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Experimental study of the propagation of ion acoustic solitons in a warm multi-ion plasma

M. Q. Tran and Ch. Hollenstein

(Received 22 October 1976)

The formation of ion acoustic solitons in aii argon-helium plasma is studied as a function of the light-ion
concentration. It is found that an initial perturbation does not break into solitons for 1% 5 a + 66%. This
fact can be related to an increase in linear Landau damping and to nonlinear resonant particles, i.e.,
reflected ions in front of the potential hump and eventually trapped ions between two solitons. In the
concentration range where solitons are formed (essentially for a ) 66%) the soliton's Mach number and
width follow qualitatively the well-known theoretical dependence on amplitude. Detailed studies show,
however, that the measured Mach number cannot be explained by fluid theories (namely the Korteweg —de
Vries equation and Sakanaka's theory). Stationary solutions from theory which takes into account trapped
electrons and reflected ions adequately describe the Mach number versus amplitude and light-ion
concentration dependence.

I. INTRODUCTION

Ion acoustic solitons excited in an argon plas-
ma' ' are very sensitive to light-ion contamination.
hzi' reported that in the presence of light ions
outgassed from the vacuum vessel walls, the wave
does not break into solitons but some turbulence
is generated. In a previous experiment, ' we also
found that a high base pressure prevented soliton
formation; however, we did not observe any turbu-
lence. These experimental observations therefore
suggest the necessity of a more precise study of
the influence of a second ion species in the form-
ation and propagation of ion acoustic solitons.

The effect of light-ion species has been investi-
gated theoretically by White et al.~ In the frame-
work of fluid equations, they found that for small
light-ion concentration o. (defined as the ratio of
light-ion density to total ion density), a soliton
exists only if its amplitude is low enough not to re-
flect the light ions. For this case, a Korteweg-
de Vries (K-dV) equation has been derived by Tran
and Hirt' for ion temperature T,- =0 and by Tran'
for 7',. t 0. The major result of this study is to
show that light ions in a heavy-ion plasma drastic-
ally reduce the soliton amplitude for a given Mach
number. Similar results have been obtained by
Maxon' for cylindrical solitons.

Aside from these hydrodynamic effects, kin'etic
effects are very likely to occur. Usually in a. pure
plasma with high enough T, /T, , wave-particle in-
teractions such as electron-ion Landau damping or
trapping contribute as a small correction to the
K-dV equation as has been shown by several auth-
ors. ' Using the correct power ordering, van
Dam and Taniuti" proved that the relevant small-
ness parameter & for the ordering is given by &

= (m, /M, .)'~' and not the disturbance amplitude. The
domain of applicability of their theory is restricted

to plasma parameters satisfying

sfo, .M,. af ,
v=~/I ~e ~ ~ v=cu/I

Experimentally this ordering is no longer valid
when a small number of light xons are added to a
heavy-ion plasma. It has been shown both the-
oretically" and experimentally" that for small o. ,
~/k does not vary. For an Ar-He plasma, we
have, therefore, the following ordering:

One would therefore expect non-negligible kinetic
effects. Whether kinetic or hydrodynamic effects
will dominate is a question which can be solved
only experimentally, since, to our knowledge, no
theory has been developed for the case where the
ordering ufo/5v (I, /M, )'-' is no longer valid.

In Sec. II the experimental apparatus will be
described. The propagation of a, nonlinear com-
pressional pulse in an argon-helium plasma is
reported and discussed in Sec. III. In Sec'. IV,
we shall review and adapt existing theories for the
Mach number versus density perturbation and
compare them with the experimental data.

II. EXPERIMENTAL CONDITIONS AND METHODS

The experiment was performed in a. multipole
double-plasma (DP) device. "" To avoid any un-
controlled contamination of the plasma, the base
pressure was kept as low as 2x10 ' Torr. In the
case of the one-component plasma, the neutral
gas pressure was (1-2)x10 ~ Torr for Ar and
(8-9)x10 ' Torr for He. With a total emission
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velocity and damping rate are well described by the
solution of the dispersion relation computed with
these values.

