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The statistical properties of a classical electromagnetic field in interaction with matter are investigated. To
this end a nonlinear extension of a model proposed elsewhere is studied by numerically solving the Newton-

Maxwell equations of motion. The time-average energy distribution of -the electromagnetic normal modes is

also computed. It is shown that nonlinearity, no matter how large, does not completely destroy- the

dependence of the final energy distribution on initial conditions. One is therefore led to the conclusion that,
as far as one is concerned with electrodynamical systems of finite total energy, no statistical behavior is to
be expected. In particular, the Rayleigh-Jeans distribution law is not a general consequence of classical

physics. The dependence on initial conditions can be removed, however, by the introduction of white noise

delivering an infinite amount of energy to the radiation field. In this case equipartition of energy is reached,
but in accordance with an old conjecture by Jeans, this process takes place at a nonuniform rate, the energy
transfer being slower at higher frequencies.

I. INTRGDUCTIGN

Since 1954 there has been renewed interest in
the ergodic problem of classical physics. The
main impulse to these studies was given by Fer-
mi's numerical experiments on an anharmonic
one-dimensional chain of atoms' and by the analy-
tical results culminating in the celebrated theorem
by Kolmogorov, Arnold, and Moser on the perm
anence of invariant tori in the phase space of inte-
grable systems under small perturbations. ' In
p3rticular, several systems of interacting par-
ticles have been extensively studied, ' "in order to
check the traditional idea that such systems should
behave ergodically under any nonlinear perturba-
tion, no matter how small. The ultimate goal of
these investigations was to establish whether the
classical dynamics of an ideal crystal necessarily
entails equipartition of energy together with its
troublesome consequences (e.g., temperature-in-
dependent specific heats).

As a matter of fact, according to the numerical
experi'ments hitherto performed, a fairly large
set of invariant surfaces seems to persist in phase
space at least at sufficiently low excitation ener-
gies, thus precluding ergodicity. Whether these
facts have any relevant influence on the thermody-
namics of macroscopic systems still remains an
open question.

Qn the other hand, the point perhaps most criti-
cal in classical statistical physics, namely, the
problem of black-body radiation, has not yet been

reconsidered on similar grounds. Indeed, the
problem of building the statistical mechanics of a
system of charges interacting with a radiation field
inside a cavity exhibits as an essential feature in-
definitely many degrees of freedom. In the phase
space of such a system there is no invariant mea-
sure at hand by means of which to define a micro-
canonical ensemble. Even the usual notion of er-
godicity, which is an essential tool in the finite
dimensional case, cannot be transferred to this
problem. It is very doubtful, . therefore, that the
equipartition theorem is a necessary consequence
of a statistical theory built on purely classical
grounds. On the other hand, one could request er-
godicity in the restricted sense that time averages
should be to some extent independent of the initial
conditions, since this would be enough to justify
statistical methods. Should this be the case, at
least in a suitable range of energies, then the
problem could be posed, whether equipartition or
another distribution law follows.

The free electromagnetic field inside a perfectly
reflecting box wall is a linear system: it possesses
a spectrum of proper vibrations, the so-called
normal modes of the cavity, each of which repre-
sents an independent degree of freedom. There-
fore, it obviously cannot exhibit ergodicity in the
above sense, since the initial conditions are not
wiped out in the course of the system motion.
Some mechanism of energy exchange between the
normal modes is needed in order to bring about
statistical behavior. One might, therefore, consi-
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der a cavity inside which a number of charged par-
ticles interact with their own radiation field. For-
midable difficulties, however, arise in describing
this interaction, which can only be circumvented
by setting up simplified models amenable to effec-
tive computations.

