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Four elliptically polarized waves acting in a cold and unmagnetized plasma are shown to be responsible for
the parametric evolution in time of the rotation of the principal polarization axes (the precession frequency)
and some other nonlinear effects in two evolving waves by two other powerful waves. The investigation
requires the transition from the macroscopic to a new type of more general and vivid microscopic study of
parametric processes due to transverse waves in continuous media. The parametric precession frequency
(PPF), when complex, is a new source of instability in plasmas. Complex PPF and complex parametric
frequency shift occur in some near-resonant interactions in which the sum or difference between two
frequencies is close to the characteristic frequency of electrons in a plasma. It is found that when the plasma
is subjected to two strong fields, sharp bands of monochromatic noise transform into growing continuous

spectra.

I. INTRODUCTION

Using a plane-polarized transverse wave Sluijter
and Montgomery' (1965) considered the problem of
the nonlinear interaction of a wave with a plasma
having relativistically moving electrons, static
ions, and no static magnetic field. They obtained
an expression for the shift in the frequency in the
temporal problems and wave-number shift in spa-
tial problems. Arons and Max? (1974) reconsid-
ered the same problem using an elliptically polar-
ized wave. Assuming that the nonlinearities in the
medium, due to interaction with some fields of un-
equal amplitudes, are responsible for the evolution
of the precession frequency (which is the rate of
rotation of the principal polarization axes about the
direction of propagation) simultaneously with the

evolution of the shift in the frequency or wave num-

ber, they evaluated these quantities. Thus a phys-
ically interesting and important quantity — the pre-
cession of the polarization ellipse —was predicted
as a nonlinear effect. Consequently the results ob-
tained with elliptically polarized waves®* can now
be rectified, and those with two plane polarized
waves® can be generalized. Moreover, the work of
Arons and Max has also opened a few other im-
portant avenues of research. This paper deals with
some of them.

When the precession and shift in frequency are
complex, the plasma becomes unstable inspite of
the fact that it is transparent to high-frequency
waves in the linear approximation. This makes the
study of propagation of high-frequency waves im-
portant and useful.

In Ref. 4 the interaction of four elliptically po-
larized waves, neglecting precession, was studied
to find the evolution of parametrically excited fre-
quency shift w (PFS) of two weak noises by two

powerful pump waves; and it was shown that the in-
teraction of four transverse waves propagating in
the same direction is necessary to study the type
of parametric effects considered here.

The motivation for the present paper is the gen-
eralization of that work through the investigation of
the parametrically excited precession frequency
(PPF) in addition to the PFS. Since the concept of
the evolution of §is new a number of interesting
questions and problems have been observed and are
clarified in this paper. The earlier obtained equa-
tions and their solutions now appear to be degen-
erate forms of the qualitatively somewhat different
and more comprehensive set of equations and their
solutions.

In Sec. I the main novelties of the parametric
problems involving precession in contrast to the
problems where precession is either ignored or is
not manifested are demonstrated with the help of a
simple model set of equations and their solutions.
In Sec. II the basic equations and relations of the
actual physical problem are discussed. These re-
lations are true in a frame which is rotating with
the precession frequency about the common direc-
tion of propagation. The general expressions for
the parametrically excited p and w are derived and
discussed in general terms in Sec. IV. In Sec. V
some near-resonant interactions are investigated.
A few of them yield complex values of p and w.
The basic equations for a case of exact resonance
are given, and the nature of their solutions dis-
cussed briefly.

The expression for p becomes indeterminate
when the elliptically polarized waves tend to be
circularly polarized. We searched for a method of
removing this indeterminacy mathematically, and
ultimately found the conditions for it. It became
evident that certain types of orientations of the
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wave polarization are permissible and others not,
in order that the limiting values of the indetermin-
ate quantities become finite and determinate.
These conditions have therefore been regarded as
essential for the evolution of the waves in a plas-
ma; and the polarizations violating these condi-
tions cannot be parametrically evolved. The rea-
son for this behavior is not yet clear. One very
plausible surmise is that this is merely a demon-
stration of the conservation of angular momentum.
To see that, it seems that instead of using our sys-
tem of equations, which is for the interaction be-
tween waves and a continuum, it would be better to
start with the equations for the interaction between
waves and a charged particle. Though the solution
by this approach is difficult, it can as well be im-
portant and useful. Katz et al.® (1975) have worked
on one such simple problem, the interaction of an
elliptically polarized wave of long wavelength on an
electron. They have shown that the polarization el-
lipse of the radiation field rotates with a frequency
which, in the long-wavelength approximation,
equals the precession frequency of Arons and Max.

Two types of rotation of the fields about the com-
mon direction of propagation are referred to here.
One is the rotation of the field vectors of the elec-
tromagnetic fields, the rate of which is the wave
frequency, and the other is the rotation of the di-
rection of their extreme values, or, in other
words, of the principal polarization axes, the rate
of which is the precession frequency. See Fig. 1.

If, in the laboratory system, the frequency shift
and precession are complex, the maximum intensi-
ty of the field grows exponentially, changes color,
and rotates with exponentially increasing angular
frequency in time about the direction of propaga-
tion. Some near-resonant interactions are im-
portant because in these PPF and PFS are com-
plex. They have been discussed in Sec. V.

