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An analysis of the coherent scattering function S(q, co) for simple classical liquids is presented. The
analysis is based on a generalization of the modified theory of Singwi, Tosi, Land, and Sjolander involving
the polarization potential P(q) and the response function corresponding to the true self-motion of the atoms.
The polarization potential has been determined through the modified self-consistent scheme proposed recently

by Ailawadi, Miller, and Naghizadeh, thereby implying that both the static structure and dynamics of
classical liquids can be understood in one single framework. The first two moments of S(q, co) are
automatically satisfied, whereas the fourth moment is only approximately satisfied. Numerical predictions for

S(q, co), the full width at half maximum, and other related functions in liquid rubidium are compared with

the neutron scattering measurements of Copley and Rowe. The theory yields agreement with the data for
momentum transfers q & 1,5 A '. Possible improvements for q & 1.5 A ' and in the hydrodynamic regime
are discussed.

I. INTRODUCTION

The structure and dynamics of simple liquids has
been extensively studied over the last several
years both experimentally as w'ell as theoretically.
An exhaustive and sufficiently reliable data for the
static and dynamic structure of simple liquids is
now available from both neutron inelastic scatter-
ing experiments' ' and molecular dynamics calcu-
lations. ' ' However, a theoretical description of.

both the static and dynamic structure of liquids
within one single framework is still lacking.

Various studies of the collective motions in liq-
uids made so far can be grouped into three cate-
gories. First of these is the formalism of Kadan-
off and Martin' or the Zwanzig-Mori' projection-
operator technique. Both of these techniques in-
volve memory functions which can either be mod-
eled' "or else calculated in an approximate way. "
Second is the polarization-potential approach, ""
commonly known as the generalized mean-field ap-
proximation developed by Singwi et al." The third
approach to the problem is kinetic theory, where
one starts from first principles and tries to use
proper equations of motion to extract S(q, w). ""
Unfortunately, this approach usually becomes very
formal, and it is not easy to apply its results for
numerical calculations. Exceptions are the recent
papers of Jhon and Forster" and Sjogren and Sjo-
lander. "

In all these studies, a priori knowledge of the
static structure factor of liquids is required, which
is obtained from molecular dynamics, Monte Carlo
calculations, or x-ray and neutron-diffraction ex-

periments. Theoretically, the static structure fac-
tor is typically obtained by the well-known Percus-
Yeviek hard-core sphere equation" or by the more
successful Weeks, Chandler, and Andersen
(WCA)" perturbation theory.

Recently, Ailawadi et al. (AMN)" have suitably
modified the theory of Singwi et al. (STLS)" for
calculating the density response function of an in-
teracting electron gas to take into account the fact
tha. t the pair correlation function g(x) vanishes in
the highly repulsive hard-core region of the pair
potential for class ical liquids. They applied this
modified self-consistent iterative scheme to cal-
culate the structure factor of liquid sodium and
rubidium. Their results for both these liquid me-
tals were in good agreement with the data '" and
were somewhat better than the predictions of the
WCA theory. " In this 'respect, one has, therefore,
a fully closed theory, where one does not have to
get the structure factor from some other source.

In this paper, we report the results of ogr calcu-
lations for the density fluctuation spectrum in liquid
rubidium on the basis of the modified STI.S theory.
The polarization potential g(q) is determined
through the self-consistent-field method discussed
by AMN. " Based on the physical argument that for
a strongly interacting system, such as liquid,
there is still a residual interaction left even after
collective aspects are taken into account through
t/i( ), qit is proposed that y, (q, &o), the free-particle
response function appearing in the STLS theory (as
well as in its modified form), should be replaced
by X,(q, &u), the response function corresponding to
self-motion of the atoms. Two different models
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are considered for S,(q, v), the incoherent scatter-
ing law needed to calculate y, (q, &). We find that
an overall good agreement with the data is ob-

0
tained, except for wave vectors q ~ 1.25 A ', where
the theory is not yet applicable. Further, it is no-
ted that for the intermediate range of momentum
transfers (1.5-2.75 A '), the present results are
much better as compared to the results obtained by
Bansal and Pathak" using the Pathak and Singwi
(PS)" theory, which almost failed in this region
even though this theory is successful for liquid ar-
gon.