In the present paper, we study a model" which,
though extremely simplified, still retains one es-
sential feature: it provides a nonlinear interaction
between the normal modes of the field. In Sec. II,
the model is described and discussed; in Sec. III
the linear case is analytically solved. The numer-
ical results referring to the nonlinear case are
presented in Sec. IV. Section V is devoted to a
stochastic generalization of the model. Finally,
discussion of the results and concluding remarks
are contained in Sec. VI and VII.

as can be seen from Eqs. (B1), our model provides
a nonlinear interaction between the normal modes
of the field. Let us now put Eqs. (1) and (2) into a
form more suitable to numerical integration.

Expanding the functions f(x), g(x) defined in (4)
into Fourier series in the interval (-t, l) we get

f(x) =pa„sin[(d„(x+7)/c],

2(x) $2 =si n[ x„„( xs))/ o],

where the &u„= mcn/2l are the angular frequencies
of the unperturbed normal modes of the "cavity. "
Thus, the general integral Ao(x, t) of the homoge-
neous equation

I ~'Ap
=0

X2 C2 A)2

II. DISCUSSION OF THE MODEL

We consider a uniformly charged infinite plane
moving vertically in the z-y plane of a fixed ref-
erence frame. The plane is situated midway be-
tween two perfectly reflecting plane mirrors a dis-
tance 2l apart, and is subject to an external re-
storing force per unit area E(z), where z is the
displacement from the equilibrium position.

The relevant equations of motion in Gaussian un-
its are easily found to be"

satisfying the initial and boundary conditions can
be written as follows:

x)"(x, t) =P (a„nos(n t) + "
sin„(sn)))

n

x sin —"(xs))) .c

Equation (1) can be written in the integral form
t

A(x t) =AD(x, t) +2'
~I z(t- r)&(«, lxl) d&

4 p
(8)

8'A l. O'A 4 &
o5(x)z,

( /o) cAB(0, t)/st+&(z), (2)

where A is the s component of the vector potential,
~ is the volocity, 0 and m are the charge and mass
densities of the oscillating plane, and &(x) is the
Dirac delta function. The boundary conditions on
the surfaces of the mirrors can be satisfied, with-
out loss of generality, by imposing that

A(t, t) =A(-l, t) =0.

Equations (1) and (2) are obtained on the assump-
tion that

with

H(cr, lxl) = e(«- lxl) +Q(-»" &~[c&-(2'"- lxl)]

+e[cr-(2tn+ lxl)]];

where 8 is the Heaviside step function. From Eq.
(8) one gets

sA(0, t) &A'(0, t)
~I

x '()).2&(-)) '() "")S(~ 2™),
A,(r, 0) =f(x), As, (r, 0)/ tS= g (x) . (4) (9)

With initial conditions (4) the model is one dimen-
sional, since at any later time A will be a function
of x, t only. The basic objection that can be
raised against the physical significance of the
model is that the Lorentz force, being counter-
balanced by the constraints, does not play any
role. This situation is of course common to every
one-dimensional model; in particular one should
note that even in Planck's model the motion of a
harmonic oscillator in a radiation field was stud-
ied by means of an energy balance without taking
into account the Lorentz force. On the other hand,

and, substituting Eq. (9) into Eq. (2), one obtains

o sAO(0, t) 2))o'mz=&z —— ' +
C C

x x(t)+2+(-))"2()— )i(t —
)

(10)
Thus the solution to Eqs. (1)and (2) reduces to the
solution of the simpler Eq. (10). Actually the sum
on the right-hand side of Eq. (10) involves, at any
time, a finite number of terms. This feature
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(0 & t & r), (12a)

So(t) =0,

S,+,(t) = -2z)(t) —SJ(t) .

(12b}

(12c)

This system of ordinary differential equations can
be solved recursively.

III. LINEAR CASE

Despite the fact that the physically significant
case is the nonlinear one, the linear case, in

which F(z}=-muPoz, deserves some attention since
it is analytically integrable and may provide a use-
ful test of the accuracy of numerical computations.