The planetary and other astrophysical bodies
have axial symmetry, and they usually experience
specific rotations about their own axis. We find
that as an electromagnetic field enters a body, the
direction of its maximum force begins to rotate.

v, * -
1

0

FIG. 1. Two types of rotation of an elliptically polar -
ized field in time.

about the direction of propagation. Moreover, we
find that the direction of the maximum forces of
parametrically excited electromagnetic fields in-
side a body also begins to rotate about the direc-
tion of propagation. This phenomenon seems to be
very much relevant to the search for the cause of
natural rotation of bodies in space about their own
axial direction. The rotating maximum of the force
and p, when growing in time, can give rise to some
new quantum-mechanical effects. These can occur
as resonance effects when this force is of the order
of forces holding the electrons to the respective in-
ner cores in atoms and molecules and when p
equals a characteristic frequency of oscillation in-
side them. This rotation can also be manifested in
transverse waves through nonconducting media. So
it may be of some use in seismic research.

Chakraborty and Chandra’ (1977) have considered
the two-wave interaction problem. They have
shown that if one of the waves is plane polarized,
its plane of polarization is rotated by the second
wave if that is elliptically polarized, and that, this
rotation can be enhanced in near-resonant interac-
tions. This phenomenon seems to be similar to
Faraday rotation of a plane-polarized wave by an
axial static magnetic field, and like it, if detected,
may be useful in plasma diagnostic research.

II. AMODEL SET

Some parametric problems have been considered
in the recent past with the help of mathematical
models. Rosenbluth® (1972), Wilhelmsson® (1973),
and Nishikawa!® (1968) are some examples of these
studies. We have also considered first of all a
model set of equations and then the actual problem.
The reason is that all the equations of our problem
are big and contain many terms, some of which are
qualitatively similar. So though all of them con-
tribute to the determination of the nature of the
final results, they separately do not contribute to
the demonstration of the nature of the main features
and difficulties of the work undertaken. That is
why the model will serve as a good introduction.

We first write these for the parametrically ex-
cited fields of two plane-polarized waves when they
are interacting with two powerful plane-polarized
fields. Let a,,a,,a,,a, be the complex amplitudes
of the four waves, and w,,w,,w,,w, their frequen-
cies. Then

aa . _ - J—
-a—tl— ipra,(ay@y+a,a,)=1iq,a,a,a,,

sa 2.1)
—5?2- ip,a,la,d,+a,a,)=1iq,a, a,a,

where p,,p,,q,,q9, are parameters and @ is the



complex conjugate of a. Let the phase-matching
condition between the frequencies be

W, =W +Wy+ Wy (2.2)
4 1 2 3

It ensures that the interaction is parametric and
corresponds to a coupling of the lowest order be-
tween the waves. Using (2.2) the solution of (2.1)
was considered in Ref. 4.

When the waves are elliptically polarized the
field variables can be expressed in the form (3.5).
To avoid some complications let initially all the
major axes be taken along the same direction par-
allel to the x axis and all the minor axes parallel
to the y axis. Now denoting the PPE by g, the mod-
el equations are

ea, . * . - Py

a—t‘+ i, p - ip, \a, = iq, G,(@,a,+b,b,), (2.3)
9b,

57 —t+ida,p —zpl by=—ig by(@,a,+b,b,),  (2.4)

aa
2+zb2p—zp2)xd2 zq2a4(a1a3-b ba), (2.5)

9b, . - . . S
a—tz+za2p—zpsz2=zq2b4(a1a3—blb3), (2.6)

with

N=a, T, +byby+a,d,+b,b,. (2.6a)

Equations (2.3) and (2.4) clearly follow from
(4.3a) and (4.3b), and (2.5) and (2.6) from (4.6) if
(4.7a) and (4.7b) are used with it. When the field
orientation is specified by (2.25), in the limit of
circular polarization, only one of the three terms
in the right-hand side of (4.3a), (4.3b), (4.7a), (4.7b)
does not vanish. In the model (2.3) to (2.6) the
right-hand sides contain only terms of the type
which do not vanish in the said limit.

The most significant new additions to the equa-
tions. (2.3)-(2.6), compared to the corresponding
two equations of (2.1), are those proportional to g.
Besides these p,,p,,4q,,9, contain more terms due
to the b,;’s. If p was absent, or ignored, these ad-
ditional terms could not effectively alter the pat-
tern of solution indicated by (2.1) and obtained
earlier.* Equations (2.3)-(2.6) give

%(af - b?) =2ip, Ma? - b?)
+2iq1(a1‘7-3+b153)(6—lza4+52bq), (27)
a% (a3 - b3) =2ip, a3 - b3)
+2iq,(@, @y - b,b,) (@,a,-b,b,) . (2.8)

Equation (2.7) has been obtained from (2.3) and
(2.4), and (2.8) from (2.5) and (2.6). These will
give the frequency shift if the 8(a;,b;)/3t are re-
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placed by —iw(a,,b;). To obtain p from (2.3) and
(2.4) the first term in the left-hand side of these
equations is eliminated. The result is

pé-;( -b)=2p, x(a,b —albl)

-2¢,(@,b,+a,b,) @,a,+D,b,).  (2,9)
Similarly Egs. (2.5) and (2.6) give

pat (a2-0b2)=2p,A(a,b,—a,b,)

+2q,(d,b, —a,b,)@,d,-b,b,). (2.10)

The equations for PFS and PPF, (2.7)-(2.10),
are very different from the hitherto known linear
equations for w only. Their investigations have led
us to the transition from the usual type, which can
now be termed the macroscopic study, to a new
type of more general and vivid microscopic study
of propagation of transverse waves in a continuum.