The outline of the paper is as follows. Theoreti-
cal formulation of the problem is discussed in Sec.
II. In Sec. III, numerical results are compared
with the neutron-scattering measurements of Cop-
ley and Rome. ' Connection with the recent first-
principles theory of Sjogren and Sjolander" and
possible improvements to extend the theory for q
&1.5 A and in the hydrodynamic region is dis-
cussed in Sec. , IV. In the Appendix, we describe
briefly the results of our calculations using a phe-
nomenological mean-field expression proposed re-
cently by Aldrich" and Aldrich et al."for 'He and
'He. We find that this theory, even though it in-
cludes backflow, shows almost no effect on S(q, &u)

for liquid rubidium in the investigated range of mo-
mentum transfers (1.5 & q & 5.5 A ').

II. FORMULATION

A. General theory

The dynamical density response function in the
STLS theory is given by

x.(q, ~)
1 —4(q)X.(q, ~) '

where Xo(q, ur) is the dynamical density-response
function of a free-particle system and g(q) is the
Fourier transform of the polarization potential
t/i(x), defined by

d4(~) d4(~)
(2)

Here Q(x) is the pair potential of the system and

g(y) is the well-known radial distribution function.
The dynamical structure factor S(q, v} is related to
the imaginary part y"(q, ur) of the dynamical densi-
ty-response function by the fluctuation-dissipation
theorem, which in the classical limit (h&u«ksT)
reads as

S(q, (o) = -(ksT/m n(o)X"(q, (u) . (3)

The symbols k~, 7, and n have their usual mean-
ing. Using the Kramers-Kronig relation

"de' y" (q, ~')

Since

y, (q, (o = 0) = -n/ks T,
Eq. (6) can be expressed as

Sq)= 1
1+ (n/ksT)g(q)

' (8)

Given a pair potential, the effective-field P(q)
can, in principle, be determined by solving Eqs.
(2) and (8) in a self-consistent manner. However,
such an iterative procedure for simple liquids
leads to computational difficulties because of the
highly repulsive nature of the pair potential in the
hard-core region. This difficulty has been sur-
mounted by AMN, and the modified STLS scheme
has been applied to calculate S(q) for liquid sodium
and rubidium. This modified scheme has been even
more successfully applied by Block" to analyze the
neutron-diffraction measurements of S(q) in liquid
rubidium at various temperatures (450-1400'K) and
pressures, performed at Grenoble. " For the de-
tails of the modified STLS scheme, the reader is
referred to the original AMN paper.

In order to study the dynamics of simple liquids,
Ailawadi" has calculated the dynamical-structure
factor for liquid rubidium using this self-consistent
scheme for calculating S(q). As compared to the
neutron-scattering measurements' of S(q, (o), the
results obtained by him mere not very good except
at large values of q and &u, where S(q, ur) ap-
proaches the free-particle behavior.

Since in the normal mean-field approach" X,(q, e}
is presumed to represent the residual behavior of
the density response function other than the collec-
tive aspects, it would be physically more reason-
able to replace X,(q, e) by X,(q, &u), representing the
true self-motion of the particles in a strongly in-
teracting system, such as liquid. Qnly in the
large-wave- vector limit does the single-particle
motion approach the free-particle behavior. At all
other wave vectors, this motion is rather compli-
cated and has both diffusive and vibratory aspects.
Furthermore,

)(,"(q, (u) = (v n(u/ksT)S, (q, (u)—,

where S,(q, e) is the usual incoherent scattering
law. It should be pointed out that y, (q, &o) repre-
senting the self-motion has also been used by Sing-
wi et al." in their analysis of liquid-argon data. '

Note that Eqs. (9) and (4) preserve Eq. (8) for

we can write the zeroth moment of $(q, &u), the sta-
tic structure factor S(q), as

S(q) = (k&-T/n)X(q, ~ = o) .

Substituting (1), this becomes

S(q) =(k T/n}@(q) -[X.(q, ~H 'l '
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S(q). Assuming that the polarization potential P(r)
is still given by Eq. (2), the modified STLS scheme
can be used to calculate S(q) and hence g(q) from
Eqs. (2) and (8) leading to a closed theory of liq-
uids. A theoretical justification of replacing
}t,(q, a) by y, (q, m) ca,n be given by a general and
more formal approach due to Kerr, "who modified
earlier expressions of Nelkin and co-workers. "
The recent first-principles kinetic theory of Sjo-
gren and Sjolander" provides further justification
for this replacement. In this theory, " the polar-
ization potential P(q) and the static-structure factor
S(q) are still related through Eq. (8). The expres-
sion for the dynamic-response function, i.e., Eq.
(1), is, however, mcdified by the inclusion of an
&u-dependent backflow term [see Eq. (31)]. A phe-
nomenological form of the backflow term proposed
recently by Aldrich" and Aldrich et a/. "is, how-
ever, studied in the Appendix.

