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The convergence properties of the Fermi-hypernetted-chain method as originated by Fantoni and Rosati are
investigated. Numerical results are reported for liquid *He and two model fermion liquids. It turns out that
for not too high densities and not too long-ranged correlation functions the convergence to an upper bound
for the ground-state energy is excellent, but that for higher densities and/or long-ranged correlation
functions, it is easily possible to underestimate the upper bound if one does not apply certain convergence

criteria and associated error estimates.

I. INTRODUCTION

Within the past few years the theory of infinite
homogeneous Fermi systems has experienced re-
newed interest. This is due to the development of
so-called Fermi-hypernetted-chain (FHNC) meth-
ods which allow one to estimate the expectation
value of a Hamiltonian more accurately than be-
fore, as well as due to an apparent discrepancy
with results obtained within the framework of per-
turbation methods usually called “Brueckner theo-
ry.”* For some years it has been known? that vari-
ational methods tend to give more binding energy
and higher saturation density than lowest-order
“Brueckner” theory with standard dispersion
(LOBT),? i.e., solutions of the Bethe-Goldstone
equation with self-consistent hole and zero par-
ticle potential. In the earlier variational calcula-
tions, the expression for the expectation value of
the Hamiltonian had to be truncated severely, how-
ever, such that the upper-bound property of the
variational result could not be firmly established.
With the newly developed FHNC techniques,*® it
is possible to demonstrate convergence of the ex-
pectation value within some expansion scheme® thus
substantiating the belief that we are able to obtain
an accurate upper bound for the energy. These
upper bounds lie consistently below LOBT” es-
sentially confirming the earlier variational results.
For low and medium densities this discrepancy is
of the order of magnitude which might be expected
from three- and four-body terms in the perturba-
tive approaches. It is thus of considerable interest
to evaluate these three- and four-body terms. We
believe that it is reasonable to hope that finally a
close agreement between variational and pertur-
bative methods will be achieved-—which might then
be considered a very satisfactory state of many-
body theory.

In order to perform a meaningful comparison
between these methods, it is necessary to dem-
onstrate the convergence of the FHNC energy ex-
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pression towards the actual expectation value cor-
responding to the chosen wave function. This is
the main purpose of the present paper. It will be
shown that for Jastrow-type® variational wave func-
tions different expressions for the energy eventually
converge to one another as well as to expectation
values evaluated independently by means of a Fer-
mi-Monte Carlo procedure.® Estimates of the er-
ror due to truncation of the FHNC expansion in
terms of elementary diagrams are given. Further-
more, it is shown that if one uncritically accepts
certain prescriptions for evaluating the energy in
FHNC without inclusion of any elementary dia-
grams, the expectation value may be underestima-
ted severely, and the saturation point may be
shifted spuriously to higher densities. Therefore
we strongly urge anyone performing FHNC-type
calculations to perform the indicated convergence
checks. Otherwise the conclusions drawn from
these calculations might easily be invalid.

If we were interested specifically in nuclear mat-
ter, we would like to use the full complexity of the
nuclear interaction,'® i.e. incorporate state de-
pendence and tensor operators.'! Any reliable
many -body theory, however, should not depend too
strongly on the specific details of the force in-
volved, but work equally well for all forces within
some reasonable range. This is why we will deal
with state-independent, central forces only. After
the properties of different many-body methods
have been established for these simplest possible
forces, one might go ahead and try to incorporate
more complicated features—which might, of
course, be simpler in one method than in the other.

In Sec. II we will review the FHNC method and
the expansion in terms of elementary diagrams.
We will also introduce there the physical concepts
which will turn out to be useful in the discussion
of our numerical results. Different methods to
estimate the convergence will be outlined. In Sec.
III we will discuss the numerical procedures in-
volved in solving the FHNC equations. Section IV
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will be devoted to the application of the derived
methods tothree fermion liquids with state-in-
dependent central forces (namely He), “home-
work” neutrons, and nuclear and neutron matter
interacting via the central part of the Reid 3s,
interaction, the so-called v, potential. In Sec.

V we will summarize our findings and discuss some
of their implications.

II. FHNC EXPANSION

A. Variational energy

In order to study the ground-state properties of
a fermion liquid, we have to specify its Hamilton-
ian. We will assume throughout this paper that the
particles under consideration are nonrelativistic
inert particles interacting via a two-body, local,
central, state-independent interaction »(7); i.e.,
the Hamiltonian is assumed to be

H=T+ V=Zt¢+z: Vy4
i

i<y

=Y ot Y ol |F - F . (1)
i i<i

As a variational wave function we will assume a

Jastrow-type product of a plane-wave determinant,

the model state describing the noninteracting Fer-

mi gas, and a correlation operator F consisting

itself of a product of two-body correlation factors

flr), ie.,
‘lp(-fu-fz" .. )>= Hf(m ".fjl)ltp(-fl’?z, . »

i<i

=F|¢). (2)

The function f(») is assumed to be a state-indepen-
dent function of only the distance between two par-
ticles, so that no operators are involved in the
definition of the correlation operator

F=1I 7. (3)
i<s
Spin and (if present) isospin variables are under-
stood to be included in ¥, and integrations over
d°t will imply summation over these. The varia-
tional energy per particle of a fermion liquid,

_1 @iHy)
Evar_N <¢’|¢> ’ (4)

is then completely defined by specifying the Ham-
iltonian (1), i.e., mass of a particle m, interaction
v(7), density p, degeneracy s (e.g., s=2 for He
and neutron matter, s=4 for nuclear matter), and
correlation function (CFN) Ar).

As will be shown in Sec. IID, the expectation val-
ue may rigorously be written as

E .=T,+p f &% g(r)w,(7)

+p? f da?m d3-f23g3('f‘12, .fza)wa(?xz; ?23) (5)

with suitably defined functions w, and w,, where
we introduced the two- and three-body radial dis-
tribution functions,

ng(rlz) = p2g2(1’12) =N(N - 1) f d3-f‘3 ) Id) |2

, (6)

fda-fl""ll)lz
« = NW-1)(N-2) [dF, - Iyl
P°g5(F gy Tog) = fdg-fl . le‘lz ’

(7

and the Fermi kinetic energy

T, =37/ 2m)k%, (8)
with the Fermi momentum %, given by
p=sk%/6m2

The task of any variational calculation with a Jas-
trow-type wave function (2) may then be summar-
ized as “the evaluation of the integrals (6) and (7)
for a given correlation function f{r).” As these
integrals are infinite dimensional, it is not pos-
sible to do this exactly. There are two different
approaches to evaluating these expressions: Ina
Fermi-Monte Carlo approach® the infinite volume
isdivided into finite cells with periodic boundary
conditions, and (6) and (7) are evaluated within one
cell by a Monte Carlo method; in the FHNC ap-
proach (6) and (7) are expanded into an infinite ser-
ies upon which partial summations are performed.
By choosing different subseries to be summed, dif-
ferent FHNC methods are obtained. Throughout
this paper we will use the FHNC formalism as de-
rived by Fantoni and Rosati*(FR). We will, how-
ever, compare it with a different FHNC method
developed slightly earlier by Krotscheck and Ris-
tig® (KR).

If the integrals (6) and (7) could be evaluated ex-
actly, the energy (5) would be an upper bound to
the ground-state energy. As it is not possible to
evaluate (6) and (7) exactly, and as it has not been
demonstrated for any approximate evaluation that
the approximations introduced do only raise the
energy, no “variational” result, i.e., upper bound
on the energy, exists to date in the strict sense.
All approximation schemes necessarily introduce
some error, which might be of either sign. Thus
it is crucial, in order to obtain a meaningful re-
sult, to supplement the approximate upper bound
(5) evaluated with approximate g, and g, with some
estimate of this error. Such estimates will be
given in Secs. IID and IIE.
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B. FHNC equations

In order to expand (6) and (7), we need some
“small parameter” to expand in. As we want to
deal with short-range forces v(#») consisting of a
repulsive core and maybe some attraction immedi-
ately outside this core, any sensible correlation
function f will be small near the origin and heal to
unity sooner or later such that

h=f%-1 (9)

is appreciable only within a restricted volume, We
may thus write

lo]2= F2lo|2= TL (1m0 |®

= <1+Z Big+y h,.,.h,,,+---> lo]2
(10)

The dynamical corvelations between particles, de-
scribed by the correlation function f, therefore
enter (6) and (7) only in the form of the function #,
Eq. (9). There are also statistical correlations,
however. These are described by the determinant
¢ which renders the state y antisymmetric. Si-
milarly to F?, we may expand |¢|? in the number
of exchanges between particles. Namely, we may
have no exchanges, (]¢> |2)0= 1, one exchange of
two particles,

(lo lz)u= ~(1/8)P(kp7s;), (11)

and so on, where we introduced

k)= d*k exp(ik + T)

_S_
(2m)°p J < kR

= 3(kp¥) (sink z7 — kg coskv). (12)

In this way (10) becomes a quite symmetrical ex-
pansion in the number of dynamical correlation
factors, &, as well as the number of statistical
correlation factors, —I/s. In order to evaluate (6)
.and (7), it is useful to introduce a graphical nota-
tion. We will adhere to the diagrammatic notation
of FR, which we believe to be more adapted to the
physical problem than other notations.!? A dynam-
ical correlation factor i(|¥; - F;|) is represented

FIG. 1. Graphical elements used in the diagrammatical
notation. The left-hand side shows the notation of Ref.
4 used also here. The right-hand side shows the nota-
tion of Ref. 12.
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FIG. 2. Bose chain diagrams.

by a solid line joining points ¢ and j; a statistical
correlation factor —I(k,|F; - %,|)/s is represented
by a dashed line joining points i and j. It will also
be useful to introduce a special graphical symbol
for the product -1?/s which will be represented by
a helical line, Fig. 1(c). A solid dot denotes a co-
ordinate to be integrated over, whereas an open
circle denotes a fixed coordinate, such that the
numerator as well as the denominator of (6) or (7)
may be written as sums of such diagrams.

The main result of FR may then be summarized:
the denominators of (6) and (7) cancel against the
unlinked and factorizable parts of the numerators
to order 1/N. Expressions (6) and (7) are then

‘equal to the sum of all linked, irreducible dia-

grams constructed according to the following
rules:

(a) Each point is an extremity of at least one
solid line. (b) The dashed and helical lines can
be superimposed on the solid lines. (c) The
dashed lines are arranged in closed polygons and
there are no common points between one polygon
and another; each polygon has a multiplicative
factor —2s. (d) No helical line has a common
point with another helical or dashed line,

The value of each diagram has to be divided by
its symmetry number,**® which will be discussed
below.

This beautiful result is quite useless, however,
if it is not supplemented by a practical method to
sum sufficient classes of diagrams and to group
the complete set into some well-defined series
whose convergence may then be investigated. Also,
this grouping should be performed in such a way
as to result in a convergent series of approxima-
tions if truncations are performed.