In this case the term -(o/c)&A'(0, t)/S t repre-
sents an arbitrary driving force, whose effect
superimposes linearly to the solution of the equa-
tions. Therefore, this term may be dropped with-

out loss of physical generality.
Then the system of Eqs. (1) and (2) can be solved

(through lengthy calculations relegated to Appendix

A) by means of Laplace transforms. One finds

z(t) =gz„*cos(~„*t+$„*)

z«' = C/D,

makes the present model particularly simple to
numerically analyze.

Indeed if one defines the sequence of functions in
the interval (0, 7=2l/c)

z,(t -j v). =z(t) with j r & t & (j + 1)r,

j =0, 1, . . . , (11}
then Eq. (10) is equivalent to the following sequence
of equations:

2m'' . o sA'(t +j r)
m2,. +&(z;) = — [i;(t) +S,(t)]-——

the system, resulting from the superposition of
oscillations of frequencies ~„*. One can easily
verify (see Appendix B) that these frequencies are
associated with stationary solutions of the prob-
lem of the form

u„=A„sin[&a„*((x(-t)/c].

The u„can be thought of as the "normal modes" of
the total system charges plus field. To each u„ is
associated an independent constant of the motion.
One sees therefore that under a linear interaction
the constants of the motion are not destroyed but

merely transformed into new constants. The ex-
change of energy introduced by linear interaction
cannot yield the desired statistical properties, and

one is thus led to consider a nonlinear interaction.

IV. THE NONLINEAR CASE

Let us consider now the physically more inter-
esting case when F(z) is nonlinear, e.g. ,

E(z) = -m&u', z —az'.

The equations of motion are now no longer analyti-
cally solvable. A numerical approach is however
possible relying upon Eq. (12).

Note that once initial conditions are specified,
A'(x, t) and therefore &A'(0, t}St can be analytically
computed from Eq. (7}. In the actual computations
Eq. (12a) was integrated in each interval

jr & t & (j + 1)7 (j = 0, 1, . . .)

by means of a standard four-step Runge-Kutta
method, the values of S, being determined recurs-
ively from Eqs. (12b) and (12c). As for the distri-
bution of energy among the field normal modes, no-
tice (Appendix B) that the interacting (odd) modes
obey the equation

ti„+ (u'„a„=2(w/t)'t'o'z .
where

Q —2(o 2 + z2 ~ 4/(g»2) & / 2

$2 ~2 ~+2 2

D = 2A+ + 0 n-- + p(cp+ 1 + 0 n
n C2

From this, letting

~n ~n+~n~n ~

one easily finds
t l. /2

g (t) =e'"«'
~( 2 — oze ' «'ds+t„(0)

(18)

tan(~+I/c) =(tlrc)(~o ~")/~*. (14)

vp and ~p are the initial velocity and the initial dis-
placement, respectively, of the plane.

Solution (13) describes a quasiperiodic motion of

~ g gp$*=arctan--n z a'(v'+z'» /a ')'&') '
0 0 0 0 p n

where r =2wlo'/mc' and &u„* are the angular fre-
quencies of the normal modes of the system
charged plane plus field and are given by the solu-
tions of

The time-average energy of thenth normal mode

is, therefore,

(8„)= lim l(»(t}('dt.
P-+ ao p

(20}

Once ~ has been computed as explained above one
can compute a certain number of average normal-
mode energies by numerical integration of Eq.
(17).

As is shown in Appendix C, for the linear case
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e time-average normal-mode energies can~~=O~ th t
be analytically evaluated. This circumstance pro-
vided us a supplementary useful tool to check the
accuracy of our numerical computations. We nu-
merically integrated our system for different val-
ues of n and P =2ttg'/c and for different initial ex-
citations, while some of the parameters have been
held fixed throughout all the computations; namely,
we choose'"

l =m, m =1, c=l, F0=5.