Replacing 8(a,,b,,a,,b,)/8t by —iw(a,b,,a,,b,),
etc., all the terms of (2.7) and (2.9) are divided by
a?-b%, and of (2.8) and (2.10) by aZ -bZ. Then di-
viding all the terms of the numerators and denomi-
nators of the resulting relations containing p, and
q, by a3 and those containing p, and g, by a2, we get

3R
w+1>1A--qlal<1+64a‘l laa 1--al a,a,,

(2.11)
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w+p27\_-q2 (1-—
a,

(2.12)
b, b)( b,b >< b2>‘1__
= - = 1-— a;a,, (2.13)
‘ha( a a 3y
Do) BB (5
p-qzaz(a4—a2> 1- A at a,a,. (2.14)

The equation for w is obtained by eliminating @,/
a, between (2.11) and (2.12) and for p between (2.13)
and (2.14).

(w+p, 2 )(w+p2>\) 1+b1b3 1+b2b4 (l_b1b3>
q,q,a:az a,a, a,a, a,a,

2\~1 2\~1
(12 )-2) (-3
a2a4 al a2

(2.15)

_____i’f__=_<.5_s+h>(i_§g><1+52ba>
q,9,la,1%1azl a, a,/\@, a, a,a,
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Equation (2.15) can be simplified to
(w+p1)t)(w+p2)\)=(1_ lb112|b3;2><1_ |b2;z|b4{2>
la,l?la,l? la, 1%la,l?

q,9,1a,1%la,l?
16,12 "( |b|2>'1
X[1=—L_ -2
< Iallz) 1-1ar)

. ’ (2.17)
because a, =|a, |e"“*, etc.
For further calculations we put
b;|? 5 s
. =1-¢3 (j=1,2,8,4), (2.18)
i

in (2.17) and obtain

(w+p, N(w+p, A)z(e§+e§- e?e?)(e? +e?-eie?)
q,9,1a,1%la,|? e2e? :

(2.19)

Here e, e,, e, e, are the eccentricities of the po-
larization ellipses of the waves. So O0<e;<1. Now
let

e;=l;e,, (2.20)

where I; are constants and j=1,2,3,4. Then for
the limits leading to circular polarization of the
waves we find that e, -0, ¢,~0, ¢,~0, as ¢,~0.
Moreover, since for the plane-polarized waves

e,=1, (2.21)

we find that we must take /; =1 because for them
e;/e,=1. Hence

lim %=1, : (2.21a)

i
ei-o.ej-oej

and (2.19) reduces to

(W+p, N+ p,\) =4q, 4, |a,|?|a,|?. (2.22)

To consider (2.16) for these limits, we find that
the relations (2.18) are not sufficient and so we
write

[b;]/]a;|=+(1-e)>,

The field at the frequency w; is

(2.23)

E,;=(&a;-i§b,)se% +c.c., 6;=k;z —w;t,
(2.24)

where X and ¥ are unit vectors along the rectangu-
lar axes Ox and Oy, respectively, and c.c. re-
fers to the complex conjugate. Looking antiparallel
to 0z the projection of EU in the xy plane rotates

in time in the clockwise sense if both Reb;>0 and
Rea;>0, and in the anticlockwise sense if Reb; <0
when Rea;>0 provided w;/%;>0, where Rea; is the
real part of a;. .

For the evaluation of p the imposition of the non-
symmetric further prescription that the electric
vectors of the waves at the frequencies w,, w,, w;
rotate clockwise and that at w, counterclockwise
becomes necessary, because otherwise p is inde-
terminate. Hence we must choose from (2.23) the
following four relations:

15,1 IN

=(1_62)1/2 2 =_(1__e2)1/2

lall 1 ’ |a2[ 2 ’ )
(2.25

|b3|_ 2)1/2 |b4|_ 2)1/2

T, - 1= e g -edt.

These are the allowed polarizations. Those which
exclude (2.25) but which are given by (2.23) for j
=1,2,3,4 are not allowed. Equation (2.16) can be
written as

(1-1b,/a,|21b,/a,|(1 -1b,/a, 1?Ib,/a,]?

;)2=q q 'a lzla |2<é_?_1><ﬁ_&>
19219 1010.10\7 =2\, =7, )| T=T8 . /a, 10 <1b,/a,10(1 = 1b,/a,1 1b,/a, (1 +1b,/a, 1o, /a;]) |"

Using (2.23) the quantity within square brackets re-
duces to

(eZ+eZ—ele?)(el+el~elel)
e2eX(1-1b,/a,11b,/a,1)(1+10,/a,11b,/a, 1)’

(2.26)

Because of (2.25) the denominator is not zero and
the indeterminacy in (2.16) is removed for circular
polarization. Hence using in (2.26) the relations
(2.20) to (2.21a), we find that for circular polariza-
tion Eq. (2.16) becomes

p?=-4q,q,|a,|?|a,|?. (2.27)

Hence by (2.25) the waves 1 and 2 should have elec-
tric vectors rotating in opposite senses. This is a
nonsymmetric condition, although (2.2) is symme-

tric with respect to the waves 1 and 2. Hence the

effective parts of the equations for the evolution of
their amplitudes, namely (2.3)-(2.6), do not have

any symmetry. The obtainment of w, (2.22), does
not depend on these finer details.

The allowed polarizations can interact with the
gyration of electrons and ions in the presence of a
static magnetic field in the direction of wave prop-
agation, and so may provide a source of trans-.
forming energy of strong fields (e.g., laser fields)
to ions or electrons for the purpose of heating a
plasma. This seems to be an interesting unsolved
problem. '

The expression (2.26) and the formulas (4.14) and
(4.15) show that the ellipticities of the pump waves
3 and 4 are given. But since those of the evolving
waves 1 and 2 are not given, their frequency shifts
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depend on e, and e,.

