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Dynamic screening effects in plasma line broadening
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The results of a kinetic theory of spectral-line broadening are applied to the calculation of Stark
broadening for the Lyman-a line in the classical-path approximation. In the small-plasma-parameter limit,
the width and shift operator reduces to an average binary electron-atom collision operator with screened
interactions and dynamic correlations. The effects of screening, particularly the variation with frequency, are
indicated for a simplified model and compared with the corresponding model without screening but with an
impact-parameter cutoff in the collision integral. Comparison with the dynamically screened second-order
(Born approximation) collision integral is also given.

I. INTRODUCTION

A kinetic theory formulation of spectral line
shapes was proposed recently' in which the width
and shift are determined by an exact effective
atom-perturber binary collision operator. The
approach is based on a formal kinetic theory de-
signed to be "renormalized" in the sense that the
actual interactions are screened by the correla-
tions among particles. These effects have been
included in most plasma line-broadening calcula-
tions by the introduction of cutoff parameters to
restrict the range of the Coulomb interactions.
Although the shielding should be substantially ac-
counted for by such procedures, it is desirable
to verify that this is the case and to provide the
proper theoretical basis. The binary collision
operator of Ref. 1 was calculated in the small-
plasma-parameter limit, and with the screened
interactions evaluated to lowest order in the atom-
perturber coupling. The result is similar to the
present unified theories, ' but without the need for
long-range cutoffs, since all atom-perturber in-
teractions are shielded. One of the interactions
is screened by the frequency-dependent dielectric
function that produces full shielding at the line
center, but no shielding in the wings. All other
interactions appear shielded by the static Debye-
HQckel pair correlation function.

The purpose here is to report a preliminary
study of the importance of these screening effects
in plasma broadening by studying the Lyman-o.
line in the dipole approximation, with no quenching
and no lower state broadening. It is not our present
objective to provide a refined line shape for the Ly-
man-a line, but rather to determine the relationship
of the theoretically determined screening effects to
those described by cutoff parameters, and addi-
tionally, to determine the accurate value of such

parameters should cutoff procedures be desired
for computational convenience. To put the calcu-
lation in proper context, therefore, it must be ob-
served that removal of other commonly made ap-
proximations(e. g. , dipole interaction, no time or-
dering, semiclassical scattering, ion-electron
correlations) probably will generate additional
quantitatively important corr ections. ' The calcula-
tion below is intended to parallel the present uni-
fied theory ealculations4 and makes all the same
approximations with the exception that static and
dynamic correlations are included; hence, we
isolate only the effects of these correlations.

II. THEORY AND APPROXIMATIONS

A. Basic equations

The line profile for a neutral atom in a gas of
ions and electrons is conveniently described by
the function I(&u), defined by'

I((u) = de P(e)Z(u), e), (2.1)

The trace is taken over atomic states, and A~
and R(b, ~) are tetradic operators in the atomic
subspace. Also d is the atomic dipole operator
and f (a) is the atomic density matrix. Equations
(2.1) and (2.2) apply for dipole radiation and do not
include Doppler effects. Furthermore, they are
derived under the assumption that the ions are es-
sentially static over the radiation time. These
are reasonable approximations' for Lyman-a and
will not be discussed further. The electron broad-
ening is described by the operator K(b, &u). In Ref.

where P(e) is the electric microfield distribution
function for the ions, and

J(&o, c) =1r 'Im Tr, d [6&v —X(&(d)] 'f (a)d. (2.2)
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1, this operator was formally expressed, without
approximation, in terms of an average binary col-
lision operator T(a, 1;L(o);

rewritten

aa(an)= -en f de, dp, L (a, 1)e(a)f())
X(b, (o) =-in Tr,T(a, 1;4(o}f(a,1)f '(a}, (2.3) x G(a, 1;a(o)»f '(a) . (2.10)

where the tr'ace is taken over one-electron states,
and f {a, 1) is the reduced equilibrium density op-
erator for the atom and one electron. The binary
collision operator, T(a, 1;»), satisfies a Lipp-
mann-Schwinger-like equation with an effective
atom-electron interaction and an average atom-
electron propagator. These latter were evaluated
in the small-plasma-parameter limit and to lowest
order in the atom-electron coupli. ng, with the re-
sult [see Eq. (4.9) of Ref. 1],

)d(an) = (n f d P, d p, L(a))f,( )f (a1)

introducing the Fourier transform of V(a, 1),

'V(a, 1)=f(, e ' '" p(a, p),

Equation (2.10) becomes

X(b,(o) = —in Jl 3 L, (a, k)f (a)
f' d%

x G(a, k; a(o)a(of '(a},
where

(2.11)

with

x G(a, 1;&(o}2(a,1)f '(a), (2.4)
G(a, k;&(o)=- t dr, dp, f(1) e '"'~G(a) 1;b,(o) .