The numercial integration was carried on until
stabilization of time-average quantities was
reached. "

One should make sure that the energy redistribu-
tion produced by the nonlinearity alone does not
involve a time scale far exceeding that involved in
the linear case. A useful test would be the initial
excitation of a normal mode of the linear system.
Qne might use to this end the Fourier coefficients
of an eigenstate ttt e (Appendix 8) to find Ao(x f)

fromrom Eq. (I). A more convenient procedure con-
sists in the excitation of the (2n+ 1) —s tunperturbed
normal mode, which differs (in energy) from

by o(1/&'). A typical result is shown in

Fig. I which. represents the time-average energy of
the mechanical oscillator. The upper part of the
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igure corresponds to the initial excitation of the
fifth unperturbed normal mode while the lower part
corresponds to the initial excitation .of the 99th un-
perturbed normal mode. In the latter case the dif-
ference in energy from the 99th perturbed normal
mode is -10 ' times the total energy involved.
Comparison of the two transients in Fig. 1 leads to
think that the two time-scales are of the same or-
der of magnitude.

f ~ ~

In each run we computed the time-average ener
o a limited number of normal modes, andtypical

nergy

results are shown in Figs. 2-5. Figure 2 refers
to the linear case for three different values of P.
Initially, the total energy is given to the charged
plane. Note that only a smallnumber of normal
modes close to the proper frequency of the me-
chanical oscillator are significantly excited. This
number, however, as well as the energy transferred
from the charged plane to the field, increases
with the charge of the oscillator.

The curves of Fig. 2 were obtained both by inte-
gration of the equations of motion and by use of

10 20 30

TIME (computer units )

FIG. 1. Tim-'me-average energy of the mechanical os-
cillator as a &@action of time. Here, P = 1, e =10, and
total energy E =1. The upper part of the graph cor-
responds to the initial excitationof thefifthunperturbed
normal mode. The lower part corresponds to the initial
excitation of the 99th unperturbed normal mode.

23 29 51 K

FIG. 2. Typical linear case (e =0). Here, the total
energy is E =1 and initially only the mechanical oscilla-
tor is excited. Full line, P =0.1; dashed line, P =1;
dotted line, P =70. The energy transfer to the field
grows with P.
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FIG. 3. Few typical nonlinear cases with p =1. n =1,
full line; a =10, dashed line; e =100, dotted line. The
total energy E =12.5 was initially given to the mechanical
oscillator. In the three cases the average mechanical
energy was 2.52, 2.86, and 1.4, respectively.

FIG. 4. Nonlinear case with P =1, e =10, and total
energy E =1. The mechanical oscillator was given
initially an energy of 0.3 units. Full line: mode 1
initially excited; dashed line: mode 13 initially excited.
The average mechanical energies were 0.07 and 0.02,
respectively.

formula (C2). The agreement of the results con-
firms the accuracy of our numerical computations.

No dramatic changes appear when the nonlinear-
ity is introduced. The only relevant fact, as is
shown in Fig. 3, is that when a increases a grow-
ing number of modes to the right of +0 are signi-
ficantly excited. The explanation of this fact is
given in Sec. VII.

Figures 4 and 5 refer to the case when one nor-
mal mode is initially excited besides the mechani-
cal oscillator. Note that the exchange of energy is
larger when the frequency of the initially excited
mode is close to the proper frequency of the me-
chanical oscillator. It is also apparent that by in-
creasing n or P a relevant exchange of energy
takes place among an increasing number of modes.
Nevertheless, in no case is the exchange of energy
large enough to destroy the dependence on the ini-
tial conditions.

0.5

0.3

0.1

g1

I
]

I

g 1;
I:

I
I

11 23 29

FIG. 5. Nonlinear case with P =200, o. =200, and total
energy E =1. Initial mechanical energy was 0.3. The
full, dashed, and dotted lines correspond to initial exci-
tation of modes 1, 17, and 23, respectively. In the three
cases the average mechanical energies were 0.13, 0.02,
and 0.01, respectively.