This grouping has been performed by FR follow-
ing the lines of van Leeuwen, Groeneveld, and
de Boer and Morita,'® who developed a similar pro-
cedure for the pair-correlation function of classi-
cal fluids. The general ordering principle is that
of “connectivity” which will be made more explicit
below. Let us first consider the case of particles
obeying Bose-Einstein statistics, i.e., |¢> lz =1,
which may be obtained from the fermion case by
taking the limit s -~ < at fixed density. All diagrams
are then constructed from solid lines only. The
least connected diagrams contributing to (6) are
those of “chain” type, Fig. 2, which are generated
by a simple series connection of # bonds. We con-
centrate here on the expression for (6). The open
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FIG. 3. Bose hypernetted-chain diagrams.

dots represent the two external points which are
not integrated over, whereas the solid dots re-
present the field points which are integrated over.
The 1 +k=f2 factor connecting the external points
is always omitted in the figures. In the next step
parallel connections of chains are generated, Fig.
3(a), which then again may be connected in series-
parallel, and so on, Fig. 3(b). This set of dia-
grams constitutes the well-known hypernetted-
chain approximation* (HNC) for Bose systems and
may be summed by means of the integral equation

G(ry)=p f d°F [ f3(ry5)eCMs) 1]

X [fUr,,)eC728) -1 = G(r,3)].  (13)
In HNC the two-body radial distribution function
(RDF) is then given by
&) =fHr)e® ", (14)
and the three-body RDF by
&a(T15, Tig) = f2(ry5)eC 122 ()

x eCr1a)f2(y, ) el 23, - (1)

While HNC sums a vast number of diagrams, it
certainly does not sum all diagrams. It does sum,
however, the longest-range, i.e., least connected,
contributions to the RDF. If the % function is of
range a, then for not too low density a chain of »

1 functions will be of range na, such that the chain-

FIG. 4. Bose elementary diagrams: (a) Four-point
basic diagram, (b) examples of elementary diagrams
generated from (a).
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type contributions are not converging and need to
be summed in a closed way. Similarly, the modi-
fication of the % bonds due to the hypernets will not
be small in general, so that one has to sum these
also in a closed way as done by the HNC integral
equation (13). ~

Opposed to this behavior of the HNC-type dia-
grams are the four-, five-, . . ., #-point “elementary”
diagrams. Consider the four-point “basic” dia-
gram shown in Fig. 4(a). Because of the highly
connected nature of this diagram, its numerical
value will fall off rapidly if the distance between
the two external points is increased. Similarly,
the elementary diagrams generated from Fig, 4(a)
by replacing each % bond by a “superbond”

S(r)=fAr)eC™ -1, (16)

some of which are shown in Fig. 4(b), fall off ra-
pidly. The sum E(7) of the elementary diagrams
will not only contribute to the RDF, but also occur
within any HNC diagram. This may be convenient-
ly taken into account by adding E(#) to all G(#) in
the exponentials in (13)—-(16).'3'* One then has to
solve (13) again, after evaluating E(#») from the
superbonds S(»). This constitutes the HNC/4 ap-
proximation. As a modification of the HNC/4 ap-
proximation, one may perform an additional par-
tial summation. As the G(») will be modified from
the second solution of (13), the superbond S(7),
Eq. (16) will be changed and differ from the one
used to calculate E(r). In addition, E(7) itself is
added to G(») in (16). One may therefore require
(13) to be solved self-consistently with the evalua-
tion of E(7) using (16). This self-consistency will
sum a larger class of elementary diagrams. It is
not clear, however, if this should be preferred to
any other arrangement of the elementary dia-
grams, provided one uses the superbond (16) and
not A(7) itself as bond.

In the next order of approximation the five-point
basic diagrams, Fig. 5, should be included where
again a contribution to ‘E(#)is calculated from the ba -
sic pattern, Fig. 5, employing the superbonds S(#)
in place of each solid line. Going beyond this HNC/
5 approximation one may, in principle, carry the

FIG. 5. Bose five-point basic diagrams.
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FIG. 6. Direct contribution from Fig. 4(a) to the three-
body radial distribution function.

expansion in terms of basic diagrams to any de-
sired order and investigate the convergence pro-
perties. In this way one takes into account in-
creasingly connected contributions and finally ex-
hausts all linked irreducible diagrams. It is on
this connectedness of the higher-order terms that
the hope for convergence of this series rests. For
Bose systems the convergence up to HNC/5 has
been demonstrated.®

Besides the contribution to the exponentials there
is an additional contribution'®’'” of the elementary
diagrams to the three-body RDF (15) shown in Fig.
6. The double bars represent the factors written
down in Eq. (15), whereas the solid lines represent
again the superbond S, Eq. (16). This contribu-
tion should be an integral part of any HNC/4 cal-
culation, but has usually been omitted as was
pointed out by R. Smith.'® Also there will be si-
milar contributions from five- and more point ele-

J

mentary diagrams.

The grouping of diagrams discussed in the pre-
ceding paragraphs was inspired by the physical
idea of connectedness which will render higher-or-
der terms small. There is, however, another fea-
ture inherent in this classification: the higher-or-
der terms are increasingly difficult to compute.
Whereas HNC involves only three-dimensional in-
tegrals, the four-point basic diagram, Fig. 4, im-
plies a six-dimensional integral, the five-point
diagrams, Fig. 5, imply nine-dimensional inte-
grals, and so on. Moreover, the number of basic
diagrams with # points increases rapidly with ».®
It is therefore not feasible to include many more
higher orders of basic diagrams. This is another
reason why independent means to estimate the con-
vergence in terms of basic diagrams included must
be obtained: One cannot compute enough terms in
this expansion to establish definitely its conver-
gence.

Let us return now to the fermion case. As shown
by FR it is possible to proceed along exactly the
same lines introducing only technical complica-
tions. Essentially the task is to generalize the in-
tegral equation (13) such that the additional dia-
grams due to the presence of exchanges are
summed also. The complication is that the rules
(a)—(d) mentioned above need to be observed, which
renders the topological analysis somewhat com-
plicated. The problem was solved by FR giving the
set of coupled nonlinear integral equations

Goo(71)=p f BF, [@(r13) + Goy(r13) [P(73), (172)
Ge(7)=p f BT, B(15) =V (713)7(75) + [7(715) + G y(7,5) 1P(7,5)}, (17p)
G =p [ FELrV0r0) = Al )Brg) + [B0r10) + G 1P}, (17c)
Gur)=p f A4 [~(1/8) U prys) + 0(7y5) + Gpy(713) 10(7,), , (17d)
a(7) =f4r) exp[E(#) + G(7)] =1 = Gy ((7), (18a)
V) = AP Ey(r) + G (1) ]| Xp[E () + G oy(1) ] =Gop(7) (18b)

Br) = FAr=(1/8) (R g7) + Enp(7) + Gpp() + [Egy(¥) + Gy(#) ]2 =S[E g, (#) + G o) |2 + 20k ) [E 1y () + G go(1) 1}

X €Xp[E (1) + G(#) | =Gpp(7), (18c)
8(7) = fU¥)[E1y(r) + Gy(7) —(l/s)l(kFV)]exp[Ess(r) + G (M) ]+ (1/8)Uk ) =G, (7), (18d)
Plr,;) = alry) +2v(r,) +p [ @F[alr B0, V()] (18¢)

If we put all £,,=0, this set of equations sums all diagrams of HNC type where the bonds may represent
either dynamical or statistical correlation factors. The solution of (17) and (18) enables one then to evalu-
ate the two-body RDF in the Fermi-hypernetted-chain (FHNC) approximation
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FIG. 7. Fermi-chain diagrams in Ggg.

B e s

FIG. 9. Fermi-chain diagrams in G, .

gr) =21 =(1/8)%(k ) + E () + Gup(#) + [Ey(#) + G(9) F + 2[ Egy(#) + G (#) ] =S[E 3y (7) + Gy (1) P
+ 2R g7)[E,y(7) + Gdd(r)]} explE(7) + Go((r) ]. . (19)

Let us generate a few simple diagrams by iterating
(17) and (18). The indices on the G functions

(ss, sh,hh,dd) refer to the exchanges taking place
at the two outer points of the corresponding dia-
grams. If we start iterating by setting G, =0,
evaluate (18), and iterate (17a), diagrams with no
exchanges, i.e., solid lines only on both ends, are
generated, Fig. 7, which are part of the chain ap-
proximation to G,,. Correspondingly, Eq. (17b)
generates the chain approximation for G, having
no exchange on one end and double exchange on the
other end, Fig. 8. Equation (17¢) generates the
diagrams having double exchange on both ends,
Fig. 9, while (17d) generates diagrams with sin-
gle exchange on both ends, Fig. 10. One may easi-
ly write down all these diagrams by formally iter-
ating the linear integral equations (17) and trans-
lating the result at each step into diagrammatic
notation. Thus the Fermi-chain approximation is
obtained by just solving once the linear systems
(17). In this approximation all products of G func-
tions including those implicit in the exponential
have to be deleted from (19).

Going beyond the Fermi-chain approximation,
one may solve (17) and (18) self-consistently, i.e.,
the full nonlinear, coupled system. This amounts
in diagrammatic language to replacing each graph-
ical element of a given exchange type by its cor-
responding “superbond” in the diagram forming
g(7). For example, all occurrences of simple heli-
cal lines will be replaced by the sum of all allowed
structures having a double exchange on both ends,
all solid lines will be replaced by the sum of all
hypernets with solid lines only at both extremities,
and so on. Equation (17) and (18) take proper care
of each diagram being counted exactly once. As an
example let us construct the three-body RDF.
Starting from the Bose expression, Eq. (15), with
G=G,,, which is diagrammatically depicted in Fig.
11(a), we put in all possible types of exchanges.

In lowest order, i.e., using only simple -{?/s or

FIG. 8. Fermi-chain diagrams in G .

r

~1/s bonds and none of the G, ,, ,, functions, we
get three permutations of Fig. 11(b) and Fig. 11(c).
Having obtained some approximation to the G,,
functions, already the “Bose” part (15) with G= G,
is modified, because it contains exchanges between
field points by virtue of (17a) and (18). Also the
-1?/s, Fig. 11(b), is replaced by the sum

~(1/8)1%(k g7) + Ep(7) + Gpp(#) + [E (7)) + G () ]2

=S[E (1) + Gpy(9) 12 + 2Uk ) [E 4y () + Gy 4 (7)),
" (20)
Fig. 12(a). The diagrammatic notation deviates
here slightly from FR in that the lowest-order
term is included also. The single exchange -~I/s,
in Fig. 11c, is replaced by

= (U/s) (k) + Egy(7) + Gy 7), (21)
Fig. 12(b). Finally there is a new type of bond,
E (7)) + Gg(7), (22)

which generates six diagrams of type Fig. 12(c),
six diagrams of type Fig. 12(d), three diagrams

of type Fig. 12(e), and six diagrams of type Fig.
12(f). This list enumerates all diagrams contribut-
ing to g, in FHNC. All possible exchanges of the
three external particles have been enumerated ex-
plicitly, and exchanges betweenfield points are
taken care of by solving (17) and (18) for the G,,.
We do not give the explicit formula for g, as this

is rather lengthy, but it can trivially be constructed
from (15) with G =G, and (20)-(22). For all of

this discussion we have E,, =0, i.e., no elemen-
tary diagrams were taken into account. The FHNC
approximation is thus defined by solving (17) and
(18), evaluating the two-body RDF via (19) and the
three-body RDF as discussed.

C. Elementary diagrams: The FHNC/4 approximation

Just as it was possible to go beyond the HNC
approximation for Bose systems by calculating

/\\ +m+|-|+§_ﬁ+|-l+&
® s 4 EZ b d

FIG. 10. Fermi-chain diagrams in G, .
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FIG. 11. Lowest-order approximation to the three-
body radial distribution function.

the sum E (@) of elementary diagrams from the
four-point basic diagram Fig. 4(a), it should be
possible to go beyond the FHNC approximation.
There will be many more basic diagrams now than
just Fig. 4(a) as we have to accommodate the dif-
ferent possible exchanges as well as the dynamical
correlation factor. In fact there are 35 numeri-
cally different basic diagrams to evaluate. Em-

. ploying only the simple exchanges, —I/s and —I%/s,
we get in addition to Fig. 4(a) the seven diagrams
of Fig. 13. Figures 4(a) and 13(f) contribute to E_,
Figs. 13(a) and 13(e) contribute to E,,, Figs. 13(b)
and 13(d) contribute to E,;, and Figs. 13(c) and
13(g) contribute to E,. It is not very useful, how-
ever, to calculate these diagrams in such a low-
order procedure. We want to evaluate the four-
point basic diagrams self-consistently with solving
the FHNC equations (17) and (18) in order to take
into account terms like those shown in Fig. 14.
Again the argument rests on the connectedness of
the contributions: Chain (or all FHNC) type con-

sss(y) =f2exp [Ess(’l’) +Gss(r)] -1 ’
Saul) =[1+85,,0)][E,00) +Gg, ()],
Sun0) =[1+S,,0)){~(1/5) 12k 7) +E,,0r) +G,,(r)

ZABOLITZKY _lj
|| N ST 1 ~ 1 ) _-;/ N
i//x\\ : : | | pid : N
~ &
(a) (b) (c) (d)

(e) (f) (g

FIG. 13. Four-point basic diagrams in FHNC/4
without using S, bonds.

tributions are not necessarily small compared to
the 2 or [ bonds; thus one should sum all these con-
tributions. Another argument rests on the normal-
ization of the wave function: One may easily pick
long-ranged CFN’s f such that in lowest order the
normalization of the wave function is grossly vio-
lated,

o fd3?[g(1’) -1] (1 —%lz(k,v?’)> 0,

with g(»)=f%*(). The FHNC-type contributions
will therefore strongly modify g(»), and one
should also take into account the correspond-
ing modification of the bonds within the basic
diagrams. This leads to the introduction of “super-
bonds,” as was also suggested by FR,

(23)

+[Egy0) +G 3, 0r)? = S[Egq ) +G 7)1 +21(Rp7) [Egq +Gaq 1} 5

Saa@) =[1+8,,0)][=(1/5) Uk 7) +Egy ) +Ggo )]

Each line in Figs. 4(a) and 13 will be replaced by
the corresponding superbond. In addition there are
27 diagrams involving the S, bond, some of which
are shown in Fig. 15. The diagram Fig. 15(d) does
not need to be calculated separately, as its numeri-
cal value is equal to that of Fig. 15(b); whereas
Fig. 15(b) contributes to E,, Fig. 15(d) contributes

(b) (c) (d) (e) (f)

/A\
E’m LE 4
1 1]
1 i
o &\ 'ﬂ
(a)

FIG. 12. Higher-order contributions to the three-
body radial distribution function in FHNC.

r

to E,,. Similar symmetries were utilized to get
down to the total number of 35 diagrams. As men-
tioned in the previous subsection, the values for
each diagram have to be divided by the' symmetry
number for the diagram. The symmetry number
is the number of exchanges possible between field
points which do nof generate a topologically differ-

FIG. 14. Some elementary diagrams generated from
Fig. 13.
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() (b) (c) (d)

FIG. 15. Some four-point basic diagrams in FHNC/4
using Sg; bonds.

ent diagram. For example the symmetry numbers
for the diagrams of Fig. 13(a)-13(g) are 2,1,2,1,
1,2, 1, respectively.