(2.12)

G(a, 1;»)=-[»-L(l)+iH(1) Z(a, 1-)] ' (2.5)

The classical limit has been taken for the elec-
trons, and the notation is that of Ref. 1. Briefly,
for an arbitrary operator 0,

From the definition, (2.5), G(a, 1;b,(o) may be ex-
pressed as

G(a, 1;a(o) =[a(o —L{l)—R(a, 1)] '

x[1 —iH(l)G(a, 1;a(o)]
b (o8 ={(o —L(a, e )) 8,
L(a, e)8 = [H(a, e), 8],
L,(a, 1)8 = [V(a, 1), 8],

(2 6)

Using the definition of H(1) and substituting in Eq.
(2.11)gives a form for K(6(o) in which all inter-
actions are shielded:

H(a, e) =H(a) —e ~ cT . (2.7)

The potential v(a, 1) is the screened atom-electron
interaction

v(a, 1)= V(a, 1) +n d r, [g(t») —1]V'(a, 2), (2.8)

Z(a, l)8=[v(a, 1), 8].
Here V(a, 1) is the atom-electron potential. H(a, e)
is the atom Hamiltonian in the presence of the ion
field

R(h(o) = —in J,R(a, k;b, (o)f(a)
I dk

x G, (a, k; a(o)b (of '(a),
where

G,{a,k;a(o)=- dp, dr, e ' '(f(P, )

x[b, (o —L(l) —R(a, 1)] ',
g(a, k;a~)-=, L, (a, k')e '(k', k;b, (o),

dk, '

(2.12)

(2.14)

and g(r) is the Debye-Hiickel pair-correlation
function. Also L(l) and H(1) are operators onelec-
tron functions, say h(I), given by

i I.(1)h(1)—= {p,/m) ~ V,h(1);

H(l)h(i) -=-f-'(i) n

x d r, d p, [V,V(l, 2)] .V f (1)f (2)h(2).

(2.9)

The function V(1, 2) is the Coulomb potential for
particles 1 and 2, and f(i) is the Maxwell-Boltz-
mann distribution for the ith electron.

The form of the result [Eq. (2.4)] may be simpli-
fied considerably as follows. First, 3C(b, (o) may be

and e(~, k'; &(o) is a generalized dielectric function
satisfying the equation

dk"
e '(k) k';b. (o) =5(k —k') ~ I(k k& g„o)

(2m)'

kx ~ '(k" k')

I(k, k';A(o}= dp, dr, e ' ''&f(p, )f(a)

xe'" '(f '(a),

The constant k~=—4m''p is the inverse Debye



1250 HUSSEY, J ~ W ~ DUFTY, AND C. F. HOOFER, JR. 16

g,(a, k;au&) =L,(a, k)e '(k, b, (d),

e (k, b,v) = 1 —(k~/k)'f, (k; b, (0),

I,(k, ~&u) = lim

(2.15)

(2.16)

x 6e — ' +in

Here e(k, &o} is the usual dielectric function for an

electron gas in the small-plasma-parameter limit,
and is readily expressed in terms of the plasma.
dispersion function. It is interesting to note that,
with the approximation (2.16), the a(d =0 limit of
g(a, k;b, v) is simply the Fourier transform of the
screened interaction g(a, 1):

g,(a, k; 6(E) = 0) = g (g, k) .