Since the soliton results from a delicate balance
between nonlinearity and dispersion, it is therefore
important to characterize the ion acoustic behavior
of our plasma for dispersive waves. The disper-
sion relation of small-amplitude ion waves (5n/no
&1%) has been measured and is presented in Fig. 1
for o. -95% and 66%. The dots are from experi-
ment, and the solid curve corresponds to the the-
oretical dispersion relation given by the root of
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FIG. 1. Dispersion relation ~= co(k) of small-ampli-
tude ion acoustic waves (6„/np-1%) for 0. =95% and 66%.

The value of X&e is 0.028 cm and the values of different
ion plasma frequencies, u~H, ——(G.npe /cp MHe) and2 Sj2

(u~A = [(1—0.')npe /E'pM~], are, respectively, 1.74
x107 s and 1.26xl0 s for n=95%, and 1.45x10 s
and 3.29x10 s for e= 66%. The dispersion relations
have also been measured for + =88% and 76% and present
the same qualitative features as the ones presented.

current of 400 mA, the plasma densities were
2x10' and Vx10' cm ', respectively.

While working with the two-component plasma,
the He and Ar neutral gases were introduced one
after the other using two different inlets. This
procedure provided us with an easy way of knowing
the partial pressure of each ghs. The total neutral
pressure varies with the desired light-ion concen-
tration +. However, the partial pressures of Ar
and He were always kept below or equal to the val-
ues given previously. From the plasma density
measured in pure He and Ar versus the respective
neutral pressure dependence, jy can be determined.
We estimate the precision on the determination of
n to be ~ 5%.

The electron temperature T, and the electron-
to-ion temperature ratio T, /T, were determined.
by measuring the complex wave vector, k =0„+ik,,
of linear nondispersive ion acoustic waves. T, was
found to be about 1 eV and T, /T, around 9+1.. As
reported previously, "in the presence of an Ar-He
mixture, the electron and ion temperatures can be
considered as constant, since the measured phase

In Eq. (2), Z is the Fried-Conte function and g the
Ar to He -ma-ss ratio (p, = 10); the phase velocity
~/k is normalized to (2T, /M„, )' ' and k to (noe'/
c,T, )'~'. The dispersion relation for an ion wave
propagating in a pure Ar (or He) plasma has been
reported elsewhere. ' It has also been measured
for other values of ~ for which solitons exist,
namely, n =88% and 76/o. Aside from a variation
of the phase velocity in agreement with the one
given by Eq. (2), its shape is similar to the one
given in Fig. 1. The &u =&v(k) behavior does not
differ much from the case of a pure plasma, since
for these high values of +, the presence of Ar ions
in a He plasma gives only an increase" of the
effective ion mass" M,« =M„,/(1 —n + np). Soli-
tons have been created by applying to the driver a
positive, sinusoidal pulse with an amplitude up to
5 V and a pulse width of 5-12 p, s. The resulting
perturbation in the target plasma is detected by a
flat Langmuir probe (5 mm diam) collecting electron
saturation current. The signal is then monitored
on an X-Y recorder using a boxcar-gated integrator
(PAR 162). Greatest care has to be taken in the
measurement of the soliton Mach number M (equal
to the soliton velocity divided by the velocity oP a
linear perturbation C, ). Because C, is sensitive
to the presence of an ion beam in the plasma, the
driver and target potentials have been carefully
adjusted by comparing the wavelengths of linear
ion waves propagating in both plasmas. The soli-
ton velocity is deduced from measurements of the
time of flight z t between two neighboring positions
&p and &p +&& As a routine procedure, after each
soliton measurement the propagation velocity of a
linear pulse has also been measured in order to
get Q, .
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FIG. 6. Mach number versus density perturbation in
a He-Ar plasma with 0. =88%. Notations are similar to
Fig. 5.
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that in the case of a He-Ar mixture, their number
cannot be counted precisely as in the case of a pure
Ar or He plasma as the damping, which affects
more the smallest solitons, " is increased, and
only the highest solitons will be distinct. Using
this statement, we conclude that solitons exist for
66% & o, & 100%. Quantitative measurements of the
Mach number M and width D/XD, versus the amp-
litude 5n/n, of the first peak confirm their soliton
character (Figs. 5-9). The Mach number M in-
creases and D/A~, decreases with 5n/no. The M
vs (6n/n, ) dependences will be discussed in more
detail. in Sec. IV.
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FIG. 4. Spatial evolution of the nonlinear perturbation
for e = 88/p. The arrows show the solitons. At x = 0.5 cm
the amplitude of the perturbation is smaller than at
3.5 cm. This apparent contradiction is due to the direct
pickup which is clearly seen in the other figure and
which lowers down the amplitude of the measured signal.
For longer distance, the perturbation amplitude damps
down as expected.
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FIG. 5. Mach number versus density perturbation in
a He-Ar plasma withe=95%. (~, experiment; M, K-dV
theory with T,/T;=9; S, Sakanaka*s theory; B, kinetic
theory including reflected ions and trapped electrons;
T, fluid theory including trapped electrons; F, best fit
through the:experimental points. The results from the
K-dV equation with T; = 0 are very close to the curve M
and has not been drawn for clarity. )
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FIG. 7. Mach number versus density perturbation in
a He-Ar plasma with +=76%. Notations are similar to
Fig. 5.
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IV. MACH NUMBER VERSUS SOLITON AMPLITUDE
DEPENDENCE