B. Moments

In the classical limit, the odd moments of S(q, e)
vanish and even moments are defined by

by y, (q, e). Therefore it is clear that for both
these choices, the second frequency moment of
S(q, &u) is automatically satisfied. Furthermore,
from Eqs. (9) and (13), one finds that

( 2) nq 3q ksT
m

where

(
)s'0( )

rn Bx' (19)

Substituting (17) and (18) in (16), we notice that

(,)
q'k T 3q'ksT nq'

( )
rn rn m

(20)

Note that the third term on the right-hand side of
Eq. (20) representing the potential contribution
would be absent if y, (q, &o) were used instead of
y, (q, u&). Both these choices violate the fourth-mo-
ment relation of S(q, e). However, we find in our
calculations that the choice of y, (q, &u) leads to
marked improvement in ((u') as compared to that of

x.(q, ~).
C. Computahon

(10)

X(q, ~)=k T Q
We can write a similar expression for X,(q, &o):

(~2!-I )x.(q, ~) = g (12)

where we define

(13)

which follows from the relation (3). Large v ex-
pansion of y(q, u&) can be obtained from Eq. (4),
which using Eq. (10) can be written as

The expression for the dynamical-structure fac-
tor can be written in a form suitable for numerical
calculations,

ks T X,"(q, &u)

«~ [1—4(q)X!(q, ~)]'+[I(q)X!'(q,~)]'

X,'(q, w), the real part of it, (q, u), is related to its
imaginary part X,"(q, e) through the Kramers-Kro-
nig relation, Eq. (4). S(q, &u) can be computed only
if both g(q) and X,(q, &o) are given. As mentioned
earlier, we follow AMN for ca,lculating g(q). How-
eve r, a knowledge of the incoherent s cattering
function S,(q, e) is still needed to calculate y, (q, &u)

from Eqs. (9) and (4).
In the memory-function formalism of Zwanzig-

Mori, ' the intermediate scattering function F,(q, t)
satisfies an integrodifferential equation of the form

Using Eq. (13), large &u expansion of (1) ca,n be
written as

t
dt' M, (q, t —t')F, (q, t') = 0.

0
(22)

X(q, ~) = &~, )/~'+(I/~') [&&!) + l(q) &~.)']
+0(l/uP) .

Comparing Eqs. (11) and (14), we have

(n/ksT) ((o2) =((o,),
(n/ksT) ((o') = ((o2) + g(q) ((u, )2.

Using Eq. (9), one immediately finds that

(~, ) =nq'/m .

(14)

(15)

(18)

This relation reta, ins its form if we replace k, (q, &u)

-( )
F(q t o)-
P+M, (q, P)

M, (q, P) =

P+M„„(q,P)

(23)

The kernel M, (q, t) is the memory function associ-
ated with F,(q, t). M, (q, t) also satisfies an equation
similar to (22) with a "higher-order" memory
function M, (q, t) as the kernel, and so on. In terms
of Laplace transforms, this chain of equations can
be written as
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where 5„=M,(q, t = 0).
In order to ca,lculate S,(q, &o), the spectral func-

tion of F,(q, t), it is necessary to truncate the hi-
erarchy of Eqs. (23) at some suitable stage. We
truncate it at the third stage by assuming that
M, (q, t) decays much faster than M, (q, t) and obtain

7(q)5, 5,
[(ur(q)((o' —5, —5,)]'+[(u'- 5,]"

where

5, = (kaT/n) ((o,), 5,(5, + 5,) = (kar/n) ((u', ) . (25)

(ksT/n) (&u, ) and (ksT/n)(&u, ') are just the second
and fourth moments of S,(q, &u) and are defined by
Eqs. (17) and (18), respectively. Furthermore,

I

r '(q) =M, (q, 0) = dt M, (q, t) .
0

(26)

To determine r(q), we follow Lovesey" and relate
M, (q, 0) to M, (q, 0) through the cha, in of equations
(23) and assume M, (q, t) to be a function of 5, t',
which reproduces the first two terms in the short-
time expansion of M, (q, t). We thus obtain

r '(q) = &v' 5, , (27)

where $ is the proportionality constant which is de-
termined by requiring S,(q, 0) to coincide with the
ideal-gas result for large q. This gives $ =2/Mir .