Thus if the frequency dependence of f, were ne-
glected, the width and shift operator would be

3C(b, (d)- —in dp, dr, g(a, 1)f(a)f(1)

x [a(E) —L(1)—g(a, 1)]

x g(a, 1)a u)f )(a) . (2.17)

This will be referred to as the statically screened
result, and may be considered as the basis for the
unified theory of Smith, Cooper, and Vidal. The
latter is regained from Eq. (2.17) if. the shielded
interaction g(a, 1) is replaced by the bare inter-
action L,(a, 1) and the r, integration cutoff outside
a Debye sphere about the atom. In Sec. II it is
found that the cutoff result differs noticeably from
the statically screened result; interestingly, the
error is in a direction such as to partially com-

length. Equation (2.13) is the main result for the
width and shift operator in the small-plasma-
parameter limit. All interactions are screened,
so that divergences associated with the long-range
nature of the Coulomb interaction have been re-
moved. In addition, the presence of g(a, 1) in the
denominator of Eq. (2.13}assures that no strong
collision cutoff procedure will be required for con-
ve rgence.

The interaction g(a, %; b, (d} is shielded by the di-
electric function e '(k, k'; L(d)). Since the other
shielded interaction, g(a, 1) in Eq. (2.13) was cal-
culated only to lowest order in the atom-electron
coupling (see Ref. 1 for details) the following dis-
cussion will limit g(a, k; L&o) also to lowest order
in the a.tom-electron coupling. This is accom-
plished by setting g(a, 1) equal to zero in the di-
electric function. The latter then becomes dia-
gonal in k so that the dynamically shielded inter-
action becomes

pensate for the difference between the dynamically
and statically screened results.

B. Additional approximations

The expression above for the width and shift
operator [Eqs. (2.13), (2.14), and (2.16)] is al-
ready in a tractable form; indeed G,(a, k;b &u) at
k =0 may be expressed in terms of quantities al-
ready calculated in the unified theory. ' However,
to investigate the nature of the screening effects
additional approximations will be made to further
simplify the calculation while maintaining the es-
sential features of the theory. Some of the ap-
proximations made are usua14 in the description of
the Lyman-e line a.nd their validity will not be
discussed. These are (i) no lower state broaden-
ing, (ii) dipole interaction between atom and elec-
tron, and (iii) no quenching. Approximation (i)
allows 3C(ri, (d) to be represented as an ordinary op-
erator in the atomic subspace rather than a tetrad-
ic. This is accomplished by the replacements

&(d-~ —P(a)+E, —e ~ d,
L)(a, 1)-V(a, 1), (2.18)

where E, is the ground-state eigenvalue of ff(s).
Also approximation (ii) means the atom-electron
interaction is replaced by a dipole-monopole in-
ter action

V(a, 1)-E(1).d, (2.19)

where E(1) is the electric field of one electron.
The integral of the product of Fourier trans-

forms in (2.13) may be written as the integral of
the product of their inverse transforms,

E(rrtr)= —in f rdpdE(r, n)ndf(p)

x[» —I.(1)—E,(1) d] 'b, (u, (2.20)

where

-( )
dk (), . -, E(k)

(2V) E'(kr ri (d))
(2.21)

W(r, hu) )
-=r ~ E(r, b, (u)/r ~ E, (r) . (2.22)

Transforming to a time representation gives

and E, (1) is the statically shielded field: E, (1)
= e(r/r')(1+kffr) e &". Further transformation is
possible by factoring from E(r, ri (d)) its static value
E, (1),

rc(nn)= —'n fdpdpf(p)rr(p, nn)E, (1) ~ cT

x[b, ~ —L(1)—E, (1) ~ f] 'ri, (d)

where the weight function W(r, b, (d) contains all the
dynamical shielding effects and is given by
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X (t},(u) =-n drdpf(P)W(r, a(v)

x dt E, 1 ~ dex 4e —L, 1 —E, ~ t ~u

U(t) = Tex-p(- i d| E, (1, |)"cT(|)),
0

(1 t), g (t) — 'l [kid L(1}}t

= —in d r d pf (p. )W(r, i},(u)

00
cfx dt exp[i[a&a —L(1)])—[U(t)-1]&~ .dt

(2.23)

Here U(t) is the time-ordered exponential

x E (1}.pe&i&~-1(1}l& (2 24)

Two final approximations, also discussed in Ref.
4, are now introduced: the time dependence of the
dipole operator cT(t) is neglected, as is the effect
of the time-ordering operator in U(t). Equation
(2.24) may then be written

X(t}u&)=in(be) dt e' ' dr dp f(P)W r+ —t, b~ — exp -i
m ' dt "0

I

d7'E, r+ —7 ~ CT —1

(2.25)

