic concept of the Bethe-
Lamb phenomenological analysis is right, and we
justify it from the external field approximation of
quantum electrodynamics. Second, we calculate
the polarization fraction, including in our treat-
ment the lowest-order J-breaking parts of the hy-
perfine interaction, which were ignored by Casal-
ese and Gerjuoy. ~ We expected that these parts
would give a contribution of the relative size to
the lowest-order polarization fraction of about the
ratio of the hyperfine splittings to the fine-struc-
ture splittings of the n=2 state or one part in 10'.
Instead, we find that cancellations occur for which
we do not have a simple reason, and the J-breaking
terms give a correction in the fourth place of the
polarization fraction. '

II. THEORY

We give here an outline for the justificatii n from
first principles of the Bethe-Lamb phenomenologi-
cal quenching theory, including 2p, /, mixing but
neglecting the hyperfine effects. The use of ener-
gy denominators which include the Lamb shift
while employing nonrelativistic wave functions in
second-order perturbation theory does not follow

directly from the ordinary Hayleigh-Schrodinger
analysis. The requisite addition is the demonstra-
tion that the radiative corrections shift the poles
in the complete electron propagator. This point
was discussed originally by Low' and recently in
a more complete way by Fox and Yennie. ' We use
the notation of Fox an.d Yennie.

The significant part of the perturbation series
for the decay of a 2s state in the presence of a
weak electric field is given by

e(@l2ke)"'(u
l1' /2

x [yf' —m —Z, (n', m, e)j 'eg
~
u,', ),

where Z, (n', m, e) is the mass- and charge-re
normalized self-energy operator with e and m the
physical charge and mass. The symbol S means
E y = «,y'- e ~ y, where «" =(O, e); g=zSoy',
r=v y, where z, =E2, e'/r and n&—-—p,.; and k
=(E,', —E„)lac. The wave function u, is a solu-1sj /2
tion of the Dirac equation for the hydrogen atom,
and E„is its eigenvalue. The wave function u,'sl/is the wave function for the 2s, /, state, including
all the radiative corrections. This wave function
may be written in terms of a perturbation expan-
sion in Z, acting on u„, the Dirac wave function.2si /2 &

For the purposes of this discussion, we replace
u,', with u„ /, , since the wave-function correc-
tion gives a negligible correction to the transition
amplitude. Note that E,', consists of the value of
the Dirac 2s, /, -state eigenvalue plus the complex
level shift due to all the radiative corrections.
The real part is the energy-level shift, and the
imaginary part is minus one-half of the linewidth
of the 2s, &, state. The state (u„~=~u„,)~y' is
the Dirae adjoint vector rather than the Hermitian
conjugate vector.

We insert two complete sets of hydrogen eigen-
states of the Dirac equation and write the transition
amplitude % as a double sum:
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By neglecting retardation and intermediate states other than m, n = 2p, i, and m, n = 2p, i„we introduce an
order Qt' error to the leading term:
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Using the result of Fox and Yennie, ' we can
establish that (u», / I yo[f' —m —K,(v', m, e) ]

'
x y ju» ) equals &E(2s,/„2p, /, ) ' up to a relative

2&x,(2
order n' correction, where bE(2s, /„2p, /, ) is the
complex Lamb shift. The real part is the actual
energy difference of the 2s, i, and 2P», states, and
the imaginary part is minus one-half of the differ-
ence in linewidths. Similarly, (u,&/, I y, [g' —m
-Z, (w', m, e)]'yoju», / ) is, to the same approxi-
mation, bE(2s, /„2p, /, ) '. Using the techniques
given in Bethe and Salpeter, ' we reduce the Dirac
hydrogen wave functions to their Schrodinger-
Pauli counterparts (P) leaving corrections of rela-
tive order e'. Finally, we employ the commuta-
tion relation p= (im/5) [H„r], where H, is the
nonrelativistic Hamiltonian for hydrogen to con-
vert 3R to its conventional "length" form:
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III. CALCULATION

In this section we calculate the polarization
fraction of the light emitted when an arbitrarily
weak electric field is applied to the 2s state of hy-
drogen. In this calculation we take care of the
changes in the energy levels due to hyperfine
splitting as does Casalese and Gerjuoy, but we
also take into account the lowest-order effect of
the quantum-number J breaking of the hyperfine
Hamiltonian. %e find that this term is non-negli-
gible but small, and needs to be included to obtain
a value of the fractional polarization correct to
four places to match the experiments which have
been proposed. '

The polarization fraction P is given by

F= (I„ I,)/(f„ + f,) (5)

where I„and I, are the intensities of radiation ob-
served at 90' to the electric field with polarization
parallel and perpendicular to the field, respectively.

Both I„and I„ to the accuracy desired, come
from averaging over the initial states and summing
over the final states of a quantity proportional to
IA(F, , F",M~, M~, .) I' for the appropriate direction
of polarization. The amplitude A(F, F",M„,M~„)
is the sum of four parts which we find using Bay-
leigh- Schrodinger perturbation theory:
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We label our states ~nL~FM~) such as in ~1s«, E"M„„),where we surpress the I=-2 index .The ener-
gies E2. / F E2P1/2 E, and E2P3/2 F are given including the Lamb shift and hyperfine spllttings. We take
our values from Brodsky and Parsons, ' employing the revised value for the fine-structure constant. "

We simplify our transition amplitudes to a form involving standard 3j and 6j coefficients:
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The value for polarization fraction P we obtain by including .just A, and A» in the spin sum is -32.32%,
which compares with Casalese and Gerjuoy's value of -32.33%%u0. including the effects of the leading
J'-breaking part of the hyperfine structure, that is, amplitudes A, » and A,v, we obtain —32.31%.
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