The experimental data are reported in Figs.
5-12 for different concentrations. As expected
from nonlinear phenomena, the Mach number in-
creases linearly with 6n/n, . We shall now ex-
amine the variation rate of M versus 6n/n, using
different theories.

1,00
0

I

10 15

A. Korteweg-de Vries equation for a two-ion-species plasma

(T,. = 0)

In this model, ' the plasma. is described by fluid
equations for both ion species, assuming 7,. =0.
The electrons obey Boltzmann's law. Finite but
small electron perturbations 6n/n, are then de-
scribed by the foj.lowing K-dV equation:

FIG. 8. Mach number versus density perturbation in
a He-Ar plasma with e = 66 jo. Notations are similar to
Fig. 5.

The spatial evolution of a nonlinear pulse per-
turbation in a two-ion species also exhibits some
interesting features. For a pure Ar plasma, the
perturbation amplitudes decay near the middle
grid and then, as the first soliton is forming, the
amplitude of the first peak starts increasing before
decreasing again because of Landau damping (Fig.
10). Adding a small amount of He (o, -1%), the
perturbation no longer increases its amplitude as
before but continuously damps out. The damping
rate is near the one observed with a linear pulse
(6n/no-1%). The amplitude reduction observed
between n = 0/0 and o, =1/o (Fig. 3) can be simply
attributed to linear damping and not to any non-
linear effect due to the presence of light ions as
predicted by the K-dV equation. " In the case of
pure He, or in a mixture of He and Ar (a &66%),
the perturbation continuously damps out as it prop-
agates away from the grid as can be seen in Fig.
11.

where

3(p'o +1 —u)A= 2(1 —o +up, )2

and $ and q are the usual stretched coordinates
($ =x —t, q =x). The relationship between Mach
number and 6n/n, is therefore

6n 6(M —1)
n, 3(p, 'o +1 — )/o(1- +ohio)'- 1 ',

It is instructive to' compare the experimental
ratio (6n/n, )/(M —1) to the theoretical one

(Fig. 12). The experimental value of (6n/
no)/(M —1) has been determined by a least-squares
fitting of the measured values. The discrepancy
between the predictions from the K-dV equation
and the experimental points is obvious: the K-dV
formalism predicts an increase of (6n/n, )/(M —1)
with +, whereas one observes experimentally that
this quantity is roughly constant.
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FIG. 9. Width of the soli-

ton as a function of its am-
plitude for different light-
ion concentrations (0, ex-
periment; M, K-dV theory
with T; & 0; S, Sakanaka's
theory).
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C. Sakanaka's model