C. Atomic matrix elements

The Lyman-a line for hydrogen involves transitions from states of principal quantum number n =2 to
the ground state, so that J(~, e) becomes

z(~, e)=w '&E, ld' -[~~ x(t ~}]-'f(a)B -lz, &, (2.26)

where lE,& is the ground state. Since b, ur is approximately diagonal in parabolic states, it is convenient
to use the latter for representation of [b, &u -BC(b,&o)] ',

«~, ~) = s 'g g & Ei I &I 2, q, m& ( 2, q', m' If (a)& I&i& & 2, q, ml [~~ -&(t &)1 '12, q', m'&,
qs m qc'CCt

(2.27)

where
l 2, q, m} denotes the parabolic state of princi-

pal quantum number 2 and q, m take on the values
-1,0, 1. To compute J'(~, e), therefore, the ma-
trix elements of » and X(h&u) with respect to
parabolic states are required. As mentioned, h~
is approximately diagonal, so that

(2, 0, —llXl2, 0, —1& =(2, 0, 1lÃl2, 0, 1&

=F(»(p =o, q =o)),

(2, 1, 0lKl2, —1, 0) =- —,(2, -l, 0l~l2, —1, 0&

= I'(&~(P, -1)), (2.29)

(2, q, m
l
a(o l2, q', m') = 6, g 5~ .b.(u(p, q),.

where i},&o(p, q) is the function

(2.28)

=F(»(P, 1)),

i},co(p, q) = (v —(1/il} (E, —z, ) —3q (8/me)e, p,
E, and E, are the energies for the ground state
and first excited state, . respectively, P is the
normalized ion field strength, P =e/e„and e,
= (3z)'~' en't'. The calculation of the matrix ele-
ments of X(i},&u) is discussed in the Appendix. The
results are that K(~ or) is diagonal with respect to
m, and the only off-diagonal elements with respect
to q are those with m=0:

and the function I'(b, &u(P, q} is defined by

(o~
' Qs(u„(p, q)) = -', iw [au)„(p, q}]'i (t ~„(p, q)} .

(2.30)

Here &ac =-(8zne'/m)' ' is v 2 times the plasma fre-
quency, and b, &u„=b, &u(P, q)/&o~. The fun-ction

i(i}z„(p, q)) is the analog of that introduced in the
unified theory of Ref. 4, and is given by Eq. (AV}
of the Appendix,

i(&u) = —i8znv ' dt e' '
~

dpp'f(P) dz dppW(r(t}, &u)
—(c s[3oe'ga(p, z, p, t)] —1], (2.31)
dt

where r(t) ={p'+[z+ (P/m)t]'P~', and

g(t) —(a2+y&)&~2 a(t) — i| d7 p( + e ~D"&~} g(t) = dT z+ ~ q- ( e ~D"&'} (2.32)
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Carrying out the time derivative in Eq. (2.31) and changing variables, [z + (P/m)t] ——z, gives

dt e'
&0

dPP'f (P) „dz dp pP ~ E(r e) da(t) db(t) sinCg (2.33)

where C= 3a,e' and the shielded field E(r, &u) is
given by Eq. (2.21).

The expression (2.33) is the principal result of
this paper. For E(r, &u)-E(r, +=0) it reduces to
the impact approximation of Vidal, Cooper, and

Smith, ' except that the latter uses a Debye cutoff
[as discussed following Eq. (2.17)] instead of the
Debye-shielded field obtained here. More gen-
erally, the &u dependence of E(r, (d) represents the
dyna, mic screening of the electrons.

III. RESULTS

In this section the numerical calculations of Eq.
(2.33) are reported for two cases of temperature
and density. The first case is T =12200'K, n
=8.4x10(6cm ', and a, plasmaparameter [A

t

'-=(4mnka3) 'j ofA=0.052. Thesecondeaseis T
=25000'R, n=3~10"cm ', andA=0. 106. These
conditions lie within the range of typical laboratory
observations, in addition to meeting the requirement
of smallplasmaparameter. For comparison, sev-
eral approximations to Eq. (2.33) were also cal-
culated.