The second model used in the calculation of
S,(q, &u) is the well-known Gaussian approximation
for F,(q, t),

(8) using the modified STLS self-consistent
scheme. The Price et al."potential was used as
input for this calculation, because this potential
was used by brahman' in the molecular dynamics
simulation of a liquid-rubidium-like system of 500
particles. Also corresponding to these conditions
of temperature and density, Copley and B.owe' per-
formed neutron-scattering measurements for liq-
uid rubidium. They measured the dynamical-
structure factor S(q, ~) for different energies in the
range of momentum transfers 0.3 ~ q & 5.5 A '.

In order to study the closed theory discussed in
Sec. II, we use as input the static-structure factor
S(q) calculated by AMN. However, for 0', [defined
by Eq. (19)] needed in the memory-function model
for S,(q, &u), the value provided by Rahman' is used.
We find that the value of 0,' as calculated from the
AMN results for S(q) is different from Rahman's
result by less than 12/0. The effect of changes in

S(q) is studied by repeating the calculations using
neutron scattering as well as Rahman's data for
S(q). Since neutron-scattering data is available for
the symmetrized scattering function defined as

S(q, v) = exp(-k &u/2ks T)S(q, (o), (30)

we calculate S(q, &u) and compare our results with
the neutron-scattering data. '

Using the AMN data for S(q), the effective-mean-
field P(q) given by Eq. (8) is plotted in Fig. 1. We

F (q, t) = exp [-q'(x'(t))/6] . (28)

Here (x'(t)) is the mean-square displacement of the
particle and is defined as

.4-

t

(x '(t)) = 2 dt' (t —t') ( v(0) ~ v(t')) .
0

(29)

The Gaussian approximation is useful because in
the limits of large as well as small time, the exact
behavior of E,(q, t) is recovered. Further, it has
been shown for liquid argon that for intermediate
times, the non-Gaussian corrections to F,(q, t) are
of the order of 10-15%." The approximation, how-
ever, requires the velocity autocorrelation func-
tion (v(0) ~ v(t)) as input.

In Sec. III, we present the results of our numeri-
cal computation for S(q, &u) for liquid rubidium
using both these. models for the spectral function
S (q, &d).

n 4(a)
"e

0

-2-

-.4-

III. RESULTS AND DISCUSSION

We describe now the results of our calculations
for liquid rubidium at a temperature of 319'K and
for a density of 1.502 g/cm'. For this system,
AMN have already calculated S(q) from Eqs. (2) and q.

-.6-

FIG. l. Effective potential g(q) versus the wave vector
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FIG. 2. Symmetrized
scattering function S (q, ~)
as a function of frequency
u for some selected values
of the wave vector q.
Solid circles: results of
neutron inelastic scattering
measurements of Copley
and Rowe dashed curve:
results obtained by Aila-
wadi using Eq. (j.); dash-
dot curve: present calcula-
tion using memory function
model for $, (q, ~); solid
curve:. present calcula-
tion using Gaussian ap-
proximation for F,(q, t). In
the first four cases (a, b,
c, d), AMN data for $(q)
have been used in the pre-
sent calculations, where- '

as in the last three cases
{e, f, g), Rahman's data
for $(q) has been used.

0
0 16 24

0
0 16 24

u (ps ')

0--
0 24

then compute S(q, ar) from Eq. (21), using these re-
sults for g(q) a.nd Eq. (9) for X,"(q, v). For S,(q, &u),

we first use the memory-function model described
by Eqs. (24) and (27). These results for S(q, ~)
have been displayed in Fig. 2 for three different
values of q (2, 8, and 4 A '). These results for
S(q, m) have a kink which becomes more pronounced
with increasing q. It is found that the memory-
function model used for S,(q, u&) is responsible for
this unphysical behavior of S(q, &u). In fact, Eq. (24)
for S,(q, v) gives a. three-peak structure for par-
ticular values of 6„6„and r(q). The resultant
S,(q, &o) for these values of q is shown in Fig. 8 by
dashed curves and possesses a definite shoulder.