Originally, Sakanaka" only treated the case of a
one-component plasma. The basic equations are
the weQ-known fluid equations for ions. The ion
temperature is also considered via an adiabatic
pressure law. The electrons are assumed to be
Boltzmann-like arid the whole set equation is closed
by Poisson's equation. Instead of using a perturba-
tion method as before, one studies directly the
stationary solution of the fluid equations. " In a
frame moving at velocity V, poisson's equation
then reduces to

g3@ 2
a

Bx j=l

with

A

0
0 8 8 tO a (4 ts Cm

X

FIG. 10. Spatial evolution of the amplitude of a soliton
(o) and a linear perturbation (68/so 1%) (k) for a pure
Ar plasma and for ct'=1%. The amplitude reported has
been normalized to its value at x= 1 cm from the grid.
The nonlinear perturbation amplitude 6n/no at x=1 cm
is 18% for o.=0% and 1%. The decrease in amplitude of
the soliton in the latter case {o.=1%), which becomes ap-
parent at x=4 cm, i.s then mainly due to linear damping.

~2 j./2

n, =
&

fV'+2eg; -2p&C
68p,,- - [(V'+ 38iJ,, —2p,;4)

12V2~ g]l/2}1/2 (~)

In Eqs. (5) and (6}, the density is normalized to the
unperturbed electron density n„vel oictyto

41

l00. -

Since in our plasma the ratio T, /T, is rather low.

(T, /T, = 9), one would expect better agreement with
the experimental data if T, is taken into account.
In the following, we shall discuss two fluid models
which include the ion temperature T,. in their equa-
tions, and finally a stationary Vlasov formalism.
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B. Korteweg-de Vries equation for a two-ion-species plasma

(T,. 40)

The plasma is modeled by fluid equations for the
two-ion species with an adiabatic equation of state
for the ions (p, = T,ns). The adiabat. ic law for ions
is a reasonable one since the phase velocity &u/k is
greater than both ion thermal velocities. The elec-
tron density is assumed to be Boltzmann-like. Us-
ing a reductive method, the evolution of the non-
linear disturbance is described by a K-dV equa-
tion whose coefficients are complicated functions
of T /T( and ~.

In Figs. 5-8 and 12, the M vs 5n/n, and (5n/no}/
(M —1) dependencies are reported. " One finds
only a slight change from the above results (Fig.
12) and therefore this model seems inadequate
to explain our experimental results.

o/
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FIG. 11. Spatial evolution of the amplitude of a soliton
(e) and a linear perturbation (k) for & =100% and 66%.
6n/no at x= 1 cm is equal to 12.3% and 11.1/p for Q

=100% and66%, respectively. Note the increase in linear
Landau damping for e = 66%, which corresponds to that
expected from the linear dispersion relation.
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25.

to the experimental data than the above ones, its
o. dependency is similar to the one given by the
different K-dV equations: (5n/n, )/(M —1) always
increases with o. , leaving a discrepancy between
theory and experiment.
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FIG. 12. Variation of the normalized soliton amplitude
(«40)/(M —1) with the concentration 0;. Curves K and M

correspond respectively to results from the K-dV equa-
tion with T; = 0 and Te/T; =9. Curve S shows the result
from Sakanaka's theory; H, from kinetic theory includ-
ing reflected ions and trapped electrons. ~ represents
experimental values using linear regression.