In this way complete hypernetted chains are in-
serted into the four-point basic diagrams produc-
ing a vast number of four-, five-, up to infinite~
point elementary diagrams. Inserting the result-
ing E,, functions into Eqs. (17)-(22) produces then
all FHNC diagrams where one or more bonds are
replaced by elementary diagrams, e.g., Figs. 14
and 16. Summing all these diagrams constitutes
the FHNC/4 approximation. Also, however, the
superbonds (23) will be modified such that one
evaluates diagrams like Fig. 17 if one calculates
the E,, a second time and again solves (17) and
(18). These contributions are, however, again
much more connected than, e.g., Fig. 16, let
alone FHNC diagrams. This is why we expect
this self-consistency iteration to converge ex-
tremely fast, which will indeed turn out to be true
usually. It remains questionable, however, if one
should perform this additional self-consistency.
There will be contributions of the same order of
magnitude from basic diagrams involving five or
more points. It is not clear that one should single
out the special set summed by the self-consist-
ency procedure. )

Thus we obtain in complete analogy to the Bose
case the FHNC/4 approximation: Solve (17) and
(18) with inclusion of the four-point basic dia-
grams for E, , calculated from the superbonds
(23). The two-body RDF is evaluated from (19)
again, and all of the discussion in the preceding
paragraph of the three-body RDF applies. How-
ever, we have E,,#0 now, and in (15) we have
G _:GSS +ESS'

Also in analogy to the Bose case, there is an
additional complication, namely the direct con-
tribution of the elementary diagrams to the three-

FIG. 16. Some contributions to the two-body radial
distribution function if the elementary diagrams are in-
serted into Eqgs. (17)—(19).

FIG. 17. Some diagrams generated by self-consistent
evaluation of the elementary diagrams.

body RDF, Fig. 6. There are trivial contributions
from the E,, to g, via (15) (with G =G, +E,,), (20)-
(22). From the single Boson diagram, Fig. 6,
there are generated however 99 different diagrams
corresponding to different exchanges of the four
particles with one another or with other field
points. There is a simple way to generate all
these diagrams: replace each double bar in Fig.
6 by the full g(r), Eq. (19), each solid line by g()
~—1, and omit all contributions which are forbidden
according to the diagram rules. This procedure
has been implemented in the form of a computer pro-
gram and yields 161 topologically different dia-
grams. As in the case of Fig. 15(b) and 15(d) some
of these are numerically equal such that we arrive
at the final number of 99 diagrams to compute, a
few of which are shown in Fig. 18. The number of
diagrams for g, is much greater than the number
for the E,, because one less point is integrated
over. The symmetry of the diagrams is corre-
spondingly reduced, and a lot of formerly equal
diagrams become different. Of course all these
diagrams are computed from the superbonds (23)
after solution of the FHNC/4 problem. This com-
pletes the definition of the FHNC/4 approximation.
Is it possible to go beyond the FHNC/4 approxi-
mation? In the Bose case there were five differ-
ent five-point basic diagrams involving nine-di-
mensional integrals. The number of fermion dia-
grams contributing to E,, is estimated to be sever-
al thousand, and there will be a multiple of this
number contributing directly to the three-body
RDF. Therefore it does not seem to be feasible to
calculate these even once.

D. Expressions for the variational energy

In the preceding sections we obtained a method
of calculating approximations to the two- and three-

(a) (b) (c) (d)

FIG. 18. Some additional contributions to the three-
body radial distribution function in FHNC/4.
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body RDF, Egs. (6) and (7). In order to evaluate
the variational energy (5), we need to obtain the
functions w, and w ;.

The Hamiltonian (1) consists of a potential and a
kinetic part. It is no problem to deal with the po-
tential: there is a potential contribution tow,,

w,) =ol) +wl), (V)=tp [ &Fgl)olr),

(24)
where w? is a contribution from the kinetic part.
w 5 is purely kinetic as we do not include three-
body forces. These kinetic parts must be evalu-
ated from the expectation value

1
2mN (Y|P

Different methods have been proposed to derive
expressions for w} and w, As one may perform
partial integrations in (25), these functions are
not uniquely determined.

(1) The Pandharipande-Bethe (PB) form,'® also
used by Iwamoto and Yamada,'® is obtained by
applying the differential operator in (25) to the
right. This yields

72 1
2mN (y| )

2 (¢l FViFl ¢} =(T). (25)

(T)pg=~— 2 (¢l F[FV}+(ViF)

+2(V,;F) v, ]| ¢)

=Ty +(TR +Up) +(Wye +Up) , (26)

where the parentheses in the second equality in-
dicate the origin from the terms in the first equal-
ity. T, is given by (8). From T { there is a con-
tribution to w?,

@ _ S Z(”)) 97
Ty Pfd rg(1)< o 7o) 27
Upg contributes to w ;:

Upg=p fdarlzd Tos 85(F10, Tas)

(g i el 28)

W again gives a contribution to w]:
We=p [ a*F{£20) ex0[G,sr) + B )]

X[2E4 () +2G,,(r) = (1/s)l(r )] }

7 Vf(r) )
X =— -V .
< o Vilee) (29)
Observe that in (29) the full two-body RDF does #not
occur but only that part which contains some 1
functions to be differentiated in accordance with
(26). Similarly, the contribution from U to w,,

Up=p? [ 4°F,,d° %0 8,(F, F,0)

2v
X <‘77 _lelez' : Vzl(kF 1’23)) ’ (30)
is not to be used with the full three-body RDF, but
those terms which do not allow for a differentiated
1 function are to be omitted; i.e., in Fig. 11 only
diagrams (b) and (c) contribute to g,, or in Fig. 12
only the corresponding parts from (a), (b), and (f).

(2) The Jackson-Feenberg!'® (JF) form, also used
by Fantoni and Rosati,* is obtained by use of the
Jackson-Feenberg identity,

[ o vrvar=g [0 e (7297

- 2(Vy*)(Vy)]dr,
which for fermion systems leads to
ﬁZ
(Thor == gy gy 20 [PV PVER)

-3(V,F)?| o)
hz 1 2 2 2
+8mN(¢I¢>,ZfF vilo [2ar

=To+ T2+ (W + W,,). (31)

'From T{?, which corresponds to the last two

terms in the first line of (31), there is a contribu-
tion to wT:

rp-of ot s (L) (2] @

The three-body contributions from these two terms
cancel exactly. From the differentiation of the
square of the model state there originates a two-
body term contributing to w7,

- S*ﬁ_z_vz
=p | d°Fg. gr), (33)

where the gradient operates only on the I and 72
functions in g(»). Also there is a three-body term,

Wis= pder d? rzsés(Flzszs)

7z 1

x (- Im's
where only those contributions of g, are to be used
which allow for the two differentiated ! functions,
i.e., Fig. 11(c) or Fig. 12(b). This form of KE has
been labeled FR in our earlier note.® The three-
body term W, has been computed erroneously
there, however. The correct JF energies are
slightly more repulsive than the numbers reported
in Ref. 6.

(3) The Clark-Westhaus® form, also used by

Krotscheck and Takahashi,?! is obtained by integra-

Vollkp7,,) Vo l(kp7,, > ,  (34)
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tion of the identity
F¢*V3(F¢)+c.c.=Fp*V3p +c.c.
+2[V;+(|o|2FV,F)
. =lelAv 2.

This leads to

h—Z 1 272 2
<T>cw=—§‘m—Nw<¢|F V- (ViF)?[9)

=Ty +TE +Ucy. (35)
The two-body term is
. 72 vf 2
) _ 3 (VT
r6i=p f a5 5015 (S) (36)

and the three-body term is

> a3 > = APV f V. f
U =p2fd3r a3t T b4 )__ 2712 2 23‘
cw 12 23 gS( 12y © 23 2m f12f23
(37
Several comments apply to these three different
forms of the kinetic energy (KE).?? All three forms
must yield identical results,

<T>ma = <T>JF = <T>cw = (T, (38)

if the exact RDF’s are used as only rigorous alge-
braic manipulations and partial integration have
been employed to derive them from (25). In any
approximation for the RDF’s, however, the equali-
ties (38) will generally be spoiled as the manipula-
tions done to derive (26), (31), and (35) imply dif-
ferent treatments of the omitted terms in g, and g,.
Some relations are valid trivially in any approxi-
mation scheme:

Ucw=-Upg, (39)
TF =3(T5 + TE) - (40)

Also we have in lowest order, G,,=E, =0,
TE =T+ We=T5F + W,,. (1)

This last relation may be used as a check on the
numerical accuracy in the integration, and also in
determination of the derivatives of the CFN if these
are not given analytically, but calculated numeri-
cally (see Sec. II F).

The three KE expressions each have their merits
and disadvantages. In the PB prescription there
will be some cancellation involved in w,, Eq. (24),
between the repulsive short-range part of the po-
tential and the attractive second derivative, (27).
The cancellation can be especially enhanced if one
chooses the CFN f in a special way, see Sec. II F.
Thus in the PB prescription the sum (T) +(V), in
its two-body part, is insensitive to the behavior of
g() for small ».' There is, however, a large
three-body term Upy.

The JF prescription yields an extremely small
three-body term W,, and thus is very insensitive to
any approximation made for the three-body RDF.
However, the cancellation between the second de-
rivative and the potential is not complete, and thus
this prescription is more sensitive to the short-
range behavior of g(r). In the CW prescription
there is no cancellation involved for small 7; thus
with this expression for the KE, the total energy is
very sensitive to the short-range behavior of g(v).
Also there is a large three-body term Ugy. On the
other hand, this form is the simplest in structure
and application and does not require the evaluation
of second derivatives. Moreover, it is the only
form for which one only needs to know the complete
two- and three-body RDF’s and does not need to
know their decompositions into the various ex-
change parts, Eq. (19) and Figs. 11 and 12.

Differing results for the three KE values obtained
with these three prescriptions are due to different
treatments implied for the omitted higher-order
terms in the RDF’s.!” Thus we expect @ priori that
for a given approximation to g, and g, the three
numbers should agree quite well for low densities,
as higher-order terms should be small there be-
cause they are multiplied by higher powers of the
density, and gradually diverge from each other
with increasing density. Employing better approxi-
mations for g, and g, then should move the curves
towards one another again and should not matter at
low densities. In other words, we conjecture that
the difference between the different results for the
KE is some measure for the accuracy of the whole
procedure. It is a necessary (though not sufficient)
condition for any approximate g, and g, to be
“good” that the three approximate values for the
variational energy E,,,,

?

Epp= ) +(T)pp,
E;p=(V)+(T)yr,
Ecy= (V)+ <T>cw s

are not too far from one another.