In view of this drawback of the memory-function
model, we use the Gaussian approximation [Eq.
(28)] for S,(q, e). The velocity autocorrelation
function needed in the calculation of the mean-
square displacement (r'(t)) is taken from Hahman's
molecular-dynamics data. " For t = 2.2257 x 10 "
sec, (x'(t)) approaches iQ diffusion limit, i.e. ,
(x'(t)) =6Dt+C, where D =2.458 && 10 ' cm'sec ' and
C = 0.819 A'. 'The corresponding results for
S,(q, m) are also shown in Fig. 8 for the sake of
comparison and are free from any kink or shoul-
der.

A complete analysis of S(q, &u) has been done us-
ing the Gaussian approximation for S,(q, v). For
selected values of q in the range 1.25—5.5 A ', we

.25

.20

1

1

1

1

u)
i

.10

.05-

0
0 16

co (ps ')
32

FIG. 3. Incoherent scattering function $~ (q, w) vs cu

for three selected values of q. Dashed curve: calcul-
ated using memory-function model; solid curve: cal-
culated using Gaussian approximation for Es (q, t).
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compare our results in Fig. 2 with the neutron-
scattering data of Copley and Rowe. ' Here, the re-
sults obtained by Ailawadi" using Eq. (1) directly
[i.e., X,(q, e} instead of X,(q, &o)] are also shown for
completeness. %e find that for q between 1.5 and
3.5 A ', the present results show a marked im-
provement over the previous results, "thereby
showing the importance of replacing y, (q, to) by

X,(q, v) in this range of momentum transfers. Fur-
thermore, for q &3.5 A ', the present results tend
to coincide with those of Ailawadi and agree quite
well with the experimental data. This is not sur-
prising because at such large q values, single-
particle motion approaches the free-particle be-
havior.

Figure 2 also illustrates the effect of using Rah-
ma, n's data for S(q) in our calculations. The same
data for S(q), along with the fourth moment of
S(q, &o), have been used by Bansal and Pathak" to
analyze the neutron-scattering results for S(q, &o)

using the PS' theory. The results obtained by
Bansal and Pathak are not included here, but it
should be pointed out that for q ~ 3 A ', the present
results are at least as good as those obtained by
these authors. However, for intermediate momen-
tum transfers, q =2 A ', where the PS theory is
found unsuccessful, the present results are much
better. Note that the PS theory incorporates the
first four frequency moments of S(q, e), whereas
the present approach involves only the first two
moment relations. It seems suggestive that y, (q, (u)

plays a more important role in determining the
structure of S(q, &o) than the fourth-moment sum-
rule condition. Further, as seen from Fig. 2, dif-
ferent data for S(q} lead to perceptible changes in

S(q, &u = 0) for q = 3 and 4 A '. This is caused by the
fact that S(q, &u =0) is proportional to S'(q) and that
the AMN data for S(q) do not show a pointwise
agreement with the molecular-dynamics data. ' But
to be consistent with the theory, we have used the
AMN data in our calculations.

The wave-number dependence of the full width at
half maximum (FWHM) of S(q, &u) as obtained from

o
the present calculations for q & 1.25 A ' is shown in

Fig. 4. These results are compared with the neu-
tron-scattering data. ' Also represented by cros-
ses in Fig. 4 are t;he results of the present calcu-
lations when the neutron-scattering data for S(q) is
used as input. Clearly this quantity is not very
sensitive to the input value of S(q). The agreement
between the theoretical values and the experimen-
tal data is very good for q between 1.5 and 3.25
A '. For q~ 3.5 A ', the theoretical curve lies
somewhat below the experimental data but the q de-
pendence is in agreement.

Figure 5 compares the fourth moment (&u') of
S(q, e), obtained from Eq. (16) using y, (q, &u) as

20-

Ul
CL

10-

q(k'j

FIG. 4. Full width at half maximum (FWHM) of
$(q, co) versus wave vector q. Notation is same as in
Fig. 2 except that crosses represent the results of pre-
sent calculation obtained by using $(q) from the neutron-
scattering measurements of Copley and Rowe.

well as yo'(q, &o) in the present calculations. The
difference between the two curves is far from ne-
gligible in the region of wave vectors of interest.
The results obtained using X,(q, u&) are in reason-
able agreement with the molecular-dynamics data,
also shown in Fig. 5. The maximum deviation ap-
pears to be at q = 1.5 A ', but it is less than 13%.
One is, therefore, led to conclude that (v') is not
significantly altered, suggesting that the self part
of the fourth moment, accounted for by Eq. (9),
gives the most significant contribution in the region
of wave vectors of interest.