V. STOCHASTIC CASE

For the sake of completeness we summarize
here some results which will be presented in full
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detail elsewhere. " It is apparent that the mechan-
ical oscillator behaves too regularly to bring about
any statistical effect. It is interesting therefore
to investigate the opposite case, when a random
force affects the oscillator. We choose a random
force

O

2n+1 2n+1 2n+2 &
'

X/2

o -yco — og c,„+,+ gg(t),ml (22)

where c,„„is (2' ')'t'~, „„times the Fourier
coefficient of A(x) corresponding to the eigenfunc-
tion (2t) ' ' exp(tran, „„x/c},c,„„is defined by the
first ekluation, and c, =i. The linear system (22)
can be diagonalized by a linear transformation,
similar to the one of Appendix 8 from the variables
&'„ to new variables K„; the resulting equations are

where y is a friction coeffic;ent, p ' =KT, T being
the absolute temperature of a. gas whose interaction
with the oscillator is supposed to account for the
random force, and q(t) is Gaussian white noise.
When the electromagnetic force is removed from
(2), one recovers the familiar Langevin ekluation.

The stochastic model so obtained exhibits a num-
ber of rather unphysical features, e.g. , the as-
sumption that the statistics of the gas undergoes no
change under the interaction with the oscillator,
and the presence of equally represented frequen-
cies, no matter how high, in the power spectrum
of q(t}.

These weaknesses cannot be neglected as they
crucially affect the final results. A Fourier ex-
pansion performed on Ekls. (I) and (2}yields the
system

VI DISCUSSION OF THE RESULTS

Numerical experiments indicate that the depen-
dence of the spectrum on initial conditions is
weakened but not destroyed by an increase in one
or more of the parameters: charge, anharmoni-
city, energy. These results can be explained,
qualitatively at least, in a relatively simple way.

In the linear (harmonic) case, the spectrum is
peaked in correspondence to the normal frequency
closest to the proper frequency of the mechanical
oscillator. In other words the oscillator gives up
appreciable energy only to those normal (unper-
turbed) modes whose frequencies are close to its
own.

In order to understand this behavior in the an-
harmonic case let us notice that an oscillator of
energy E obeying the equation

X =-4J g —QX2 3

will have a period given by

(26)

the time averages tend to their limits for T-~
nonuniformly with respect to &. Moreover, aver-
aging over a finite time interval t yields

lim(E, „„(t))=0,
n~~

however large t may be. Again this is due to non-
uniformity of the limit for t-~ with respect to e.'
This circumstance rules out effective statistical
equilibrium.

Indeed, relaxation of (E,„„}to its limit, as well
as the decay of its dependence on h2 +yp is scaled
by relaxation times I/ReA= 0(n'). Therefore one
cannot find a time t large enough for the time av-
erage up to time t of a/l the 82„„'sto approximate
their limiting values within a prescribed range of
accuracy, or their dependence on the initial condi-
tions to have reduced under a prescribed amount.

K„=A„K„+A„q(t), n = 0, I, 2, . . . , (23)
(aP +4Ea &@

' cos'y) ' i'dkp .
where the A„'s are coefficients arising from the
diagonalizing transformation, and Q„are the ei-
genvalues. The system (23) can now be solved by

K„(t)= h„e px( „A)+tA„exp[A„(t u)] dW(u), -(24)

where h„are the nonrandom initial conditions, and
W(t) is the stochastic Wiener's process [whose
formal derivative is the white-noise process q(t)).
Finally, from Ekl. (24) one can compute the time-
average energy (E,„„)of the odd interacting
modes. One finds

(E,„„,) =2KT+O(o ). (25)

The seemingly paradoxical result that (E,„„)does
not vanish for 0 =0 is accounted for by the fact that

The elliptic integral (27) can be approximated by

T= no 2 (-,'~'+En) 't' (28)

Qn the other hand, when the oscillator interacts
with the field, formula (28), where E is now under-
stood as total energy, will presumably provide an
upper bound for the range of frequencies swept by
the oscillator in the course of its motion.