A. Calculations using a Debye cutoff

The cutoff result, corresponding to the cal-
culations of Ref. 4, is obtained by replacing the
explicit shielding of fields by a cutoff of impact
parameters outside the Debye sphere. This may
be accomplished by setting kD =0 everywhere in
the integrand of (2.33) and replacing the upper
limit of the p integration by a maximum impact
parameter p,„giving

i, (v)= —Sert:tte 'f dte' ' f dD)t'f(tt)
0 0

&max dgdz dp p
' sin(Cg ),

0 dt
(3.1)

where g, + (a', +I),')(~' and

1 a+vs ~ 1 p p
pv r(t) r(0) ' "

pv r(t) r(0))
(3 2)

In Ref. 4, a radial cutoff [r,„=(p' +z')'A]of 1.0
times the Debye length was used; others' ' have
suggested eutoffs varying from 0.606 times the
Debye length to 1.123 times the Debye length.
Figure 1 shows i, ((d) for cutoffs of 1.0 and 1.2.
Since the large frequency limit of i, (&o) is inde-
pendent of the cutoff used, i, ((d) in Fig. 1 has been
normalized to its high-frequency limiting form.

It is seen that the two cases differ in the low-
frequency limit by about 10%. By requiring that
the impact limits of this, i, (&u), and the fully
screened calculation, i(v), be equal, it was deter-
mined that the optimum cutoff is approximately
1.15 times the Debye length.

B. Second-order calculations

Equation (2.33) has also been calculated to sec-
ond order in the perturber-atom interaction' '
(Born approximation). In this limit C sinCg-C g
and Eq. (2.33) becomes

i, (&u) = —8mnc'i(u '
40

dt e~ ~ dp dg
da db

dp p r" E(r, (d)g p ——+d-
dt dt (3.3)

With Eqs. (2.21) and (2.32), this may be rewritten

t, (te)=-', ee',e,. — - )ttv
I dpf(tt) te —— +iv)

dk (E(k) I' .
t

k ~ p
21T 6 trav (t) ~ (&+ m

(3 4)

which agrees with earlier results. ' ' The k inte-
gration in Eq. (3.4) diverges at large k so that a
cutoff at some K,„ is required. The region of
large k represents strong collisions with small
impact parameters, for which the expansion in the
perturber-atom interaction fails. Figure 2 shows

i, (&o) for several values of the strong collision
impact parameter cutoff; it is seen that the be-
havior of i, ((d) for (d &(t)~ is strongly dependent on
this cutoff. Figure 3 shows a comparison of i, (&u)

with i, (&u) and j((d) where the strong collision cut-
off used in i, ((d) was chosen so that the e -0 limit
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/. 0-
/. 0

Cut'off= o/

&(&~)
t.(L~)

I I I I I I I I II
/ /0

FIG. 1. i, (Aced) with cutoffs of 1.0 'AD and 1.2 XD, nor-
malized to its infinite frequency asymptote for T
=12200 K, n=8.4x10

Cutoff

I I I I i i
I

Sx /0 /0 /0

of z,(~) agreed with that of i(ur) With. this choice
i, (&u) and i(&u) are in excellent agreement out to
several times the plasma frequency.

C. Static screening

To study the accuracy of the cutoff procedure in
Sec. IIIA as well as to isolate the effects of dy-
namic screening, calculations were performed in

FIG. 2. i2(~(d), with several values of the strong col-
lision cutoff, normalized to its zero-frequency asymp-
tote. Note that i~(4(d) has no explicit temperature or
density dependence.

which all interactions are taken to be statically
screened [i.e. , Eq. (2.17)]. This form is obtained
from Eq. (2.23) by replacing E(r, v) with E,(r),
defined following Eq. (2.21), with the result,

~0
t

OO

i,((o) =-SwnCi(o ' dt e' ' dpp'f(p) dz
0 0 ~ OO

da db sinCg
dp pr ~ E,(r) p —+z-

dt dt g

/. 2—

/. 0 /. 0

.2—

I I I I I I ( I I

/0
/0

FIG. 3. i2(Ace) with strong collision cutoff chosen so
that its Ace-0 asymptote equals that of i(Ace) for T
=32200'K, n= 8.4x10 . . j~(6(d) and j(Beg) are shown for
comparison.

FIG. 4. Comparison of i(~), i~(Aced) and i, (4') f»
T=12200'K, m=8.4x10
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/. 0 ~ &—Static

.8
i(au)

i.(au)

iiI
0

/0

i l & I &&&&I
/

/0

limni

i

/0
Ii I 1 I I I I

/

FIG. 5. Comparison of i+~), isgco), and i (Aw) for
T=25000'K, g=3xl0'8

P

FIG. 7. Comparison of I(Ace) (normalized to the keg

wing) for the cutoff, statically screened, and fully
screened cases for T = 25000 K, n = 3 x 10' .