For example, the wave at the frequency w,
evolves into that at w,+w where w has two sets of
continuous and generally complex values. These
are the solutions of the quadratic (4.14) and are
regular functions of ¢, and e,. Therefore, the
sharp bands of the two evolving monochromatic
noises transform into continuous spectra having all
frequencies lying between certain maxima and min-

- 1
Z E[[(€1,€2)=£ Allgl\

el, 82

X-i(1-e9)"2F]exp{i[6, - wle,e,)t]}+c.c.)de,de,.
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ima.
The electric field of the wave 1 is given by

IR =901 - e2)72]

x exp{i[0, - w(e,, e)t]}+c.c.

-

E,=z|a
(2.28)

where 0, =k, z ~w, /. Now summing over all e, and
e, in the system rotating with the angular velocity
p we find that

(2.29)

In the fixed laboratory frame if X° and 7° are the unit vectors along the rectangular Cartesian coordinate

axes, we get

> Bieped= [ [ 1A

€€y

X exp{i[6, - w(e,,e,)t ]} +c.c.)de,de,.

#

Relations of transformation between X, § and X°, 3°
are given in Eq. (4.18).

III. STARTING BASIC EQUATIONS AND RELATIONS

The basic equations for electron motion in a cold
and homogeneous plasma in the absence of any
static magnetic field are

(34 9) oz =~ - [P, (.0

1 8H
curlE = =Z%0 (3.2)
19E 4me
cur lH-Ea—t— (ny+n)V, (3.3)
div§=-—41ren, divHE=0. (3.4)

As in Refs. 1, 2, 4, and 5, the relativistic elec-
tron momentum is also used here, although the
plasma is cold and the perturbation field is of a
nonrelativistic nature. Thus according to the ter-
minology of Ferrari ef al.,'! ours is a problem of
the weakly relativistic type.

As in (2.24) let E,; denote the first harmonic field
at the frequency w; and ﬁl denote the sum field

S,
7=1

Moreover, let the waves propagate parallel to the
z axis and oscillate in the xy plane, where initially
the x axis is parallel to the major axis and y axis
parallel to the minor axis of all the waves. Thus
we can write

° cos-ple,,e,)+7° sinp) —i(l — %)/ 3(-X° sinp+F° cos p)]

(2.30)

E, =) E,;=% > {Xa;ei+a;ets)
7= =1
-i§(b,e'% -b,e" )},  (3.5)
where
0;=k;z—w;t (3.6)

and a; is the complex conjugate of a;.
total electrlc field E is the sum

E=E,+E,+E,+- - -, (3.7

Actually the

where E contains the vector sum of all the double
harmonics 6; :tek, and E contains the vector sum of
the third harmomcs prov1ded by the combinations
in 6,£6,+6, for all integral values from 1 to 4 for
i,7,k.

The linear approximation will be called the first
approximation, and represents only the first har-
monic fields whose amplitudes are independent of
time. The dispersion relation is

kic?=w?-wi. (3.8)

The second harmonic solutions will be regarded
as those of the second-order approximation; the
third harmonics as those of the third-order solu-
tions, and so on for the higher-order solutions.

The second-order velocity ¥, and the electric
field E are determined from

aE
"ot

oV, eEz e

Bt m  wmc [V, +H, ],

=4menyv,. (3.9)

They are longitudinal waves and so

H,=0, divE,=-47en,. (3.10)

In this paper we mainly consider the problems
for which
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(w; tw;)?+ Wl (3.11)

and briefly mention at the end of Sec. V one case of

(w;xw;)?=wE. (3.11a)

Using, therefore, (3.11) to solve (3.9) we get

the type
- _e__z*_(2k,[(a§—b"{)e2“1+c.c.] (Ry+R,)(w, +w,)
27 T 4m? w,(4w? - w?) w,w,[(w, +w,)? - wZ]

(B, - k) (w, — w,)
wlwz{(wl - ""z)z -

E is evaluated from the second relation of (3.9)
and n, from E with the help of the second equation
of (3. 10)

A. Third-order source

The third-order source for the electric field is
mw? | 8 (v? v1> 19
e { of 2c? n ot (. 7))

C e > N =
—m—c[szHx]-(Vz'V)vl}.

(3.13)

All the terms of it being transverse waves, the
third-order fields must be transverse and diver-
gence free. Hence

divE,=0. : (3.14)
Moreover, the calculations show that
(e/me)[¥,x H,]+(F,* V)¥,=0. (3.15)

The remaining two terms of (3.13) simplify to a
linear combination of exp(2¢6;+%6;) and exp(if; +i0;
+16,).

Some of these are flrst harmonic sources be-
cause they are sines and cosines of 6;+6; — 6, for
j=1,2,3,4. Moreover, because of (2.2), the lin-
ear combination §,-6,-6,, for example, will be
reduced to (&, -k, —k,)z — w, ¢ and so will add to the
sources containing linear combinations of sines
and cosines of w,Z. Similarly all the first harmon-

E,-c’V’E,+w}E

[(a a,-b bet®r*%2) yc.c.]