E. Model energies

In the previous subsections we reviewed a method
to calculate approximate upper bounds to the
ground-state energy per particle of fermion lig-
uids. Though it has not been shown that the so-ob-
tained energies are indeed upper bounds, they will
lie within some error band near to the variational
energy E,,., Eq. (4). What one also might be in-
terested in is the exact or true ground-state energy
per particle E, obtained from solution of Schro-
dinger’s equation

H|y) =NE,[9,), (42)
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where |¢0) is the true ground-state wave function.
With (42) we have for any state lX) nonorthogonal

to ‘l[)0>
{X]H'¢o>=NEo<X|¢o> )
(43)

(X |H|y,)

Eo=N X0y -

Within the framework of perturbation or “Brueck-
ner” methods, one makes use of this property with
|X)=|¢), where |¢) is the model state, and ob-
tains

Ey=(1/N)(¢ |H|b,) (44)

with the normalization (¢ |¢,) =1. Effectively, (44)
is used there to evaluate the energy for approxi-
mate |¢) substituted for |%,). By analogy we de-
fine®® the “model energy”

_L(olHIY

mod"ﬁ <¢ [ qb) (45)

to be evaluated for the Jastrow wave function (2).
This energy is, of course, not supposed to be an
upper bound. In fact, it may be above or below
both the variational as well as the exact energy. In
general, there is no definite relationship between
the model energy and any other quantity as the
Jastrow wave function (2) certainly does not fulfill
Schrodinger’s equation. If, however, the upper
bound obtained from any wave function Iz/)) is sup-
posed to be not very much above the true ground-
state energy E,, necessarily this wave function

|#) is insome sense “close” to the true ground-state
wave function ]zl)o). Then we may view |§) as an
approximation to ]qbo) and evaluate the energy from
(45). The “closer” |¢) is to |¥,), the better should
E_.and E_ . agree, and the closer should E . be
to E,. In particular, for the most stringent upper
bound obtained with the true ground-state wave
function |y,) itself, we have E, 4=E,, =E,. If the
model and variational energies differ substantially,
we may thus conclude that the wave function is
quite far from the exact eigenstate. The opposite
does not hold true, however, as E_ 4, and E . might
agree accidentally.

The evaluation of (45) is quite simple once we
know how to evaluate (4).° The only difference is
that the correlation factor F, Eq. (3), is missing
on the left-hand side of the matrix elements. Thus
in order to obtain the RDF’s corresponding to (45),
we just replace everywhere F? by F, or f2 by f,
e.g., in Egs. (9) and (10), etc., up to (18), (19),
and (23). The only place we have to be careful is
in the KE expression, as we should not apply any
differential operator to the F missing on the left-
hand side. It is seen immediately that the PB ex-
pression for the KE, Eq. (26), fulfills this condi-

tion. Having obtained the solution of the FHNC (or
FHNC/4) equations with the f2— f replacement, we
may evaluate the model energy from Egs. (24) to
(30), i.e.,

Emod': Vmod+ Tmod ’ ‘ (46)

V=30 [ 4°F Zoago), (47)
;. _L@ITFI®)
mdTN (¢ IF1¢)

=T, +[T1(3213)+UPB+WF+UF]mod’ (48)

where in (48) the KE operator is applied to the
right.

Obviously there is a different way to evaluate (48)
than by applying T to the right. One may apply it to
the left yielding

1(T$IFI¢) . (PIFI¢)_
N (oIFl¢y “°{pIFId)

with T, given in (8) as l(b) is an eigenfunction of 7.
Now Eq. (49) is exact, whereas (48) is evaluated
via the FHNC or FHNC/4 approximation. The dif-
ference between these two results then is the
truncation error of the approximation used, i.e.,
the sum of the higher-order terms omitted. For
the model kinetic energy we are therefore in the
singularly lucky position of knowing exactly the er-
ror due to our approximations, and moreover we
know it for any given CFN f. We are thus enabled
to study the convergence properties of the expan-
sion in basic diagrams in relation to the properties
of f in an unambiguous way.

T

T,, (49)

F. Correlation functions

Up to now we assumed some correlation function
(CFN) f to be given. As we are mainly interested
in the convergence of the FHNC expansion and
comparison with other results, we are not par-
ticularly concerned with minimizing the energy.
On the other hand, the convergence of the basic-
diagram expansion will depend on properties of the
CFN, so that we need to have some reasonable
range or family of CFN’s. These requirements
are met by the prescription developed by Pand-
haripande.?® A one-parameter family of functions
is constructed as solutions of the eigenvalue prob-
lem for a second-order differential equation,

= (B2 /m)Vif () +0 () f (¥)=Af (), (50)
with the lowest eigenvalue A and the boundary con-
ditions .

7f(r)=20, f@d)=1, f'(d)=0, (51)

where d is some prescribed “range” of the CFN,
f =1 outside d. Thus we may conveniently produce
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a reasonable CFN for a given range via (50) with-
out the necessity of doing many-parameter mini-
mizations. Equation (50) is obtained by minimiz-
ing the lowest-order two-body energy analytically,
i.e., from the Bose (¢ =1) analog of

0 [ 4w 1) (- g (B O s200)F )00 0,

lo)|? =gp(r) =1 - (1/s)2(kg7), (52)

where g is the free Fermi-gas RDF. In cases
where the corrections to the lowest order are
small, it is reasonable to hope that this f will
provide a very satisfactory upper bound. If the
corrections become large, one may still hope that
(50) is not completely unreasonable, but it would
be extremely surprising if one could not lower the
energy by taking a different choice for f.?2 In the
low-density limit this choice of CFN reproduces
the exact energy'” though it does not lead to the
correct asymptotic behavior'* of the CFN for 7 -,
f(r)=1~c/r?, The parameter d may be utilized
in different ways. It is possible to restrict d to
small values in order to obtain good convergence
in the basic diagram expansion. Alternatively,
one may view d as a parameter of the CFN and
minimize the energy with respect to d. However,
this minimization might produce misleading re-
sults if d is moved into a region of bad conver-
gence, since in any given approximation the quality
of that approximation will depend on d.

That the range of f may significantly influence
the convergence properties is easily seen. As we
are expanding in powers of 2, Eqgs. (9) and (10),
some measure for the convergence will be the de-
viation of f from unity?+??:2%:

K:pfd$n1-fwn¢aw,

:pquu-fvﬂﬁuﬂ. (53)

It does not seem to be useful to use £(7) itself in
the integrand, as # may change sign, f(*)>1, for
some 7 and thus may deviate significantly from
unity without the integral becoming large. Also
(53) bears some analogy to the wound parameter
in “Brueckner” theory if we identify f¢ with the
two-body correlated wave function there. With
increasing range of the CFN, « will increase such
that we expect the expansion to converge more
slowly. )

It has also been proposed that a state-dependent
CFN f be used in (50), i.e., that allowance be made
for some dependence on angular or linear momen-
tum.'® It has been shown,® however, that for such
CFN’s it is not possible to evaluate higher-order
terms via the FHNC equations as.given by (17)

and (18) as these do not allow for such complicated
CFN’s. If one wants to introduce more compli-
cated CFN’s than (50), one first has to derive the
corresponding generalization of the FHNC equa-
tions.!!

An alternative method frequently used in the
literature is to pick some analytical form for f
involving a few parameters and to minimize the
energy for these. The advantage of this method is
that one includes higher-order terms in the mini-
mization.?” The disadvantages are, however, that
one has to perform a cumbersome numerical mini-
mization for the parameters, and more important,
has to select one of the KE forms (26), (31), or
(35). Generally, minima of the three energies
evaluated with these three different prescriptions
will occur for different f. Exceptions are lowest-
order, i.e., (52), and an exact evaluation of the
expectation value (4). Because of these problems
we use only analytic CFN’s given by other authors
in order to compare with their results.

There is an additional advantage of (50) if we
utilize the PB prescription for the KE.'®* As men-
tioned in Sec. IID, with this form of KE there is a
cancellation involved in (24) between the potential
v(r) and the w; (r) from T‘3), Eq. (27), for small 7.
If we use (50), it is seen that the sum of these two
terms is constant for 7 less than d; i.e., the can-
cellation is exploited to its maximum: there is no
trace whatsoever of any repulsive core within v(7),
so that the behavior of g(r) for small 7 is quite
irrelevant. It might seem that this is a strong
argument in favor of (50) together with the PB
choice of KE. However, the other terms in T,
were neglected in this argument, and especially
the fact that Up; might become quite large and thus
render the three-body RDF quite important invali-
dates it. Uncertainties in the JF prescription for
KE due to errors in g(¥) for small ¥ show up in the
PB prescription due to errors in g, for ¥<d, This
important point will be discussed below more
amply in connection with our numerical results.

III. NUMERICAL PROCEDURES
A. Solution of Pandharipande’s differential equation

The first step in a numerical calculation of the
energy is the determination of the correlation func-
tion. If this is not given analytically, we want to
solve (50). This is most conveniently done by em-
ploying a finite difference approach.2® The unknown
function f is made discrete on a linear mesh for
0s7<d. Making the usual substitution « =7f, Eq.
(50) may be written as an eigenvalue problem for
a symmetric, tridiagonal matrix with eigenvalue
X and eigenvector u«(7;) where the 7; are the chosen
mesh points. f ;) is then given by u(7;)/7;, and
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the second derivative may be evaluated using _(50)
again

ﬁZ
-—V2f(7) =X = v@E)lf ;). (54)

m r=r;
However, in order to evaluate the KE we need also
the first derivative which is given by the central
difference

Fro) =l ) - FO )V = 700)). (55)

The values of the various functions for other »
than the 7; may then be obtained by interpolation.
As the amount of calculation involved here is only
linear in the number of mesh points, it is no prob-
lem to obtain excellent accuracies. Generally,
step sizes less than 0.01 fm for nuclear or neutron
matter, and 0.01 A for *He, were used. Moreover,
the numerical accuracy may be checked by means
of Eq. (41).

B. Radial integrals

In various places we have to perform radial inte-
grations, e.g., to evaluate the energy, Eqs. (24),
(27), etc. These radial integrals extend from zero
to infinity. Though it is possible, in principle, to
use some integration formula for this interval, it
is not very reasonable to do so because of the
oscillating ! functions, Eq. (12), where one would
like to have at least a few mesh points per half
wave. Since the CFN’s usually tend to unity quite
fast with #, it is reasonable, however, to intro-
duce some cutoff R, for the radial integrals oc-
curring in the FHNC equations (17) and (18)., The
only place where contributions from *>R . need
to be taken into account is the integral for the po-

: tential energy (24), in the case of potentials which
decrease quite slowly. Here the RDF g(7) is re-
placed by unity for ¥>R,,, , and the integral may
be done analytically. Of course, R has to be
chosen large enough that the other contributions
from *>R_, may safely be neglected, i.e., such
that the results are independent of R, . This
usually occurs for R, inthe range of 107, to 207,
where 7,, the mean interparticle distance, is given by

Larip=1. (56)

The remaining integrals from 0 to R, must still
be evaluated with some care as the integrands gen-
erally are not arbitrarily often differentiable. Let
us consider the more general case of a hard-core
potential with core radius 7, and a PB-type CFN,
Eq. (50). Then the CFN f will not be arbitrarily
often differentiable at the points 7, and d. At 7,
the first derivative will not be continuous, and at
d the second derivative will not be continuous, It
is therefore necessary to divide the interval from

0 to R, into three subintervals, from 0 to 7.,
from 7, to d, and from d to R, ,, . Within each of
these intervals, one may then use high-order inte-
gration formulas such as Gaussian integration,
where the error is proportional to some higher-
order derivative of the integrand. Even if the
integrand is everywhere arbitrarily often differen-
tiable, it is advantageous to use the three subin-
tervals as the integrand behaves quite differently in
the three regions. Within some “core” (e.g., for
3He) it will generally be quite flat. The inter-
mediate range, where the variations of the poten-
tial and the CFN are most pronounced, will be
most difficult to integrate, and at larger distances
the integrand will again be quite flat except for the
oscillations of the ! functions. Even for analytical-
ly given CFN we will thus define some d, in the
region 2% to 37,, in order to subdivide the inte-
gration interval. Generally 10 to 15 Gaussian
mesh points suffice for the interval from d to

R and 15 to 20 points for 0 to d. The accuracy

max ?

may again be checked by use of (41).

C. Solution of integral equations

The principal numerical problem in the present
work is the solution of the system of coupled, non-
linear integral equations (17) and (18), the FHNC
equations, What prevents us here from a straight-
forward discretization and transformation to a
nonlinear system of algebraic equations is the
angular integration involved in expressions of the
type

G(ry,)=p fdf‘Fga(rlg)b(rzs). 57

In the numerical calculation all functions involved
will be known only at certain mesh points 7; corre-
sponding to the set of Gaussian meshes introduced
in the last subsection, and we desire to know G
also on these same mesh points, The angular inte-
gration would involve the functions at different
mesh points. Moreover, it would be extremely
difficult to keep track of the special points ¥ =7
and 7 =d during the angular integration. All these
problems are overcome by use of the convolution
theorem transforming (57) into

G(r,,)=8p f k2 dk jo(rlzk)< f r2dr, jo(rak)a(ra))
x( f V2 dr, jo(rbk)b(rb)>_ (58)

On the mesh {#,} (57) may then be written as
G(r) =D _cha(r)b(ry), (59)

where the coefficients ci.k are given by
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0

chy =8p—1-’-1;1 w;w, f % sin(7;k) sin(v; k) sin(7,,k) .
i 0

(60)

The w; are the weight factors corresponding to the
mesh points 7; obtained from the Gaussian inte-
gration formulas.