It is presumably in this range that effective en-
ergy interchange between the electromagnetic and
the mechanical degrees of freedom occurs. There-
fore, in view of formula (28), one expects the
highest frequencies of the cavity to be only slightly
affected by the charged oscillator both in the linear
and the nonlinear case.
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Should this interpretation be correct, then any
increase in the product Ee will not alter the basic
qualitative feature of the phenomena.

When a stochastic perturbation is added, an er-
godic behavior arises. However, the limiting val-
ues of the time averages are not uniformly ap-
proached; therefore no actual macroscopic obser-
vation will detect a significant excitation of the
highest normal modes. This fact is not a variance
with our numerical results since ergodicity is only
obtained at the cost of introducing unphysical ele-
ments in the model. To summarize, when finite
energies are involved one cannot expect any ten-
dency towards statistical equilibrium. Qne pos-
sible picture to explain our results can be bor-
rowed from the behavior of quasi-integrable finite
systems': namely, only those modes whose initial
energy is beyond some critical threshold will ef-
fectively exchange energy. In our case, therefore,
only a finite number of modes will take part in
the energy diffusion process.

On the other hand, when an infinite amount of
energy is available to the system a tendency to-
wards equipartition of energy appears, even though
a real equilibrium state is never reached.

VII. CONCLUDING REMARKS

Finally, we want to speculate somewhat about
the bearing of the above results on the general
problem of equilibrium between charges and field.

It was seen that the main feature giving rise to
the resonant and therefore nonergodic behavior of
the model is that there is just one mechanical de-
gree of freedom whose frequency band superim-
poses to a limited number of field frequencies.

Now note that, quite generally, interaction
among field normal modes only takes place in-
directly via, interaction with one or more mechani-
cal degrees of freedom. One is therefore led to
conjecture that the bandwidth of electromagnetic
frequencies effectively taking part in the energy
sharing will depend on the bandwidth of frequen-

cies occurring in the mechanical motion and wiD
therefore remain limited as far as the motiori re-
mains nonsingular.

In view of the above considerations, we are in-
clined to think that our results are more a conse-
quence of classical electrodynamics than of the
very special structure of our model.
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APPENDIX A: SOLUTION OF EQUATION {8)

Equation (8) can be solved by means of Laplace
transforms. If g(x, s) indicates the L transform of
a function g(x, I), we have

A.(x, s) =3'(x, s}+2soz(s)H(cs, ~x~), (Al)

where s = @+i' is the complex parameter of the
L transform.

From Eq. (2) one obtains

where f (0) =A(0, 0). It follows that

z(s) = sz(s) —z(0)

= v0/s —(v/mc)[A(0, s) -f (0}/s j - &u',z(s)/s .
(A3)

The I. transform of H(c7, ~x~} is

H(cs, Ixl} = sinh (}—]x]}) -(A4)]. S

If we put x=O in Eq. (A1), we obtain

2' v s)- -
2m

A(0, s) = 2'(0, s) +, v, + f (0) - ~',z(s) tanh 1+ —— tanh —
J (A 5)

Substituting (AS)-(A5) into (A1),

s ' mc ' mc ' s cosh(sl/c)+ (27]o'/mc) sinh(sl/c) (A6)

Substituting (A5) into (AS) one obtains

st 0' 0'8
pz(s) = z s+ tanh —+v + f (0)- A'—(O, s)mc c (} mc ' ' mc ' ' s'+ uP, +(2wo'/mc)s tanh(s&/c) (A7)

Finally, (A6) becomes
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A(x s) =A'(x, s) +2w(T ~, + —f (0)—

The right-hand side of Eq. (A7) has only
are solutions of the equation

tan((u*E/c) = [((oo —~*')/(o*]l/y c,

where

y = 2wlo'/mc'.