D. Kinetic madel

All the previous models do not take into account
the reflected ions. In a one-species plasma their
number, and consequently their influence, can be
neglected. (In Watanabe's experiment" even no
precursor of reflected ions has been observed!)
As mentioned in Sec. II, their number increases
when a second ion species is introduced. It is
therefore necessary to study their influence in the
propagation characteristic of a nonlinear struc-
ture. Before going into detail, one should point
out that, basically, a model which takes into ac-
count reflected ions admits as a stationary solution
only shock" and not solitons. However, one would
expect that the Mach number versus 5n/n, depen-
dence is not affected, and hence the result may be
used to fit our experimental data. The formalism
used is analogous to the one used by White et al.4

We have extended their theory by using a, Vlasov
equation for Ar ions and by introducing a maximal-
ly trapped equation of state for electrons'.

(8)

(T, /M„, )' ', 4 to T, /e, and distance to (e, T, /
~,e')'~'; 8 =T, /T„and

jo, j=1

The pseudopotential U(@) is then given by

2 C

U(4) =1—e +Q n, (Q cpd.
j=1 0

It is then obvious that U(@ =0) =0. Stationary so-
lution then exists if U(4) (0. The soliton amplitude
4 „. „ for a given V is +e first nonzero solution of
the equation

Numerical solutions of (7) have been computed for
different V and used to trace the different curves
of Figs. 5-8. The Mach number M is defined as
V/A. with'

38(l —u +n p, 2)
= 1 —~+up, + i- n+ep.

which corresponds to the velocity of an infinitesi-
mally small stationary structure. Although the
numerical values given by this model are loser

This equation of state was used mainly for two
reasons. For our temperature ratio T, /T, =9,
using a Boltzmann-type equation of state, n, =n,e~,
one would not expect any stationary solution even
in a one-component plasma. Following Bardotti
and Segre, "stationary structure does not exist if
T, /T, )12.35. But th. e principle reason is that low-
energy electrons are actually trapped in the poten-
tial well of the solitons. Evidence of trapped
electrons in a large-amplitude ion wave propagat-
ing in an unstable plasma has been published by
Kong et al. In a more recent article, Tran and
Means" reported on the observation of a flat-
topped electron distribution measured in the posi-
tive large-amplitude (e4/T, )5%) potential pertur-
bation (sinusoidal as well as soliton structure) of
a stable plasma. These measurements allow us
to state that low-energy electrons are trapped in
the soli&on well and, consequently, the use of Eq.
(8) to describe the electron equation of state is
much more adequate than the usual Boltzmann one.

Equation (8), combined with fluid equations for
ions (T, =0), gives the following pseudopotential
U(4):

2

U(4) = 1 —P + Q [V —(V —24g,-) i ],
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where

p =2(C/w)'~'+e~erfc(C' ') +44' '/»' '. (10}

The M vs |]n/no dependence is reported in Figs.
5-8. The experimental point now lies well below

the theoretical work. It is therefore not sufficient
to consider only trapped electrons and fluid equa-
tions for ions.

Using now the same kinetic formalism as White
et al. , we get the following expression for the
pseudopotential:

-v(e) = (1 ++ n, r) (J (e] -s ((()]

p oo (2C u;)'/2
+ eA p. 2n'8p, / i +'U+' ~ 4}' + d&W~ v 4

- (24';) (2eP.) /

OO (24 tf .) i
dv W,. (v, 0) — t dv W,.(v, 0),

0 0

with the definitions

2
1+erf [V/(28' )'~'] '.

x; =-,'A, (erf [V/(28', )'~']
(12}

flected He ions: As expected, nearly all of the He
ions with a velocity towards the potential structure
are reflected. Such an increase is also consistent
with our measurement.

+erf [(C„/8)'~'- V/(28&, )'~']},

W,.(v, 4) =v(v2-24', , )' 'exp(-(v —V )'/28', }.
%o

a=100'I.

The first and second integrals represent the con-
tributions of incident and reflected ions, respec-
tively. The third and fourth integrals are integra-
tion constants which ensure that U(4 = 0) =0.