The integral in (60) may be evaluated in closed
form. Again one has to be careful, however, as
for very large values of £ the radial integrals in
(58) cannot be performed on the given mesh {ri}.
Thus we are led to introduce some cutoff (expo-
nential, step, etc.) for the integral (60). Again
the results should not depend on that cutoff within
reasonable limits which indeed turns out to be
true. Even without cutoff all results but the values
of G,, for very small 7 are reasonable due to some
extrapolation of the integrals in (58) implicit in
(60). Fortunately f2 is extremely small for very
small 7 such that these inaccuracies do not matter
too much. All actual calculations reported here
however used a cutoff in the region of 207,

We now eliminate (18) by inserting it into (17).
Discretizing on the set of Gaussian meshs and
using (59), we obtain a set of coupled nonlinear
algebraic equations which may be written

X;(G))=0, 1<si,j<M; (61)

i.e., there are M equations and M unknowns G;
E{G4 (1), Gaa(7s), G (73), G4a(7,)}, Where M is four
times the number of mesh points used for the
radial integrations. Some initial guess G enables
us then to use the Newton-Raphson iteration®’ for
the nonlinear system (61),

o o oX,
opr-ap- 3 (55

i

>_1Xi(c’") . (62)

Gm
The coefficient matrix, 8X/2G, the linearization
of the FHNC equations at G™, is obtained in closed
form from (17) and (18).

Usually 4 to 6 iterations of (62) are sufficient
for a five-digit accuracy in the G,,(7;). The only
remaining problem is to choose the initial guess
G° such that the iteration (62) converges. This is
accomplished by solving the FHNC problem at low
densities first and then increasing the density in
sufficiently small steps. The solution corre-
sponding to a lower density is then rescaled ac-
cording to 7, and used as initial guess for the high-
er density, a procedure well known in this con-
text.!®

One might ask why we do not use a much simpler
iteration scheme, For example, with some initial
guess G° one could evaluate (18), solve the linear
systems (17), and iterate back and forth between
(18) and (17). Unfortunately, this procedure con-
verges only for very “easy” cases where the den-

sity is low or the CFN short ranged. In other
cases the convergence is either extremely slow
(one needs about 100 iterations in some cases) or
nonexistent; the latter especially applies for 3He.

Also one might try to solve the linear systems
(17) by iteration as well. This procedure, how-
ever, breaks down even much earlier than the
iteration between (17) and (18). As we enter here
into the discussion of the physical significance of
various terms, e.g., the permutation expansion
for the antisymmetric wave function, this discus-
sion will be deferred to the next section.

D. Evaluation of elementary diagrams

As was pointed out in Sec. IIC, in order to exe-
cute the FHNC/4 approximation it is necessary
to evaluate six-dimensional integrals of the basic
structure shown in Figs. 4a, 6, 13, 15, and 18,
All these diagrams are evaluated as functions of
the distance between the two bottom points. There
remains then a five-dimensional integral, namely
over the radial distances and polar angles of the
two field points with respect to one of the bottom
points, and the azimuthal angle between the two
field points. The latter integration is independent
of the distance between the two external points
such that in effect one has to perform only a five-
dimensional integral to completely evaluate the
energy contribution of a given diagram. These
integrals are again evaluated using Gaussian in-
tegration on the same radial mesh as outlined in
Sec. IIIB. The integrations over the polar angles
are done on a 12-point Gaussian mesh which was
found to be sufficient for a 5% accuracy in the
FHNC/4 contributions despite the fact that one
disregards the discontinuities in some higher-
order derivatives for three of the six involved
bonds. One may view the Gaussian integration in
these cases as performing some implicit “smooth-
ing” in the vicinity of the special points r=7,d.
The innermost loop will perform the integration
over the azimuthal angle between the two field
points. The value of the radial distance between
these points depends on all five integration vari-
ables. The bond function is given only on the mesh
points, Sec. IIIB, however. So one has to perform
some interpolation within the innermost program
loop, unfortunately. A huge savings of computing
time is gained by first interpolating the bond func-
tion between the two field points to a very closely
spaced half-logarithmic table outside any integra-
tion loop by use of some higher-order formula,
and then doing only linear interpolation within the
integration loops. Another factor-of-3 savings
is gained by taking the abscissae of the half-log-
arithmic table to be those corresponding to the
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first 16 bits of the internal representation of a
floating -point number used in the IBM/370 com-
puter system. In that way the first 16 bits of the
argument value where the function value should be
computed can be taken as an index to the interpola-
tion table, and no complicated table-lookup pro-
cedure involving divisions, etc. is needed.

That considerations of this kind are important
is due to the large number of integrals (35 per
iteration, and 99 per energy evaluation) needed.
Whereas a FHNC-type calculation takes only about
20 sec on an IBM370/195, the FHNC/4-type cal-
culation employing the optimizations sketched
above uses about 20 CPU min per density such that
a factor of 3 results in considerable savings.

IV. APPLICATIONS
A. Liquid >He

The classic example of a fermion liquid with
short-range interaction is the *He liquid interac-
ting via the Lennard-Jones potential

v(r)=4€[(o/7)? = (o/7)°], (63)

with the parameters o=2.556 A and € =10.22 °K.
There are several earlier results to compare
with, Schiff and Verlet?® (SV) used a molecular-
dynamics method to treat the 3He Bose liquid and
employed a permutation expansion, the Wu-Feen-
berg expansion,® to account for the antisymmetric
wave function. They used a correlation factor of
the form

f(r)=expl-3(b0/7)%], (64)
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FIG. 19. Variational energies for *He using the cor-
relation functions of Schiff and Verlet (Ref. 28). The
error bar indicates the Monte Carlo result.

with the parameter =1.13 found to be optimal,
i.e., minimizing (4). They obtained a saturation
point at a density of 0.2370 ™ with an energy per
particle of —1.35°K. The same correlation func-
tion was used by Ceperley, Chester, and Kalos

in their Fermi-Monte Carlo (MC) evaluation® of
(4) at said density. They found the energy to be
-1.20+0.03 °K. In order to compare their results
with ours, we also used the SV CFN (64) to evalu-
ate the expectation value (4). However, in order
to check on the convergence of the FHNC expan-
sion, we used the three forms of KE defined in
Sec. IID. The results are shown in Fig. 19. At
low densities there is fair agreement between the
different forms of KE, whereas at higher densities
the uncertainty in the energy is embarrassing. As
a consequence of this behavior, the three different
forms of KE predict radically different saturation
points; for the PB prescription there is no satura-
tion at all within the density range studied. The
PB form of the energy lies below all other results,
whereas the other forms of KE lie considerably
above the results of the MC evaluation. Clearly,
in FHNC the RDF’s are so uncertain at the inter-
esting densities that it is very difficult to draw
any conclusion from these curves regarding the
energy of *He. It is possible to improve on these
results, however, by taking into account the next
order in the basic diagram expansion, i.e., to use
the FHNC/4 approximation. For that approxima-
tion the different curves are much closer to one
another, and for the PB prescription the satura-
tion point coincides with the MC result. As the
MC result is to be viewed as the upper bound cor-
responding to the correlation factor (64), it is seen
that in FHNC the PB evaluation of the energy does
not constitute an upper bound but lies consider -
ably-about 20-40%-below the actual upper bound
corresponding to the chosen wave function., The
saturation density is estimated to be about the
same amount too high, In FHNC/4, on the other
hand, the PB prescription seems to give the most
accurate result.

Before we discuss how the various terms in the
energies affect these findings, let us report some
additional calculations done with the PB-type
CFN’s defined via (50) and (51). The range of the
CFN d was varied to obtain the minimum of the
energy uniformly for all densities at d=2.47,. As
observed earlier,'® the energy is quite insensitive
to the value of d if d becomes greater than 27,
Again the energy is evaluated using different forms
of KE. The results are shown in Fig. 20. Quali-
tatively, the behavior is the same as for the SV
CFN; however the differences between the dif-
ferent KE forms are generally smaller. This is
mainly due to the smaller range of the PB CFN.



16 FERMI-HYPERNETTED-CHAIN METHODS AND FERMION MATTER 1273

FHNC

3
He PB-cfn / Ecw
o FHNC/4 ~
- SEo
3 E
o JF
- x/ / o gFHNC/4
= JF
~ gx__x/ o =X
o \ /" o EFHNC/4
=l Qé"/ PB —
o
—
x FHNC
Ve EPB
-2 1 PO T | i | IS S B
5 5 = 5% &
S 2 8 8 §
fe] o o oo o
-3
p [?]

FIG. 20. Variational energies for 3He using the cor-
relation functions from Eq. (50). The error bar indicates
the Monte Carlo result.

The parameter «, Eq. (53), is for the SV CFN al-
ways about 1.3 times as large as for the PB CFN,
ranging from 0.35 for the lowest to 0.85 for the
highest density (SV CFN). The same CFN’s (but
with d=27%,, which should not make much differ-
ence) were used by PB.'® They treated the He
Bose fluid via HNC/4, and also used a permuta-
tion expansion to deal with the Pauli exclusion
principle. They found saturation at a density of -
0.2470 "% with an energy of -1.35°K. It is seen
that in both cases, SV as well as PB, the per-
mutation expansion does quite well and is only
about 10% off the MC result.

In Table I we give our FHNC/4 energies with the
PB prescription for the KE for both choices of
CFN together with the corresponding « values.
The last column gives the energies calculated by
PB. These are in surprisingly close agreement
with our FHNC/4 results. While this agreement
seems to indicate that the permutation expansion
is quite accurate, one has to be quite careful in
that respect as will be clarified below. Comparing

our results for the SV and PB CFN’s,several re-
marks are due. Employing the PB form for the
KE, there is in FHNC some energy gain going from
the PB to the longer ranged SV CFN. One could
conclude that this indicates that the SV CFN is
“better” in the variational sense. This conclusion
is just wrong, however, as in FHNC/4 both CFN’s
give almost identical energies and saturation den-
sities. Also one would conclude using the SV CFN
that the saturation density should be much higher
than 0.237073, As indicated by the FHNC/4 result,
this would also be a wrong conclusion. This al-
ready indicates that employing the PB form of KE
in the FHNC approximation might be quite mis-
leading. This conclusion will be substantiated in
the following sections.

Another conclusion is that the form of the cor-
relation factor f(r) does not matter very much,
as was also observed in the Bose case. Though
the SV and PB CFN’s are quite different, a care-
ful evaluation of the energy expectation value yields
almost identical results. This substantiates our
belief that it is not very important to optimize f
carefully.

As another means to estimate the convergence
of the basic diagram expansion, we proposed using
the model KE; see Sec. IIE. In Fig. 21 we show
the model KE for the SV as well as the PB CFN’s
in FHNC and FHNC/4. As we expect from the pre-
ceding discussion, the FHNC model KE is for the

8V CFN farther off the correct value T, than for
the shorter-ranged PB CFN with its smaller «

‘ value. With increasing density the FHNC model
KE’s get dramatically worse even changing the
sign of the slope, i.e., giving less KE for increas-
ing density. Employing the FHNC/4 approxima-
tion the agreement with the exact value T, is much
improved, and the slope retains its correct (posi-
tive) sign, All this leads to the conclusion that in
any given approximation one cannot trust just one
evaluation of the energy, but must employ addition-
al means in order to estimate the accuracy of the
so-obtained results. Figures 19-21 show quite
clearly that such estimates may be obtained from

TABLE I. FHNC/4 energies and wound parameters for *He. Upg includes the AU correc-

tions.
SV CFN PB CFN PB?
p AU Upp Epp Emod AU Upg Epg £ nod Epp
@3 K (°’K) K (°’K) (°K)
0.187 0.54 0.19 134 -1.15 -2.13 042 0.08 0.80 -1.20 -0.86 -1.21
0.237 0.71 044 261 -1.23 -2.20 0.56 0.25 1.67 ~-1.21 -0.33 -1.35
0.277 0.85 0.79 4.16 -0.98 -1.84 0.67 0.50 2.73 —0.91 +0.61 —1.27

2 Reference 15.
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FIG. 21. Model kinetic energies for *He.

the different forms of KE.