Z_ [(a1a2+b1b2)e“"1’92’+c.c.]+...> . (3.12)
A v

r

ic sources of the third order at w, and w,, both pa-

rametric and nonparametric, can be obtained.
Since w?>> w} we have

Ric?= w3, (3.15a)
Let us now impose the condition
ky~k +ky+k,. (3.15Db)

Relations (2.2) and (3.15b) can not hold simulta-
neously when some of the waves propagate in the
positive direction of the z axis and some in the
negative direction. So all the waves propagate only
in one of these two directions. Consequently w; and
and &; should have the same sign:

w;/k;>0; k;>0 when w;>0 (3.15¢)
k;<0 when w;<0.

B. Basic third-order equation

Let us here express the third-order fields as the
sum E +E +* + + where E represents the evolution
of the first harmonic fields correct up to third or-
der, ES represents the third harmonic fields and
the terms in ++ - - contain the electric field of the
other combination harmonics of the type ,+6,+6,.
Since we are interested only in the first harmonic
fields in the third order, we use (3.15) and (2.2) to
find the first harmonic terms of (3.13). Writing
only the relevant first harmonic sources at w,, we
get

(22(01 +B; B)Ra,-iyb)+ A, (a?-B)(Xa, +zyb J+24 (a0, +b, 62)(xa2—zy82)

+24A, j(a,@,+b,B,)Ra, -0V B,)+2A _,(a,0,+b,B)Ra, -iFB,)

+ 2A1¢2(axaz -b, 32)(§Ez +1 ?32) +24 4(@,0,-0, 33)6{.0[3 +1 §‘33)

+2A,, (a,0,-b,8,)Xa,+iFB,) -

~2A

(53a4+-§3 B)Xa,+i ?52)

24, (@,0,+b,8,)Xa, +i ¥ 8,)

3=-4
w,/w,
where

(B; £k;)c? _ ea; eb
(w;zw,)?=wZ’ " mew;’ " mew,

Agy=1-

w,/w,
_2A2*3(a 203 = b, B;(:)(a —’Y54)> ®irceot- -,
@2 (3.16)
°a, = 5 - (3.17)
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o; and B; are dimensionless amplitudes. Since we
are interested in the evolution of the waves 1 and
2, we use from the right-hand side of (3.16) only
the sources containing exp[+i(8,, 6,)] and do not use
those containing exp[+i(8,, 0,)].

C. Temporal and spatial problems

In the next section we only consider the temporal
problem in which w and p are determined. There
is also the corresponding spatial problem, in which
the parametrically excited wave number shift and
space rate of variation of the precession angle
along the common direction of propagation can be
found by properly switching from the use of evolu-
tion in time to space. However, the field equa-
tions, which are partial differential equations, are
not identical in space and time. Particularly the
difference between the involvement in space and
time is most evident in the equations of second or-
der. The solutions for (3.11) are nonsecular; those
for (3.11a) are secular. Since the dispersion re-

2 . .
~a——c2V2+w2 (Xa,-i7b)e1+c.c.}
atz b 1 1

1303

lations are not linear in w; and %;, corresponding
to (3.11) and (3.11a) no relations involving k; +k;
exist. Therefore, only the temporal problem can
be defined and investigated in the near-resonant
and exactly resonant interaction which we have :
considered in Sec. V.

IV. PARAMETRIC EQUATIONS AND THEIR GENERAL
SOLUTIONS
Equation (3.17) is valid in the rotating frame of
reference in which the unit vectors X and § coincide
with the principal polarization directions of all the
waves of E. The first- and second-order time de-
rivatives of X and § are

0% .. 0 .. .
37E=—P°X+pY,

§=0Y, Y}
a§ oL X o ot (4.1)
'a’t*-‘--PX, §t—z=—P y-pX.

Using these and (3.8) and (3.5) in the right-hand
side of (3.17), we get

={%(=2iw,a,+a, ~a, p?+2b,w, p+2ib, p+ib, p) +§(=2ia,w, p+2a, p+a,p—2b,w, —ib,+ib, p*}e14c.c. 4 - -,

4.2)

where a,=9a,/8¢, etc. We retain only b,dl,ﬁl and ignore p,a,,b,,a,p,b,p, p? because these are negligible
in the nonsingular cases in which a,,b,, p vary slowly in time. Coefficients of Xe®1 and Je’1 are equated
from both sides of (3.17). Then ea;/mw;c and eb;/mw;c are replaced by a; and 8, in those factors in which
these replacements have not yet been made. These operations result in the following pair of equations:

d1+iﬁlb_ ipl{ na, + aa(alas +31§3)A1-3 + as(ala:} - 6133)A1+3 +a4(a1a4 +BBIA L+ a4(0510‘4 - 3134)A1+4}

=iq,0,(,0, +B, B,) +57,0,(@,0, + B, B,) +is,a,(@,a, ~ B, B,) + (nonparametric negligible terms), (4.3a)
B.l +10, p - ipl{ LB, ‘*,'Bs(ala3 +BLE:s)A 1.3~ Es(aﬂxa +B8, 33)A 143 +Eq(ala4 +B, 54)A1-4 - E«l(alafl -8B Bq)A 1+4}

= —iq, By(0,, + B4 B,) — 17, Bo(@,t, + B, B,) +i5, B,(@,a, — B, B,) + (nonparametric negligible terms), (4.3b)

where
- wj w3
= o = = - A
K j2=3'4(°‘1“f+1313;), b, 8w,’ 9, Buw, 34

.We can write these equations concisely as
2w,(-ia,+B8,p)=4,, 2w,(-iB,+a,p)=B,,

where

2

s;==gLA,,.

o oA (4.3¢)
8w1 2=4) 1 8(.01

(4.3d)