Figures 4 and 5 show a comparison of i, (~) and

i, (u&). The agreement at very small u& is essen-
tially due to the choice of cutoff [see Sec. ill 8
above]; also in the far wings there is agreement
since there the strong collisions, for which
shielding is less important, dominate. In the in-
termediate region, however, the cutoff Coulomb
field overestimates the static Debye field for im-
pact parameters of the order of the Debye length
and i, (&u) is greater than i, (~).

D. Full screening

Also included in Figs. 4 and 5 are the fully
shielded results, i(e), from Eq. (2.33). There is

a small resonance near the plasma frequency, as
expected from previous second-order calcula-
tions, due to the plasmon collective modes. The
dynamical effects, in addition to this resonance,
are clearly shown in the difference between the
statically screened i,(u) and i(ur). The former
lies below i(v) for small u& because the dynamic-
ally shielded field is less than the Debye fieM for
impact parameters of the 'order of the Debye
length; at higher frequencies there is agreement,
again because shielding is less important for the
strong collisions which dominate in the wings.
The fact that i,(~) agrees more closely with i(&u)

than does Z, (&o) is a fortuitous consequence of the
fact that both the cutoff Coulomb field and the
dynamically shielded field are larger than the
Debye field. Figures 6 and 7 show the corre-
sponding line shapes, Eq. (2.1), normalized to the
Holtsmark profile (the second-order model is not
shown since it is qualitatively incorrect in the line
wings). The ion microfield average has decreased
the differences between i(~), i, (~), and i,(~) to
less than 5%.

IV. CONCLUSION

I&ii err
/0

lit i I & g

FIG. 6. Comparison of I(Acu) (normalized to the Ago 5

wing) for the cutoff, statically screened, and fully
screened cases for T=12200 K, n=8.4x10 6.

The width and shift operator for electron broad-
ening was evaluated to zeroth order in the plasma
parameter, A, and with effective interactions to
lowest order in the atom-electron coupling con-
stant. Additional approximations to simplify com-
putation were introduced paralleling the unified
theory calculations of Ref. 4. The results indicate
the following:

(i) The plasma parameter expansion of Ref. 1
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gives a description of plasma line broadening free
of any long-range Debye cutoff or strong collision
cutoff, leading to impact limit behavior near line
center, and Holtsmark wings; (ii) the effects of
dynamic screening are noticeable in the range
0.1+~ & e & 10&v~ (Figs. 4 and 5) a.lthough the maximum
difference is only of the order of 10%%uo, (iii) there
is a small resonance at the plasma frequency
(Figs. 4 and 5) as predicted by second-order theo-
ries which, however, is masked in the line pro-
file (Figs. 8 and 7) by the ion microfield average;
(iv) the low-frequency behavior, co & 2+~, may be
very accurately modeled by the phenomenological
introduction of a suitable strong collision cutoff
in the second-order theory (Fig. 3) although no
simple form for such a cutoff is proposed; (v)
the model using unshielded fields with a Debye cut-
off is optimized with a radial cutoff at about 1.15
times the Debye length; nevertheless, the cutoff
result differs from the statically screened result
that it is intended to approximate over the region
0.2&@~«v& 10cu~ (Figs. 4 and 5), although the dif-
ferences are less than 5%%uo, (vi) the form of screen-
ing is unimportant in the wings (~-10+~); (vii)
observations (iv) and (vi) suggest that screening
may be less important for higher than second-
order terms in an expansion of the collision op-
erator in powers of the atom-electron interaction. '
The unified theory of Capes and Voslamber, ' in
which screening (including dynamic effects) is in-
cluded only to second order, is very likely quite
adequate.

These conclusions are justified only for the Ly-
man-n line and for the small plasma parameters

considered here. It is possible that the above dif-
ferences may be amplified for larger plasma
parameters or for higher series members.