All these findings may be understood with refer-
ence to the problems and advantages of the dif-
ferent KE forms, Sec. IID, As is well known, in
FHNC approximation the two-body RDF is slightly
too large for small distances. Since in the JF and
CW prescriptions the core of the potential is re-
tained to some degree within the “effective Ham-
iltonian” w,, the FHNC version of these energies
is too repulsive. Taking into account the four-
point basic diagrams, i.e., E,, in Eqs. (17)-(19),
corrects g(7) to some degree and thus results in
some attraction for the JF and CW energies,
whereas the PB energy remains almost unchanged.
This observation, based on the two-body terms
in the different KE prescriptions, led to the con-
jecture that the PB form is the most accurate.
However, we should not forget about the three-
body KE terms. Inthe JF prescription the three-
body term W, is extremely small and does not
matter for the discussion here. In the PB form we
have, however, the large U term. As mentioned
in Sec. IIC, there is a direct contribution from
the four -point basic diagrams to the three-body
RDF and thus to U and U, Figs. 6 and 18. This
contribution to U is called AU. The contribution
to Uy again is small and does not matter here.

In Table I we give the values for U and AU. It
is seen that with increasing density these terms
rapidly increase. Also, in going from the PB to
the longer-ranged SV CFN, these terms greatly

increase. This is the behavior one would expect
by just looking at the diagrams, Figs. 6, 18, and
11. Almost all the difference between FHNC and
FHNC/4 for the PB form of KE is made up by this
AU term. As the same term enters the CW form
of KE with the reversed sign,the large change in
the CW energy is explained: here the modification
of g(r) and AU are both attractive, whereas for the
JF form there is no AU due to the smallness of the
three-body term (we did not try to calculate this
correction which would be much smaller than the
numerical noise). For the model kinetic energy
also the main repulsive contribution in going from
FHNC to FHNC/4 comes from the AU term. It

is thus to be stated that in the truncation of the
expansion (10) applied to the energy attractive
terms are omitted in the case of the JF or CW
energies, which thus retain the upper-boundary
property, whereas in the PB case repulsive terms
are omitted. It follows that the PB energy in
FHNC does not constitute an upper bound, though
in FHNC/4 it might be an accurate estimate.

The relative sizes of Upyz and AU, Table I, may
furnish another error estimate in FHNC. AU is
generally about 10-20% of Upy. AU is by far the
leading correction to the PB energy. In FHNC
one may therefore use an estimate of 10-20% of
Upyp to improve on the PB energy, and obtain an
error estimate of the same order.

Some remarks as to the convergence of the dif-
ferent iteration schemes involved are appropriate.
In FHNC there is only one iteration involved,
namely (62), in solving the system of nonlinear
coupled integral equations (17) and (18). As men-
tioned in Sec. IIIC only a few iterations are need-
ed, but the initial guess must be obtained from
some results at lower density. It is possible to
start at a density of 0.1270 % and increase the den-
sity in steps of 0.030 7%, 1t is nof possible to use
the simple scheme of iterating (17) with (18) which
we found to diverge at all densities considered
here. In the non-self-consistent FHNC/4 scheme,
one just has to solve (17) and (18) a second time
after evaluating E(7) from the first solution. In
going to the self-consistent version of the FHNC/
4 approximation an additional iteration is involved,
namely, solving the FHNC equations for fixed E,,,
and calculating E,, from the previous FHNC solu-
tion. At low densities, i.e., for the first two lines
of Table I, already the second iteration affects the
energies only by one or two digits in the last place
given. For the higher density, 0.2770%, this
iteration diverges however for the long-ranged
SV CFN. (Observe that the convergence factor
should be proportional to p* explaining this quite
rapid change in behavior with increasing density.)
This is not to be taken as indication of some seri-



16 FERMI-HYPERNETTED-CHAIN METHODS AND FERMION MATTER 1275

ous trouple. As was the case for the FHNC itera-
tion, (17) and (18), this is:only a property of the
special iteration path selection, and indicates
that one should use a different means of solving
the nonlinear problem. This was achieved for the
FHNC equations by using the iteration prescrip-
tion (62). Geometrically speaking, in order to
linearize some function one should use the tangent,
as done in (62), and not some arbitrary secant,
as done in the case of the simple iteration of (17)
with (18), or the iteration for the basic diagrams.
In other words, one tries to sum a divergent geo-
metric series by iteration, which is not possible.
The first iterate is the most accurate estimate to
the sum, however. Also it is not clear if one
should perform the self-consistency iteration at
all, regarding the higher-order terms omitted
anyway in FHNC/4 approximation.

These observations, as well as the fast con-
vergence of the basic diagram iteration for lower
densities, led us to use the following prescription
in all of the FHNC/4 calculations reported here:
After solution of the FHNC problem, evaluate once
the sum of elementary diagrams E,, corresponding
to the four -point basic diagrams, and solve again
the FHNC equations (17) and (18) with these E,,,
using again the iteration (62)., With the resulting
G,, and the given E,, we then evaluate the two-
and three-body RDF’swith inclusion of the explicit
four-body terms in the three-body RDF, Figs. 6
and 18, which give rise to the AU term. In other
words the iteration of the basic diagrams with the
FHNC equations is not performed, but of course
the superbonds (23) are used for the construction
of the E,,; i.e., diagrams like Figs 13-16 are in-
cluded in our FHNC/4 scheme whereas diagrams
like Fig. 17 are not.

The AU term is then evaluated from the 99 dia-
grams corresponding to the one Bose diagram
Fig. 6(a), few of which are shown in Fig. 18
where again the S,, bonds are used. This term
has previously only been evaluated for bosons and
was found to be relatively small, although it was
the leading correction to HNC for the PB energy.®
For fermions the complete AU is about five times
as large as the contribution from Fig. 6 alone.
This is due to a vast number of diagrams contain-
ing exchanges and having the same sign, e.g.,
there are 12 diagrams where one of the bonds in
Fig. 6 is replaced by a S, bond, as shown for
example in Fig. 18(d). It is this conspirative fea-
ture of the many diagrams containing exchanges
which makes the AU so large for fermions and
thus renders the PB form of KE inaccurate in the
FHNC approximation, to about 10-20% of Upp. The
question of course remains what the effect of the
many thousand FHNC/5 diagrams will be.

In Table I we also give the model energies de-
fined in Sec. IIE. These do not agree with the
variational energies. For softer potentials than
the Lennard-Jones potential there is much better
agreement between variational and model ener-
gies;® see also the following subsections. We take
this as an indication that, though the variational
energies for the SV and PB CFN’s are very close
to one another, both of the corresponding wave
functions are far from true eigenstates of the Ham-
iltonian (42).

The experimental result® for the energy is
-2.52 K and for the saturation density 0.2740 "3,
Our variational results give much less binding
energy and a lower saturation density. This should
partly be due to the inadequate description of the
actual Hamiltonian by the Lennard-Jones potential
(63) which yields already in the Bose system more
than 1 °K underbinding.’®?® On the other hand, the
disagreement between variational and model en-
ergies indicates an inadequacy of the two-body
Jastrow wave function (2), i.e., three- or more- .
body correlation functions are important for 3He.

This finding is substantiated by recent evalua-
tions of three-body correlation contributions to the
“He (bose) liquid energy,?® which is found to be
-0.3 K for the densities of interest here. This
quite large contribution is to be opposed to cor-
responding calculations for Yukawa potentials3?
which yield extremely small contributions. We
conclude that three-body correlations are much
more important for hard potentials than for soft
ones, and that a large difference between model
and variational energies is an indication for this
importance.

B. Fermion homework problem

Several authors®»3%® have agreed to study the
so-called fermion homework problem, a general-
ization of the original homework problem?? for the
Bose case. They consider a system of neutrons
(obeying Fermi statistics) interacting via the po-
tential

v(7r)=9263.1 exp(-4.97)/7 (65)

with 7 in fm and » in MeV. In order to compare
with these results we used the same potential and
CFN’s. The problem was proposed by Krotscheck
and Takahashi (KT), who used an alternative
FHNC method to be discussed below. They used
a CFN of the form

f(r)=exp[-3(b/7)e™'?], (66)

and the CW prescription for the KE. The same
CFN’s were used later by Fantoni and Rosati®!
(FR), who used the same FHNC method used here.
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FR use the JF form of KE. Also there are Fermi-
k;é 2 2983 & Monte-Carlo® (MC) results available. These were
g . obtained using a different form for the CFN
K 8 #wee s Fr)= expl ~(a/M)e (1~ 7 P)]. (67)
§ 3 2 &8 8§z32F §8 & For the sake of comparison all these results are
S 4= — - N MW~ = : cHo ﬂ p
I & given in Table II together with our results. First
o s R ¥ 5e T¥or 93 39 we used the CFN (66) with the parameters b as
‘é 8 given by KT and used also by FR. For the JF
g & 5 I8 8382 3% 88 choice of KE our results agree to within the nu-
g P 3 3 o 2 merical accuracy of 1% with those obtained by FR
& X - oo = =2 using the same prescription. The KT results ob-
g’ & 2 38 8 8 tained from the same CFN with the CW prescrip-
s . - o tion for the KE are consistently below all three
'8 5lz 8 g 3 5 g results obtained by us in FHNC. The spread be-
2 g - « tween the different KE prescriptions is only 10%
+ . © © 3 = g or less in FHNC in spite of the quite large « val-
& s A A4 A A ues. Employing the FHNC/4-approximation re-
g S s s o P © sults in a remarkable improvement making all
b=l s ® °o o o energies equal to within numerical accuracy. We
£ @ ® B8 ¥ILIRIIERLIL thus believe that this converged value is the true
§ OL’ R e upper bound corresponding to the CFN (66). The
% § s 3 8% 53233333338 KT results are, however, 10% below these ener-
3 N < FYEOFESNAARS gies and thus underestimate the upper bound.
o I R N9 EARIAOLNBESY In order to compare with the MC results, we
g @[ o AYeeelRRANR used also the CFN (67). Again the different FHNC
g . 2 me Ssug pe 9B energies differ by only 10% at most, and in FHNC/
§ S ©5 Sos8s S8 oo 4 remarkable agreement with the MC result is
g @ ge »e 25 5 achieved over the entire density range. This sub-
g a - T 2 stantiates our belief expressed in the last subsec-
g ol 58 2% 28 3 tion tha't ifl FHNC/4 quite an accurfa.te estimate for
8 G - the variational upper bound is obtained, and that
@ 2= wo Ew® © o ® the difference between the different forms of KE
2 a - ©r S is a good measure for this accuracy.
g . © 5 2 o In addition to the CFN’s (66) and (67), we also
] o s ~ ™ used the PB CFN’s obtained from (50) and (51)
I 8 ® teseavee with a fixed d=27,. The energies are not much
%"D 9 - aTvEeenn different from those obtained with the CFN (67).
g & o P LT Both these energies are, however, somewhat be-
° Elw - aveoognd low the energies obtained with the CFN (66) in-
g ; . e sugmzssg dicating that the one-parameter form (66) is not
= & A 8338 =3885 sufficiently flexible. However, whether one uses
X W owww o three parameters, as in (67), or solves the differ-
z = o Sena a2 ential equations (50) and (51) seems to make little
= o “ T “ difference, confirming again that the details of the
& RSN = ¥ % & CFN do not matter as long as one is within some
2 - w o ow mo o reasonable range of CFN’s. The last columns of
; a B = 888F F3 8 Table II give the model kinetic energies and model
3 ; . - - . - ene.rg1es for thc? KT and PB CFN’s. It is seen
= | ¢s= ® = & S again that the difference between the model KE
= %’ - - - - - and its exact value T, provides a good measure for
5 ;.) E ~ ~ ~ ~ ~ the accuracy of FHNC. The model energies are
Z;a g g E % % E % % % % E :% % quite close to the variational energies sucl? that we
&2 £ EE EpmpEpm oZEomao cannot conclude that the chosen wave functions are
_ far from the ground-state wave function (42). Be-
‘?E 5 ae vwooe av ©o cause of the smallness of corrections due to three-
< € e eee~ "o A body correlations in the corresponding Bose li-
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quid,*? we conclude that the variational wave func-
tion is indeed close to the true ground-state wave
function.

In summary, Table II demonstrates that one is
able to obtain estimates for an upper bound by
means of the FHNC approximation within the un-
certainty given by the various forms of KE. In
FHNC/4 then an accurate estimate to the upper
bound is obtained.

We warn the reader, however, that one cannot
say in general that FHNC always gives a reason-
able estimate to the upper bound if just one form
of the KE is used. It is necessary in FHNC to
constrain the CFN to be of not too long range if the
PB or CW prescriptions for the KE are used. This
is exemplified in Fig. 22 where for fixed density
p=1 fm™ the range of the PB CFN, d, is varied.