From Eq. (A7) we obtain

yc (()+E y(d+
z(t) =g 2&v*+- tan -+

c cos (d*E c

~'z (T sinh[(s/c)(l —(x ~) ]
s me '

. cosh(sE/c)[s'+ (0', +(2m(T'/mc)s tanh(sl/c)]
'A'(0, s) . (AB)

simple poles +i(d2„, situated on the imaginary axis. They

(A9)

yc w*l 2&&*
x 2zo (()"+ tan costs*t+2 &o+ f (0) sine*t- A (0o T) coS (d +( t T) dT

l C mc

From Eq. (AB) we obtain

A(v, l)=A'(v, )+21{vv,o+ f(0) Z, ( i) (, ,i,i,(, i )
oov(v t)

2 sin[(d*/c)(E —]x ()]sin((d*t)—27%'A &
„~ ~*cos(++E/c)[2&++(yc/l) tan((d*t/c) +y(d*/cos'((d+E/c)]

2 w' 2 sin[((o+/c)(E —]x ~}]

mc „~ 2&@*+(ye/E) tan(&u*E/c) + yu*/cos'(&*E/c)

and finally,

2 sin[(~*/gt —)x ()]
2 (d*+ (yc/E) tan(~*E/c) + y(d+/cos'(~+E/c)

(A10)

(A11}

g 0'
& + f(0) cos~*t —~ z sinu&*t-

7RC 0 0~ tpzc

t

&'(0, T) cos[(u*(t —T)]dT . (A12)

It may be observed that the following relation is valid:

r
(-1)"

Ao(0, T) cos[&u*(t —T)] dT =g, ——,[E),„„cos(&u*t)—~*a,„„,sin((d*t)
0 n=0 2&+1

(A13)

APPENDIX 8

Equations (1) and (2) can be deduced from the

Lagrangian

I.= &mz2- U(z)

U(z) being the potential of F(z). Let us perform
the Fourier expansion

where a =(2E) 't'. We have to assume a„=a „(the
bar denotes complex conjugacy) in order for A to
be real. The boundary conditions are satisfied
putting Rea„=0 for even n, Ima„=0 for odd n. The

Lagrangian I, as a function of the variables a„,a„
reads

, Q (-1)"~2a'„-

&g (-1)"a„'+ zg a„+z mz2 —U.

%'e find the kinetic moments

a„
P. =

s
=-(-1)"4„".,

sphere primed sums extend over odd values of n

only. The Hamiltonian is then
I

EE= -2zc'Q(-1)"P„-,Q (-],)"&y'„a'„
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The Hamiltonian equations of the motion are

a„=-4vc'(-1)"P„,

p+ a„

1 O.o .
p = (-1)"(u' a„—[1 —(-1)"] —z,n 4 2 f1

C

P =BU/Bz .

(Bl)

(the sum is readily evaluated by means of the
residue theorem). Upon substitution into the sec-
ond equation we get the eigenvalue equation

. ma' ilQ 0'+~0
tan

mc c

This equation has a sequence of imaginary roots
To each eigenvalue 0 is associated an

eigenvector of the form

n
Xp = Kp pp + 2%06~ &2n+1in

0

-1
0 n 2n+ l~n ~ +0 ~0 ~

(B2)

&0 = +P'0 .

States of finite total energy are described by real
sequences

such that mc'Q(x'„+y'„)&+~, i.e., by vectors in
the Hilbert space II of such sequences. This Hil-
bert space is the direct sum of the space H1 of
"configurational" sequences (x,„x„,. . . , x„, . . . )
and of the space 8, of "momentum" sequences
(y„y„.. . , y„, . . . ). Thus system (B2) describes
the evolution of vectors in II =II, H2.

We may look for eigenvectors of the linear sys-
tem (82), once its phase space is so enlarged, as
to allow for complex values of the x„,y„'s. Then
the components of an eigenvector corresponding
to the eigenvalue Q solve the system

~&n —2n+1 Xn ~

-1
OXp (Opyp+2(OpeZ Xn 2n+1

-1~3 n +2n+ l~n ~ +0 +0 ~

&~yp = -(dpXp ~

From the third equation, we get

11
&n 2n+1 — &&P~~0

0 ~ + 2n+1

i I cgp i LQ' tan4c~ c

Normal modes with even n do not interact with the
charged plane, and will henceforth be disregarded.
We take U = ——2'mu'pz' and go over to adimensional
variables g„,y„,n=0, 1, 2, . . . defined as follows:

2m 1/2 n a2n+1
m P2n+1, n

=
C2 8 ~m 1/2

y, =p, /W2mc, x, = z/e, c&2

Then, system (Bl) becomes
'~

+n 2n+1 Xn ~

-F0~2„+,XP -eQ'g~

u„may be normalized by suitably choosing xp.
It can be shown that the vectors g„ form a basis
in II, regarding them as the result of a perturba-
tion, scaled by o, operated on a suitable complete
orthonormal set." A much more suitable basis
is obtained, introducing the vectors

v. ~ = (I/2(u*)(u, „„+u,. w),

w g =(1/2i)(u; g —u, g).

Inspection of (B3) shows that the w q's alone
form a basis for II „while the v ~'s form a basis
for Ii, . Thus the equation of motion (B2) can be
solved, expanding the initial configuration on the
basis ur ~ with the coefficients p(co*) [p(u&*) coin-
cide, apart from scale factors, with the coef-
ficients of (z, a„a.„.. . ) on the basis v „] then the
initial momenta on the basis e„+ with the coef-
ficients v(&u*) and finally solving the equations of
the harmonic oscillator,

u(~*) = v(~*), v(~*) = -~*'u(~*),
with the initial conditions thus found. It is apparent
that the variables p(co*) play the role of normal
coordinates. Insofar as the field variables are
involved, the vector v~+ describes an excitation
of the type

A„,tx)-sin( ),
as may be checked by means of a Fourier trans-
form. The frequencies ~2*„„tend, in the limit
n- ~, tothe frequencies u2„„of the free cavity.
This is most easily seen by graphical solution of
Eq. (14). The corresponding (normalized) eigen-
vectors song tend, in the norm of II, to the un-
perturbed eigenvectors [1/(2 I)'~'] e'~'"+ '"= e,„+,.
In fact,

—e2.+ill' = 2(1 —«(e... I ~.*
= o(1/n') .

[We used Eq. (B3) properly normalized, to eval-
uate the Hilbertian scalar product. ]
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APPENDIX C

2C202 2

E~(t)=, s(s) exp( —iu, s) ds
0

(Cl)

The energy which one finds for 0th unperturbed
normal mode (initially not excited) at time t is
given by

We shall now evaluate the time average of E,(t)
expressing z as the sum of a uniformly conver-
gent series

s(t) = P a„sin(&u„*t+ o.„) .
n=0

We find

cos&, —cos[((d„*+4&,)t+n„] coen„—cos[((d„* —~~)t+o„]
EI, = hm—

2 n
"+ dt

cP r~ T n+k

»n[(&u„* —&u~) t + o.„]—sino. „sin[((u+ + ~~)t + o „]—s jno
+ — —, + lcm — g„ dt.

Q g T n (d„+(dk

The time. average can be evaluated term by term, thanks to uniform convergence, thus finding, after cum-
bersome calculations,

cos'n„—sin'(y „
n (~n —&A) (~,*+&a) ~~ —~a

7l Co' COr+(ds+ + (dk zc0

(C2)

(d+ + (d + + 2(dk (CS)

whatever k, s, x may be with s 4r and k an odd
number. This is easily verified, since there is
one, and only one, root of the Eq. (A9} in every
interval (a&,„„,co,„„).We call this root ~„* and
form the differences

~n +n +2n+1 ~

which are the roots of the equation

ln the derivation of (C2) an essential role is played
by the assumption that

6l (d0 —X'
-co't —= F(E' + &d2„+~); F(x) =

C X Cp

r k+r-s ~

~s ~r~ k-r-s-1 r2

which are true since as& ~, .

(C4)

in the interval (-&g„+co,).
Monotonicity of F(x) implies that the e„'s form

a monotonically decreasing sequence. Then (C3) is
equivalent to
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