A /2w, =P1{ pa, +ag(a,a, +31§3)A -3+ 63(0!1(13 =BiBA, s+ a,la,a, +61§4)A et (@, - 5134)‘4“4}

+q,0,(a,a, +B,8,) +7, 53(52a4+§234)+sla4(5253—3233)+' oy,

(4.3e)

B,/2w,= lbx{ uB, +ﬁ3(a153+31§3)A -3~ Es(alas -B1BA s +B4(ala4 +31§4)A1-4 - 54(‘110‘4 -8, 64)A1+4}

—4132(530!4-*5334) —7’153(&2“4 +EZB4)+8154(&—2&3—52§3)+‘ °

(4.31)

Eliminating p between the two equations of (4.3d) we get
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-B,B,=(i/2w,)(A 0, -B,B,). (4.4)

This is the equation for the frequency shift w if 8/8¢ is replaced by —iw. Eliminating next the first term.in
the left-hand sides of the two equations of (4.3d) we get

p(B,B,-a,a)=(1/2w)(A,B,-B,a,). (4.5)

w cancels out because it occurs as a factor in both sides and leaves (4.5) as the equation for PPF.
Equating similarly the coefficients of Xe*%2 and Fe'®2 from both sides of (3.17) with the help of (4.2), we
obtain

2w,(—ia,+B,0) = A,, 2w,(~iB,+a,p)=B, ‘ (4.6)
with ‘
A,/ 2w, = Pz{ B, + aa(azas +B, Es)Az-s + as(azas —B3By) A5+ 014(012&4 +B, E4)A2-4 + 54((120[4 -8B, 34)A2+4}

+q251(53a4 +Ea 34) +7’2a3(ala4 "”51 Bq) + 82(14(&153 - El Eg) L (4.7a)

B,/2w,= 1)2{ By + Byt + B, Bs) Agg = Bala,0, — B, By) Ay +By(a,0,+B;B) A4, — By, - B, Bq)A2+4}

=4, B,(a50, +B3B,) = 7, By(a,,+8,B,) +3254(a1a3 —BiBy)++, (4.70)
where
W e __% S
by= 8(.02 q; 8w2A3'4’ 7’2"_8w2A1-4’ sz“'ngAha' (4.8)

Hence for the second wave

_i(A,0,-B,8,)
2w,

ABZ Ba2

%0, (4.9)

012022—,32{;2= s b(Bz Bz"‘ 0‘20‘52)=

Replacing 8(a;, B;)/0t by —iw(a;, ;) in (4.4), (4.5), and (4.9) and using (3.18), we get

(t5ps)e -

i—lxl IB4’2> (A1-4+A1+4)

) Arerr A+ ([ 2

— = 18,118,] — 1B,l = 1B,
3>A2-4+(a3a4 +B3B,) (1‘*%)}13-4'*(“3" 1(3122[ :33> ( |i [ B>A2+3] s

(4.10)

1
Q|Q|
- N
| S—
ey

R

'S
_+_

w

oo (N
&2
N~
N
Q
w

+
B2

™!

!z> (Apy+ A2+4)

>A3_4 + <Eg -

213312) (A2_3+A2+3)+<[a4[2_ By

Be

0 (ol

B

2 el

2

8,
a

1

By
o

2

B) A,

(4.11)

E3> A+ (a0, +B,8,) <1+

2

8 " p2 g —
56,85 b6 .
+ @3‘%33) ( B, +B) 13t (a —'Q_B> < Bl+3> 1+4
1

o) ol e o B ()

2

(4.12)
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45 57) o)
+ <a3—i—2233) (6362_22+E3>A2"3+ <0t4——[3) ( 22+B4>Az+4

e <&3-3—13) <a43—2— )Am+<@l B, )(a a4+3364)A3_4+<a4+—i— )( BZ+33> 1_4]. (4.13)

As in (2.18), here also |B,/a;|2=1-¢2.

A. Equations for PFS and PPF
By eliminating ozl/m2 between (4.10) and (4.11) the equation for the PFS is obtained:

(1)t o[
(22821 ) ez o oy o[22
[(a4+ ﬁ)( 313> 2_4+(&3a4+5334)(l+

x[(a4+B—B> <a3 +—B )Al_‘1 +(a a4+,3334) (1 +|=L

‘2> (A + A+ (]a4|2_ By

|2) (A +A M)]

|2> (A, + A2*4)]

[2> (A2-3+A2+3)+<|a4{2_ By

o (2 -]
>A3-4+ <org,—i—’1 3)<E4—%-,§4>Am]. (4.14)

Similarly by eliminating a,/a, between (4.12) and (4.13), PPF is obtained as the solution of the quadratic

2452, 6-85) o5 (r)o
o) B o) 62 3]
X[Sszeggp +<a3+é~ > <a3§2-— )A2_3+< 4—“;—";64> (@%;E)AM
+<Eq+i—"‘2§4> <a4i—22—34>,42_4+<a +E£ ) <a3—i—22B3>A2+3]
STV AR ST
[fb) () Bnmns Bclobi) ],

1

8.
a2
Ba
a

2

By
a,

By

1

These two equations depend upon the parameters A;,;, €;, w;, W,, 0y, B;, &4, B;. Using permissible values of
these, equations (4.14) and (4.15) can have both real and complex roots. Their implications have been dis-
cussed at the end of this section.