It is seen that for small d the convergence of
FHNC is good, but the upper bound comes out quite
high as the CFN is restricted too much. With
increasing d, all energies come down, but differ
more and more from one another such that the
accuracy of the results becomes doubtful. Increas-
ing d beyond 27, results in the PB energy still
decreasing, whereas the JF energy exhibits a min-
imum and the CW energy rises quite high again.
This leads to the conclusion that in FHNC it might
be very dangerous to use the PB prescription for
the KE blindly as one might underestimate the up-
per bound significantly. That this is due to the bad
convergence of the basic diagram expansion for
long-ranged CFN’s is shown by the dramatic im-
provement obtained by using the FHNC/4 approxi-
mation. Then for all KE forms the minimum of

the energy occurs at the same range, d=27,, and
for the PB form coincides with the MC result.
However, despite the small difference between
FHNC and FHNC/4 for the JF energy the contri-
butions from the elementary diagrams, E,, in (17)
and (18) become so large for d=2.87, that we could
not find a solution to the nonlinear system (17) and
(18). The values givenfor FHNC/4 in that case con-
sist just of the FHNC values plus the AU (and AUp
for Epg) contributions evaluated from the FHNC
G,,. This indicates that one has to exercise some
care in going to long-ranged CFN’s and high den- *
sities.

The last statement is emphasized even more by
the FHNC results given in Table II for PB CFN’s
where the PB energy is minimized for d. This
energy -density curve deviates significantly from
the upper bounds obtained with the more reliable
methods. With increasing density there is a spur-
ious gain in energy due to the higher-order con-
tributions omitted. All the deviations discussed
here are about 10% of the total energy for this
example., This might look like quite a small num-
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FIG. 22. Model kinetic and variational energies for
“homework” neutrons at a density of 1 fm™~® as function
of d/7,.

ber indicating that any method is reliable within
10%. One must, however, take into account that
for this example there is no cancellation between
potential and kinetic energy as both are positive.
This leads to a better relative accuracy than for
attractive forces. The absolute numbers might
give a better impression of the accuracy: at nu-
clear matter density the error is about 8 MeV,
and increases to more than 100 MeV for higher
density.

A puzzling feature about the different CFN’s
used is that despite the large values for k, Eq.
(53), in the case of the KT CFN (66) the deviations
between the different forms of KE remain com-
paratively small. This must be regarded as a
special property of the functional form (66), since for
increasing k in the case of the PB CFN, the en-
ergies do deviate increasingly from one another.

In Fig. 22 the topmost curve shows the deviation
of the model KE from its exact value T,, in FHNC
approximation. As expected this difference be-
haves similarly to the difference in the variational
energies and constitutes a good measure for the
truncation error of the basic-diagram expansion.
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TABLE III. Model and variational energies for the potential v, for both degeneracies, s=2 (neutrons) and s=4 (nu-
clear matter). Upp includes AU. Energies in MeV.
p FHNC FHNC/4 FHNC FHNC/4
(fm=3) Evc Ecwy Ejyr Eps  Ecw Ejr Epg Ups AU To  Tmod Emod Tmod FEma AU
s=20.182 12.0+£0.4 147 13.6 12.4 13.8 13.2 12.9 5.0 0.56 38.2 37.3 11.3 37.8 11.7 0.44
0.386 17.3+0.1 26.8 19.7 11.7 20.0 18.0 16.7 29.3 4.67 63.1 56.0 -0.2 60.6 3.8 3.7
0.822 60.0+2 98.4 75.0 48.3 77.5 71.6 64.9 89.9 15.7 104.5 79.6 30.9 97.2 46.0 13.7
s=40.182 1.9+0.5 4.8 4.1 3.2, 4.1 3.8 3.5 5.2 0.26 24.1 23.5 4.1 23.9 4.3 0.2
0.386 3.4+0.5 12.4 7.6 2.1 8.1 6.4 4.4 29.4 2.29 39.8 34.8 -7.6 37.9 5.5 1.9
0.822 54.5+0.5 77.4 61.5 43.8 63.4 58.0 51.5 90.5 7.92 65.8 49.3 33.3 59.8 40.6 6.8

C. Potential v,
A very useful test potential is
v,(7)=[9924.3 exp(- 4.27) - 31817.8 exp(- 2.8%)
+105.468 exp(- 1.47)
- 10.463 exp(0.7+)]/(0.7%) , (68)

which is the central part of the Reid *S,-D, poten-
tial'® assumed to act in all partial waves. This
potential was first used by Pandharipande, Wir-
inga, and Day,” and subsequently by other au-
thors,*¢ including Ceperley, Chester, and Kalos.®
In order to compare with the latter’s MC results,
we used their CFN’s which are of the form (67).
For both degeneracies, s=2 (neutron gas) and s=4
(nuclear matter), results of FHNC and FHNC /4
calculations are given in Table III. All these re-
sults essentially confirm the findings in the pre-
vious subsections. With increasing density in
FHNC the different forms for the energy yield
diverging results which may be made less diver-
gent by using the FHNC/4 approximation. The
model kinetic energy exhibits the same behavior
with respect to its divergence from the exact val-
ue T,. The FHNC/4 results agree quite well with
the MC results except for the two lower densities
in the nuclear matter case (s =4) where they come
out slightly above the MC values. One has to bear
in mind, however, that these extremely small

TABLE IV. Lowest-order “Brueckner”-theory results
for nuclear matter with potential v, as obtained by B. D.
Day.

kp p v T E KV
(fm™) (fm™) (MeV) (MeV) (MeV) K (MeV)
1.4 0.185 -19.7 24 .4 4.7 0.140 -2.8
1.5 0.228 -22.8 28.0 5.2 0.167 -3.8
1.6 0.277 —-25.7 31.8 6.1 0.198 -5.1
1.7 0.332 -28.4 35.4 7.5 0.232 -6.6
1.8 0.394 -30.5 40.3 9.8 0.270 -8.2
1.9 0.463 -32.1 44.9 12.8 0.314 -10.1
2.0 0.540 -32.9 49.8 16.9 0.363 -—11.9

numbers result from a cancellation of about —100
MeV of potential energy against a similar amount
of kinetic energy, so that any results for these
cases are inherently inaccurate. Our numerical
accuracy is better than 0.5 MeV. However, our
calculation differs slightly from the MC calcula-
tion as no “smoothing” of the CFN was performed
and also in that there are no finite size effects in
our calculation. In addition there are still some
contributions to be expected from FHNC/5.

Again it may be seen from Table III that the AU
correction is about 10% of Ug,,. As this seems to
be a fairly constant relation, one would again sug-
gest that in FHNC calculations using the PB pre-
scription for KE,10% of Uy could be used as ap-
proximate correction and error estimate.

For comparison we give results of a lowest-order
“Brueckner” calculation with standard dispersion
(LOBT) as obtained by Day®* in Table IV. Thelast
column gives kV which is a reasonable estimate of
the uncertainty in a calculation not including three-
body clusters. Itis seenin comparison with Table III
that the discrepancy to the variational results is
much less than xV so that it is perfectly reasonable
to expect results below the variational energies if
the three-body cluster is included in the perturba-
tion treatment.

V. DISCUSSION AND CONCLUSIONS
A. Antisymmetry

In the preceding section it has been demon-

» strated that by using the FHNC and FHNC /4 ap-

proximations, a converging energy is obtained by
evidence of the various checks employed. This
energy coincides or is in reasonable agreement
with Fermi-MC calculations. As the latter treat
the wave-function antisymmetry correctly beyond
doubt, it follows that at least for the energy the
FHNC treatment of antisymmetry, i.e., expansion
in powers of —1/s and doing the indicated partial
summations on this expansion, is sufficiently ac-
curate. As the different forms of KE tend to agree
in FHNC/4, however, we conclude that also the
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FIG. 23. Liquid-structure functions for *He.

radial distribution function cannot be very wrong
for the relevant distances. Thus the only possible
place where some trouble may arise is the long-
range part of the RDF.

It is useful to introduce the liquid structure
function S(%), the Fourier transform of the two-
body RDF,

s(k)=pfd3f[g(v)_1]e‘?‘F+1. (69)

In order to test the long-range behavior of g(7),
we are then interested in the small-% behavior of
S(k). It is a well-known result'* that for small %,
S(k) is linear in %k, S(k)=constXx k. In particular,
we have the normalization condition S(0)=0, which
may alternatively be written as

s<o>=pj A3F[g() - gp(1]=0. (70)

It is seen that the long-range behavior of g (») en-

ters into this condition with a large weight. In Fig.

23 we show the liquid-structure functions for *He
at a density of 0.2370¢7° for the two CFN’s consid-
ered, calculated in the FHNC approximation. The
FHNC /4 approximation does not differ perceptibly
in this plot. The normalization condition (70) is
not quite met. However, the value of S(0) strongly
depends on the mesh used for the numerical cal-
culation, and especially on the cutoff R_,, dis-
cussed in Sec. IIIB. By changing the mesh one
may easily vary S(0) between +0.1 and -0.1, and
one would have to use a much larger number of
mesh points together with a much larger R, than
207, in order to pin down this number. Fortu-
nately, the energy and all other quantities calcu-
lated do not depend on this long-range part of
g(7). As soon as one reaches moderate values of
k, about 0.2 f\'l, which is about the region where
the experimental results®® begin and is thus suffi-
cient for comparison with experiment, the liquid-
structure function becomes quite stable against
variations in R, ,. However, as in earlier varia-

ttonal calculations using the Lennard-Jones poten-
tial,®® the calculated energy and saturation density
are quite far from the experimental values so that
a comparison is not very meaningful. We arrive
thus at the conclusion that for any practical pur-
pose the FHNC or FHNC/4 evaluation as described
here is sufficient and correctly treats the wave-
function antisymmetry.

It has been conjectured®® that methods employing
permutation expansions to treat antisymmetry,
i.e., expansions in powers of —1/s, treat antisym-
metry incorrectly and may exhibit spurious or bad
convergence properties. This is indeed true for
straightforward permutation expansions, i.e., not
using partial summations. For the case of low
densities and short-ranged CFN’s such an expan-
sion converges, whereas for higher densities it
diverges. Table V shows some results obtained
with the potential v, at densities of 0.1 and 0.386
fm™3, using the CFN (67) with the parameters for
the higher density in both cases. After solution
of the Bose-HNC equations (13), for G, the li-
near integral equations (17) were iterated, gene-
rating the chain-type diagrams Fig. 8-10, for the
G, nn,aq functions, where the solid line denotes the
Bose g(7) — 1 bond. The linear terms in (19) for
the G, us, 4 functions were used to calculate con-
tributions to the JF two-body energy (24) and (32).
Table V shows the contributions from different
orders in these iterations. For the lower density
all iterations converge nicely, whereas for the
higher density the sk and khk iterations diverge and
only the dd iteration converges. This demonstrates
that permutation expansions for antisymmetry
generally are not converging unless partial sum-
mations are performed, as is done for example in
any FHNC method. In sufficiently low order, how-
ever, the results of such an expansion are sur-
prisingly accurate as evidenced by the earlier
variational calculations for fermion liquids!®?®
which are generally only about 10% off in the en-
ergy. This is a behavior frequently observed with
divergent series. Also, it is not surprising that
even for a divergent expansion, partial summations
are perfectly capable of producing the correct re-

TABLE V. Iteration of Fermi-chain diagrams for
nuclear matter potential v, at low and high density (in MeV).

p=0.386 fm™3 p=0.1 fm=3

n sh hh dd sh hh dd
1 +6.13 -0.7 -0.63 —1.04 +0.20 +0.14
2 -12.98 +1.4 _0.16 +0.46 —0.10 +0.01
3 +24.3 -2.9° -0.03 -0.22 +0.05 0

4 _44.6 +5.8 0 +0.11 —-0.02 0

5 +83.6 -11.6 0 —0.06 +0.01 0

6 —154 +23.1 0 +0.03 0 0
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sult. The conclusion is that though heavy criticism
may apply to any finite order of a permutation ex-
pansion, the partial summations included in FHNC
are sufficient to overcome this problem.

The quite different behavior of the sk, hk itera-
tions on the one side and the dd iteration on the
other side, which is generally found in all itera-
tions involved [e.g., (17) with (18), or the itera-
tions to include the elementary diagrams], moti-
vates our belief that the graphical notation of FR
is better adapted to a quantitative treatment of
FHNC problems. Series of diagrams involving dd
bonds are generally small and converging, where-
as series involving helical elements may be dan-
gerous and need to be treated with care. This be-
havior may easily be understood as the dashed
lines represent the function — /s which oscillates
around zero, whereas the helical lines represent
the function - I?/s which is negative everywhere,
such that integrals involving the former generally
will be small due to cancellation.