APPENDIX: MATRIX ELEMENTS OF K(5~)
Equation (2.27) requires inversion of the matrix

(b. &v -K(6&v)) in a representation using the para, —

bolic states. Since, as noted in Eq. (2.28} b, &u is
diagonal in this representation, attention may be
focused on the matrix elements of K(b, &u}. The
parabolic states m3y be specified by the principal
quantum number, n, the magnetic quantum num-

ber, m, and the quantum number q=n, —n„where
n, and n, are the parabolic quantum numbers obey-
ing the relation n=n, +n, + ~mi+1. In the no-
quenching approximation, the z component of the
dipole vector, d, =eZ, is diagonal,

~ In, q, m& = 2 nqao lnqm&, (A1)

where a, is the Bohr radius. This leads directly
to the result (2.28) for the diagonal elements
b, u&(P, q). For Lyman o. , only the state of principal
quantum number n= 2 is required for the matrix
elements of JC(b&u). Using Eq. (2.25) for 30(a&a),
we consider therefore,
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(2, q, miX(ace) i2, q', m'& = —in[a&a(p, q)] dt e' ~"' drdp 5' r+p $ Q~, q

x —(2~ q~ ml exp —i dvE, r+ —v 8 —1I ~2, q', m').

It is convenient to introduce a cylindrical coordinate system for the r integration. with axis along p. The
vector r then has components along p and in the radial direction p orthogonal to p. The exponent in (A2)
is therefore of the form

d7-E r+ —7 ~ =p- ax, P t + ~ b~, P t, (A3)

where a and b are scalar functions to be specified below. To facilitate the evaluation of the matrix element
in (A2) we parallel the calculation of Ref. 4 by performing a rotation of the atomic axis such that the z di-
rection is along p, and the x direction along p. Then (A2) may be simplified to

(2, q, miK(b, &u)i2, q', m& = —inAur(P, q) dt e' dpp'f(p) dz dp pW(p, z, p, b. &u(p, q))

x —Z (exp [ i3q'a, e'g-(p, z, p, t)] —1)
~" m"t

d d02 qmS 2 q~~m" 2 q", m" 2'2 q', m', A4
0
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where the function g is defined a,s

g —(g2 + $2)1/2

and Q is the atomic rotation operator. Also, use has been made of the fact that 5' is independent of the
angular integration. The matrix elements of the rotation operators are most easily evaluated in a repre-
sentation of spherical hydrogenic states, using the transformation

, ( ,'(n-- 1) -',(n-1) l )
tn, q, m) =g(nlm'(n„m)inlm'), (nlm'i n, m)=5 „.(-1}t" ' ")/' (2l+1}'/'

~

where l is the angular momentum quantum number and the parentheses denote a 3j symbol, and the
identity

dP dQ St',) ~t', =8m'6 „5 „5,, (2l+1) ' .
0 m2m2 1 2 1 g

With these results Eq. (A4) becomes

(2, q, miX(b(u)i2, q', m') =is(v~5 .[s(u„(P, q)]'i(a(u„)

f —,
'

—,
' 1 &(

x ( 1)&+ (1/2)(a+a')
~

(-,'(m- q) —,'(m+ q} m ) ( '(m q ) '(m+q ) m /I

Here the function i(&u) is the analog of that introduced in Ref. 4, and is given by

(A6)

i((u) i(o =-'8-wn
oo 00

d
dpp'f(p) dz dp pW(r(t), cu) —(c so[3a,e'g(p, z, P, t)] —1], (A7)

where r(T)=-[p'+(vT+z)']' '. Also 4&v„=-t) &u/&3~, where &D~2=8wne'/m. Evaluation of the 3-j symbols in (A6)
gives the results (2.29), (2.30), and (2.31) of Sec. EE.

The function g(p, z, v, t) is determined from the functions a and k through Eq. (A5) and

P(1+kor(T))e 'v"t' ' (vr+z)(1+kvr(T))e '&""
k= d r '(~)

Finally, the shielded field is given by

r" ~ E(r, (u) =a (r, (u) + iP(r, (o),

with

)
2 " dz v~ (z'/(u2z)e ' k((u, x/z)

[1+(z'/~&)(1- 4(z))]'+ &(z'/~&)'e-"

2
" dz [1 + (z'/e'„)(1 —Q(z))] k(u„x/z)

xv, z [1 + (z'/uP„)(1 —y(z))] ' + v(z'/uF~)'e 2~'-

(A8)

(A9)

(A10)

Here x=kDr =ka(p'+z')' ', P(z) is Dawson's integral

y(z) =2ze " (A11)

and the function k(y} is

k(y) =siny —y cosy. (A12)
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