In this model, we define the Mach number M as
the ratio of V to the velocity obtained for a small
stationary perturbation (5n/n, &0.5%). The results
are in better agreement with the experimental
data as shown in Fig. 12. One also notes the in-
teresting dependence of (5n/n, )/(M —1) vs c(: In
contrast to other models, where this quantity in-
creases with ~, it predicts a slight decrease of
this quantity when ~ tends to 1. This feature is
not surprising since an analogous property is also
found in a one-component plasma as T, /T, in-
creases. Numerical computations of Means et al. '
show an increase in amplitude of a shock at a
given M number when T, /T, decreases. In both
cases (i.e. , when n or T, /7,. increases), the num-
ber of reflected ions decreases and less energy is
taken away from the structure, In the experimen-
tal uncertainty, this feature agrees with the ob-
served variation (Fig. 12}. The model also gives
the number of reflected ions for different n. For
the n range, where solitons are observed, the
number of reflected ions are mainly He ions since
the soliton velocity is closer to the He thermal
velocity than the Ar one. The experimental data
are in close agreement with the theory (Figs. 13
and 14). For a-1%, one notes an increase in re

0
0

%o

l0% n

5--
& =88%

'0 Bh
10%

5

&=76%

I I ~ ~ ~
T I

&0%

FIG. 13. Number of reflected ions, R, versus the
soliton amplitude 6n/no (o. = 100% 88% and 76'%%up). 0
represents experimental points. The curve was de-
duced from formulas (12).
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the amplitude of a perturbation is nearly the same
in a plasma without any light-ion contamination as
in one with a small amount of He ions; in the sec-
ond case, however, the number of reflected ions is
drastically increased. Although no measurement
of trapped ions in the potential hill formed between
two neighboring solitons has been performed, the
following ordering of the bounce frequencies Q~,- of
the different ion species gives some insight to the
role of the light ion in preventing soliton formation. ,

Normalizing f4,. (i =Ar, He) to Q~„, and distance
to X~„we have

5--

and the ion Landau damping frequency Q, is then
given by

n, =2m. (u, /((u„X, ) .
A,, is the separation between two neighboring soli-
tons; A.„measures the rising slope of the soliton
(A„-soliton width), For the case reported in Fig.
3 we have the following ordering:

Qf =4x10&Q~A~=7x10&QBHe2 1x10

0
15%

Bfl

FIG. 14. Number of reflected ions, R, versus the
soliton amplitude 6n/no for e = 66%, 1%, and 0%. k and
curve (a) correspond to m=1% e and curve (b), to e
= 0%.

V. DISCUSSION AND CONCLUSION

Our experimental study allows the following
statements:

(a) In a heavy-ion plasma, light-ion contamina-
tion (o-1%) inhibits the formation of ion acoustic
solitons.

(b) The influence of heavy ions in a light-ion
plasma is less pronounced. A concentration of
nearly 40% of heavy ions can be added without
destroying completely the soliton structure.

(c) In the latter case, the properties of the struc-
ture are adequately described by a kinetic theory
which takes into account the reflected ions. The
agreement between the kinetic theory and experi-
ment also brings an answer to the question of rela-
tive importance between kinetic and hydrodynamic
effects: It is clearly shown that no fluid theory
does fit well with experimental data.

Our experiment also suggest that, for a&1%,
the dominant cause which inhibits the soliton for-
mation is reflected and trapped ions, and not
Landau damping. From Fig. 12, the e folding in

Q; Q~A, &Q~H, .
As the values of both Q,. and Q~„, are similar to
the one in the case of a pure-Ar plasma (a 1% light-
ion concentration does not change appreciably
either the density or the damping, as can be seen
in Fig. 12) where solitons exist, it appears, as a
consequence of our ordering, that effects due to
trapped ions are more important than Landau

- damping.
For the high-e range (66% so, &100%), .it is more

difficult to determine, aside from ion reflection,
whether damping of the trapped-particle effect is
dominant. Since we are dealing now with a plasma
containing mainly He, one should normalize all of
the frequencies to 0»„. We have now, for 60$
sa &100%:

4x10 2&Q. &8x10 2, Q „=7x10 ~.

From this ordering, it is reasonable to state that
both effects are now important.
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