There exists an alternative FHNC method® due to
Krotscheck and Ristig (KR-FHNC) which differs
from the method used here (FR-FHNC) in the par-
tial summations performed on the permutation ex-
pansion of antisymmetry. It has been shown®’ that
there exist certain exact cancellations, called
Fermi cancellations, between various terms in
this expansion. These are most pronounced for
long-range CFN’s and occur mainly for large dis-
tances, i.e., small values of % in the Fourier
transforms of the various functions involved. In
the FR-FHNC way of doing partial summations
these cancellations are ignored in the sense that
for terms included in a FR-FHNC/n approxima-
tion there are cancelling terms in higher orders,
e.g., FR-FHNC/n+1. More specifically, the long-
range part of some FR-FHNC contributions is ex-
actly cancelled by some FR-FHNC/4 contributions,
and so on. One could thus believe that the FR-
FHNC expansion in terms of n-point basic dia-
grams converges badly, and that there exists some
different ordering scheme (KR-FHNC) which would
yield better convergence. Unfortunately, for KR-
FHNC only the CW energies are available, and
there have not been performed any of the tests
using other forms for the KE, or calculating the
error in the model KE. The reported KR-FHNC
results®®?! are in reasonable agreement with the
FR-FHNC results for 3He, but somewhat low for
the fermion-homework problem, Table II. It is
hard to believe that the variational energy obtained
with the one-parameter CFN (66) used by Krot-
scheck and Takahashi should be below those obtained
with a three-parameter form (67), used in the MC
calculation; i.e., we should have Ey g runc > Eyc-
The opposite holds true, however. We conclude

therefore that in the KR-FHNC scheme the varia-
tional upper bound may be underestimated yielding
too attractive energies.

The KR-FHNC result is much farther off from
Eyc (about 10%) than the difference between the
various FR-FHNC/4 energies for the same CFN,
which indeed lie above the MC energy. The KR-
FHNC calculation does involve, however, already
four-point elementary diagrams, and on the next
level of sophistication one would have to evaluate
five-body basic diagrams. We thus conclude that
on the four-body level FR-FHNC provides a more
accurate evaluation of the energy than KR-FHNC
even for the long-ranged CFN’s (66) used in this
case, though FR-FHNC disregards the so-called
“Fermi cancellations.” This observation, together
with the fact that the energy expectation value is
quite insensitive to the long-range behavior of the
RDF, nourishes the belief that these cancellations
might not be as relevant as suggested. Indeed it
might be much more important to accurately de-
scribe the short-vange behavior of the RDF, and
to this end it might very well be worthwhile to dis-
regard the “Fermi cancellations.” In other words,
typically there are two contributions A+ B which
will be kept together in the KR-FHNC approach
because they cancel exactly in the low-% limit. In
the FR-FHNC approach, A will be taken along

" whereas B will be discarded in a given approxima-

tion, because A is of FHNC or FHNC/4 type, but
B is a five-point basic diagram. The numerical
results seem to indicate now that for the relevant
momenta (or distances) involved in the energy-
evaluation, B is much smaller than A, and one
should adhere to the FR-FHNC scheme. Then one
might get a bad approximation for the long-range
behavior of the RDF, but an accurate energy.

Moreover, our results indicate that not much
energy is gained using long-ranged CFN’s. It is
thus perfectly reasonable to restrict the range of
the CFN in some way. A practical way to do so is
to use the PB form (50) and (51) and minimize for
d in the FR-FHNC /4 approximation which yields
d =2y, for all cases studied so far. In this way one
may avoid the problem of long-ranged CFN’s, and
the corresponding convergence problems, in order
to obtain a reliable upper bound together with the
error estimates provided by the different forms
for the KE. In the case of short-ranged CFN’s,
however, the expansion in terms of number of
points in basic diagrams converges well.

Another troublesome point in the KR-FHNC ap-
proach is that after obtaining the liquid-structure
function S(k) carefully observing the “Fermi can-
cellations,” some additional diagrams are added®” 32
in order to get a reasonable g(¥) for small ». This
already indicates that the short-range parts of the



problem might not be dealt with very well in the
KR-FHNC method. The relation between g () and
S(%k), Eq. (69), does not hold here. If one evaluates
g (7) by inversion of (69) in the KR-FHNC method,
it will turn out to be unreasonably large for small
7. After adding the diagrams to correct for this,
one could of course use (69) again to get a modified
S(k). This function would, however, violate the
conditions used earlier to derive the approxima-
tion scheme. In effect, different approximation
schemes are used for evaluation of g (») and the
energy on the one hand and for solving the KR-
FHNC equations and evaluating S(k) on the other.

In the FR-FHNC approach one aims consistently at
obtaining a reasonable g () in order to evaluate a

reasonable energy, whereas S(k) then follows from

(69) and might be badly described for small 2. In
a variational method, however, the minimum of
the energy determines the wave function to be
used, and it is therefore quite important to de-
scribe the energy properly in order to obtain a
reasonable wave function.

To summarize this subsection, we do not see
any strong arguments forcing one to deviate from
the FR-FHNC scheme. It would, however, be
extremely interesting to apply the convergence
checks developed in this paper to the KR-FHNC
method as on a sufficient level of sophistication
both methods should agree, i.e., on any level the
error bands expressed in terms of the various
KE’s should overlap.

B. State-dependent correlation functions

It has been suggested® that instead of using the
state-independent CFN’s defined by (50) and (51),
one use solutions of the differential equation

[.. r* <£’—2§ - l—(%—l—z> +v(r)} U (7)

m

- (’%f N )\,k>u,k('r) . (1)

wr)=v(r), r>d, .
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with the boundary condition

d d, .
57 W) g™ - WG,k ], ., (72)

A state-dependent CFN f;, is then defined by

FilP) (e kr =u,,(v) ; (73)

i.e., in each partial wave different CFN’s are to
be used. Obviously, the FHNC equations as given
in (17) and (18) cannot accommodate this compli-
cation as the CFN is assumed to be the same in all
partial waves. If one wants to use the CFN’s (73),
one therefore has to derive a corresponding gene-
ralization of (17)and (18) first.!! In some earlier
calculations'®7 an approximate treatment has been
used which was subsequently criticized by the au-
thor.® It seems appropriate to clarify these re-
marks.

The approximate treatment of the CFN’s (73)
consists in defining an average CFN

Folr) = do ) D @+ D[1= () W/ 7 sitler)
Ldxn(x) 2, (21+ D1 = (2)(1/s)] 2kr)

(74)

where

n(x)=24x*(1 - $x+3%°), k=xkg. (75)

The denominator of (74) is equal to the free Fermi-
gas RDF g.(v), Eq. (52). This average CFN is
then used in solving the FHNC equations (17) and
(18), and to evaluate a function g(7), Eq. (19).

The two-body part of the PB energy (see Sec. IID)
is then approximated by

TS+ We=%p fu)(r)g(r)d:*f‘, (76)

where w(r) is given by

_ Jodxn() D, 20+ D1 = (2)(1/5) A f50(0) j2Ckr) | )

i) gp('r)

r<d.

Observe that the first part of (77) follows from the second if we put X,,=v for »>d. The contribution W, is
not calculated from Eq. (29) but is part of X;,f3,j2 as may be seen from (71) and (73). For the three-body

terms the average derivative is defined by

f'f (r)= ﬂ,l dxn(x)20 (21 + 1)1 = (<)(L/$)]f 4(#) £ 17) 53(Re)

N (g

(78)
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so that (28) and (30) are easily evaluated.

Several comments apply to this approximate
treatment. First, the CFN f,(») defined by (73)
may have poles, as the zeros of u,, need not coin-
cide with the zeros of the Bessel functions. Second,
consider the contribution W present in (76) and
(77). Within W, an exchange line is differentiated
[the derivative operates on the j, as part of «,, in
Eq. (71)] such that there are already exchange lines
attached to the two external points of the W, con-
tribution to w(7). In (76) however, this is multi-
plied by the full g (») again containing all possible
exchanges on the two external points. In this way
diagrams are calculated with as many as four
exchange lines entering each of the two external

points. Such diagrams clearly should not be present.

As the v(#) part of A, in (77) does not depend on
I, k, it commutes with the averaging procedure.
Thus the expectation value of the potential corre-
sponds exactly to the correctly evaluated one using
from the outset the state-independent CFN defined
by (74) everywhere, i.e., in lowest as well as in
higher orders. As the average CFN (74) is very
close to the state-independent one, the potential
energy remains almost unchanged by introducing
state dependence. This is not true for the kinetic
part in (77). This does not commute with the
averaging procedure because different functions
are differentiated. Here the CFN’s used in lowest
order and in higher orders really are different.
The main problem seems to lie with the three-body
kinetic energy U, calculated from the average de-
rivative (78). The f’f functions for the various 1, %
look quite different, and it is by no means clear
that using the average is a good approximation
especially as additional structure is brought in by
the cosé resulting from the scalar product in (28).
It is necessary to evaluate at least this three-body
term exactly by using the partial-wave represen-
tation for all three bonds.

That indeed the kinetic energy is evaluated in-
correctly is evidenced by Tables III and IV of Ref.
6. The model kinetic energies come out much
too low; i.e., there is some spurious reduction of
kinetic energy. Also the result depends strongly on
the averaging procedure used, so that averaging is
inherently inaccurate.

C. Summary

The main purpose of this paper has been to ex-
amine a specific variant of FHNC methods as to
its convergence properties and to establish some
measure of its accuracy. This goal has been a-
chieved by evaluating the variational kinetic energy
in three different ways. The differences between
the three results which must vanish for an exact
calculation furnish an error estimate for the en-

ergy evaluation. In addition, for the model kinetic
energy, Eq. (45), we obtain directly the error due
to the approximations made. Without doing any cal-
culation going beyond FHNC, one may thus esti-
mate the error due to omitting the elementary dia-
grams. Going beyond this type of calculation, it
has been possible to take into account the elemen-
tary diagrams generated from the four-point basic
diagrams, Figs. 13-18. This results in a signifi-
cant improvement on the energies and saturation
points. The change in the Pandharipande-Bethe
form of the energy is generally about 10% of the
three-body kinetic energy in the repulsive direc-
tion. This observation may be used to correct the
PB energies if only a FHNC calculation is done,
and furnishes an additional error estimate.

It has been shown in Sec. IV that for not-too-
high densities and not-too-long-ranged correla-
tions functions, reliable estimates to a variational
upper bound to the energy may be obtained, but
that some care needs to be exercised in going to
higher densities and/or long-ranged correlation
functions. In all cases studied the Clark-Westhaus
and Jackson-Feenberg forms of kinetic energy
result in the energy being an upper bound, where-
as the Pandharipande-Bethe form may be too at-
tractive. Arguments questioning the validity or
accuracy of the treatment of wave-function anti-
symmetry do not apply to the present calculation,
as evidenced by the numerical results. There-
fore, we are content that within the indicated lim-
its the present method is well suited to treat fer-
mion liquids interacting via state-independent,
local, central forces. In order to treat more
complicated Hamiltonians, the method needs to
be modified, however.

These findings put us in a position such that we
are able to compare our method with other many-
body methods. The alternative KR-FHNC method®
does not seem to be at significant variance with the
FR-FHNC method* as presented here. An indepen-
dent convergence check employing the methods
developed here would be extremely useful, however.

The comparison with lowest-order, i.e., two-
body, “Brueckner”-type calculations using the
Bethe-Brandow prescription for single-particle
energies® shows agreement within reasonable esti-
mates for the three- and four-body terms in one
or other kind of linked-cluster expansion.®3° The
two-body approximation comes out too repulsive,
but the presumably attractive three-and four-body
contributions (for an attractive potential) should
make up for this. It is seen, however, that some
over-optimistic estimates as to the convergence
of linked-cluster expansions® based on some early,
quite approximate estimates for the three- and
four-body terms, might have been misleading.
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Current interest in the nuclear matter problem
is focussed on methods treating the full nuclear
Hamiltonian, i.e., using for example the full Reid
potential. For this case the three-hole-line term in
hole-line classification scheme of linked clusters
has been evaluated,* but there remains some un-
certainty due to a lack of accurate evaluations of
the four-hole-line part. The variational treat-
ment'**! on the other hand also is not free of ap-
proximations, and we believe it to be especially
troublesome that current calculations in the FHNC
approximation lead into the range of high densities
and long-ranged correlation functions. In order to
establish these results to be actual upper bounds
on the energy, it seems to be quite useful to em-
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