Using the eccentricities defined by (2.25) and then taking limits for circular polarization, as in the deduc-
tion of (2.27), we find that (4.14) and (4.15) reduce to

4 4
[ (Z,C:l"' +la3{ (A1_3+A“3)+1014| }(A -4+A1+4)][ ‘Z:: +5 ‘*‘!asl (A2,3+A2#3)+la4[ (A2—4+A2+4)]
b

=2 |2 (A + Ag+ Ap (A + Ay + AL, (4.16)

4 4w,
( 0:)1"0+|03|A1+3+la4| A“‘;< (:22‘) 3|2A2_3—Ia4|2A2_4> =—|a3’2|a412A2_4A1‘3. (4.17)
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Equations (4.16) and (4.17) depict a significant dis-
tinction between w and p. In the two sides of (4.16)
in both factors the coefficients of |a,|? and |a,|?
contain some linear combinations of A;,; such that
if A,,; occurs in one factor A, ; will occur in the
corresponding term of the other factor. But this
rule is not followed in (4.17), because PPF depends
on the nonsymmetric allowed polarizations and so
on some microscopic details of the wave process
which do not follow the rules of symmetry. But w
does not depend on these details.

The formulas for circular polarization, being
simple, will be discussed mainly in the first part
of Sec. IVB. They should be valid for the nearly-
circular elliptical polarizations and are usually of
the same type as the latter.

For the highest of the frequencies w?>> wg, (w;
+w;)?>»> wi, kic*~wi, A,,;~0; so (4.14) and (4.15)
reduce to

(4.17a)

This w is real.

For plane polarized fields putting B; =0, we get p
=0. If, for simplicity, we take |a,|?~|a,|2=a?,
w;>0, and w;=w; then w is determined from the
quadratic

4[(dww/aPw) + 1+ A, + Ay 1P= A+ A%
(4.1)

w has here two real and nonidentical values.

B. The two frames of reference

In this paper we deal with two frames of refer-
ence. One is the laboratory frame of the observer,
or, the fixed inertial frame, in which the principal
axes of the polarization ellipses are rotating at the
rate of the precession frequency p. The other,
which can be called the principal polarization ref-
erence frame (or, in short, the PPRF) is fixed
with the principal polarization axes. The field
equations used, (3.1) to (3.4), and (3.5) are true in
this frame.

Let X° and 7° be the unit vectors along the rec-
tangular coordinate axes Ox, and 0y, of the labora-
tory frame, and X, 7 be those along 0x and 0y of
the PPRF. Since the two frames coincide initially
instantaneously, we have

X=X%X°cosp+y°sinp,
. _ (4.18)
¥=-X°sinp+y° cosp.

In the laboratory frame the first harmonic elec-
tric field is given by

[{X°(a; cos p;+ib; sinp;)

+7%a; sinp; - ib; cos p;)} e +c.c.].
(4.19)

In the laboratory frame the determination of the
density of energies and their fluxes in different
forms should be useful, but according to the general
theory of relativity (cf. Alfvén and Falthammar!?)
the electrodynamical equations do not have the
usual form for rotating systems. Thus it seems
that investigation of the energies in the laboratory
frame should not proceed from our basic equations
(3.1)-(3.4). As such and because this and other
relevant points can be the theme of a separate pa-
per, they have not been considered here.

C. Significance of complex p

In the moving frame the basic relations for p are
(4.1), but in the fixed frame in which the linear re-
lations of transformation, (4.18) and (4.19), are
used, 6 and p have similar involvements in the ex-
pression for ﬁl.

To explain this point clearly, we write the x
component of (4.19) in the complex form

1 ; P -
E, =7 Z[—i(af e~ a; e i) (ei + e %j)
j

+i(b, eie“_gj e-ié,-)(eipj _ e-iEj)] ,
(4.20)

where 6, and p; are the complex conjugates of 6,
and p;. Now let 8;=6%+40}, p;=p}+ip} where 69,
6j, 0, pj are real. Then

E,= {e“P(|a,| sin(69+Q, ) cosp]
7

—|b;] cos(82+9;1) sinpl},
(4.21)

where ©; contains the total frequency shift in the
jth wave.

Hence a complex p, just like a complex 6; due to
a complex w will lead to exponentially growing
fields of instability and PPF is complementary to
w. Evaluation of p is therefore at least as impor-
tant as that of w. For the location of the conditions
for instability in a plasma, complex values of both
w and p, or for at least one of them, should be
searched for.

V. NEAR-RESONANT AND EXACTLY RESONANT
INTERACTIONS

We find that complex values of p and w occur in
some cases of interaction in which the sum or dif-
ference of two of the wave frequencies is close to
the characteristic plasma frequency w,. These are



16 PARAMETRIC ROTATION OF THE PRINCIPAL... 1307

called the near-resonant interactions and can be
studied by neglecting entirely the relativistic non-
linear corrections in the momentum-transfer equa-
tion (3.1).

For the evaluation of the roots of (4.14) and (4.15)
it becomes necessary to approximately evaluate the
dimensionless quantity A;,;. Since w?> wZ using
(3.15a) and (3.15¢c) we can write

A W} [1+(wiiwj)2
e (w; 2 w;)? — w3 w;w;
RCACTLLA AN } . (5.1)
4wiw;

If further w; zw;=w,(1-96), 0<6x1,

A,,;~1/25. (5.2)

A. Some near-resonant interactions
We consider the near-resonance defined by
W, =W, =W, +W,=w,(1=-08), 0<6«<1, (5.3)

and further specified by the following two sets of
conditions:

(@ w,>0, w,>0, w,<0, w,>0, w,=w,. (5.4)

W =W, Wy=W,, Wy=—w,+w,(1-0),

(5.5)

W, =Wy+w,(1=98), w,>0, w§>>w§;
() w,>0, w,<0, w,>0, w,>0, (5.6)
W, =Wy, W,==w,+w,(1=06), w,=w,, 5.7)

W, =W+ wWy(1=8), w,>0, wi>»wi.
Case (a): In this case by (5.1) we have
A=A, x50/ 4w, A _,=A, . =A, =3w}/4w,

(5.8)
and by (5.2)

A1_4=A2§3=A“3=A2_4z1/25_ (5.9)

The circular polarization formulas (4.16) and
(4.17) give

2 .2
~ 8%

W 8w06( 2+v2),
. 3 . (5.10)

bza wzg(&i z >,
4w \w, 2vF,

where
aizal=02. (5.11)

This p is complex and w is real.

For elliptical polarizations using (5.9), (5.10),
and (5.11), dropping those terms which have in the
numerator e - e (for j#14), and assuming e5< 1,
el=el=el, el=e%=e’?, we find that (4.15) reduces
to

. a?wil e\ (w i
e g_<1+_><_zt ) (5.12)
4w 2\ T e5 J\w, 2VF
As in (5.10), w of (4.14) will be real.
Case (b): In this case by (5.1) we have

As=l, A,=4,,=4,, ~3w}/4u},

= ~ 2 2 ~_ 1
A=A L= —5"%/4(*’0 y Agu®-3,

(5.13)

and by (5.2)

A,=AL,=A,,=A, ,~1/26. (5.14)

The circular polarization formulas (4.16) and
(4.17) give

_ 02w? ( 2 V3 )
w= - ’

E it Y (e S
40, \"37 206

2435

. 2,4
pm.‘.x_ie(Zi'?).

16w (5.15)

This w is complex and p real.

1. Connection with the Poynting flux

Let P; be the static part of the Poynting flux of
the wave at the frequency w;. Then

P;=|{(c/4m) [E;x H;])|=(k;c/w;)(c/8m)(a% +b?) .

(5.16)
When k;c~w; and af~g} we get
20 Lix 15X 10°
aivix1, . (5.17)

wj

To overcome losses due to friction, the pumps
must be greater than their threshold values. The
threshold power estimation in Ref. 4 [Secs. II and
1V, and particularly Eq. (4.6)] can be used here be-
cause the expressions for w obtained there and in
Ref. 4 are quantitatively of the same order. Hence
we find that

L~ 81e (P, P,)Y?
mic® 47, w,d ’
where v is the collision frequency of momentum
transfer per unit mass from electrons to ions.

(5.18)

2. Numerical estimation
For numerical calculations we take
6=0.1.
(5.19)

Then the threshold power, when P,=P,, is about v
X 1.9% 10° erg/cm?sec.
For the evaluation of w and p we further put

(5.20)

w,=10" rad/sec, w,=10" rad/sec,

P,~P,=10% erg/cm?sec

and obtain the following values in units of rad/sec:
for Eq. (4.17a)

wx=3.7x10%;
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for (5.10)
w=(~1.1,-6.5)x 105, p=3.7% (107*+i1.6);

for (5.15)
w=(-0.26+73.24) X 10>, p=(0.85,-0.47) x 1073,

(5.21)
B. A case of exact resonance
In the resonant interactions defined by
(w4;w2)2=(w1+w3)2=w§ ) (5.22)

some terms of the solution for ¥,, obtained from
(3.9), become secular and so proportional to
tsinw,? and  cosw,?. Retaining therefore only the
secular terms, we get

- Ee%(i(alas =0,0)(®1+E) i6ye0y , ¢ .

Vo =+ 3
8m W, W,

_ila, a4+b2b4)(k4—k2)ei(94_92) +e.e
w,w, e

P (5.23)

Using (3.9) and (3.10) with (5.23), #, and E, are
obtained. The third-order secular sources propor-
tional to te**1 and fe**%2 can then be evaluated easi-
ly. Some of these are parametrically excited be-
cause (2.2) is used. The relativistic third-order
source, (9/9t)v3V,/2c?, is entirely nonsecular.
This and all other nonsecular sources are totally
neglected because the secular terms grow indefi-
nitely in time.

The equation for the amplitudes of the first har-
monic fields, correct up to third order, is

{R[w,(~2iw,d,+8, -0, *+2B,0, p+24 B, p+iB, Pe'1+c.c.]

+§[w1(_2iw1a1[)+2o§1[)+a1}5_231w1—i§1+iﬁlb2)e""1+c.c.]+- -}

tetwp
8

When the coefficients of Xe1, Je 1, Xe'2, Jeif2
are equated, complicated nonlinear equations for
a,,B,, A,, B,, p will be obtained. Since the sources
are secular the quantities neglected earlier, &;,
B;, B, 9%, 4,6, B;5, are no. longer negligible. Hence
the resulting equations and their solutions are
not simple like (4.2), (4.3d), (4.6) and their solu-

{[wl(_i }?53 + ?Eg)eiol +w,(—i Ko, — §E4)ei92 1 {0, =By By) (R, +R3)? = (@0, + B, B) (R, — )% ] + c.c.}.

(5.24)

tions. Actually the approximate solutions of (5.26)
are valid in a time which is very small and of the
order of the time estimated in Sec. V of Ref. 4,
but within this time instability sets in. As a re-
sult the system breaks up and so any more rigor-
ous estimate of it is felt unnecessary.
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