40

30-

n
3

20
"3

~ ~

10
/ I I

1 2 3 4 5

q(R ')

FIG. 5. Fourth moment ofS(q „(d) versus the wave vector
q as calculated from Eq. (20) compared with the mole-
cular-dynamics results of Rahman, shown as solid
circles.

IV. CONCLUSIONS

An analysis of the dynamics of density fluctua-
tions in rubidium has been presented on the basis
of a fully closed theory in which, unlike other cal-
culations, an a Priori knowledge of the static-
structure factor S(q) is not demanded. In fact, as
discussed by AMN, S(q), and hence the polarization
field P(q) from Eq. (8), is first calculated self-con-
sistently by the modified STLS theory. This modi-
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fied theory is then applied in the present calcula-
tions. We find that it is necessary to insert
X,(q, e), the response function of the self-motion of
the atoms, for X,(q, ur) in order to get any agree-
ment with the data. Once this replacement is
made, the theory goes a long way in explaining the
experimental data. This is also found by Singwi ef,

a/. "for liquid argon. However, in their calcula-
tions, the polarization field g(q) is still a parame-
ter.

Our suggestion that X,(q, ~) be replaced by

X,(q, e) is reinforced from the recent first-princi-
ples kinetic theory of Sjogren and Sjolander. " If
only density and longitudinal current are assumed
to be coupled, the dynamic density-response func-
tion in their theory becomes

)
xg(q~ ~)

1 —4(q)X.(q, ~) —(~~f~inq')F, ~(q, ~)X.(q, ~) '

(31)

where the third term in the denominator of Eq. (31)
represents the motion of the surroundings around
the labeled atom (backflow). That is, it corre-
sponds to the motion of the correlation hole around
the impurity. In the original STI,S formulation, as
well as its modification discussed by AMN, this
correlation hole remains fixed around the impurity.
Furthermore, the polarization field P(q) in Eq. (31)
is given by the Ornstein-Zernike direct-correla-
tion function, i.e., g(q) = ksTc(q)-

If this backflow term is included, one would ex-
pect to see the propagating sound modes up to q

0—1.25 A ' observed experimentally in liquid rubidi-
um. The small kink in S(q, co) da, ta, for q =2 A '

should also be reproduced, since the motion of the
correlation hole or the backflow would correspond
to a second relaxation time discussed by Copley
and Howe' and Kahol et al. ' 'The phenomenological
theory of Aldrich" and Aldrich et al. ,

"which in-
cludes backflow and explains the elementary exci-
tations in 'He and zero sound mode in 'He, has
been studied for this reason. It seems that the
backflow term proposed by them is either too small
for classical liquids or else the quantities g(q) and

f(q) appearing in Eq. (Al) need to be determined
quite differently. Indeed, a comparison of Eqs.
(31) and (Al) seems to indicate that the backflow
term of Eq. (Al) is the long-wavelength and low-
frequency limit of I"„(q,e) appearing in Eq. (31).
Since we choose to fix f(q) Lin Eq. (Al)] through the
fourth moment of S(q, v), it is plausible that a de-
termination of f(q) in terms of hydrodynamic quan-
tities would improve the results in the region q
&1.5 A '. Also, temperature fluctuations need to
be considered for studying the hydrodynamic re-
gime.

Finally, while the use of molecular-dynamics or
neutron-scattering data for S(q) in Eq. (8), rather
than the S(q) calculated by AMN, leads to better
agreement with the data at S(q, 0), we believe that
the S(q) results presented in AMN could be im-
proved as shown recently by Block" so that a fully
self-consistent theory can be used to study liquids
for most of the q and ~ ranges.
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APPENDIX

In order to study elementary excitations in liquid
helium-4, Aldrich" proposed that the generalized
mean-field expression for the density-response
function should be written as

X„(q, (u)

1 (4(q) + (~'Iq—') f (q)]X.,(q, ~) ' (Al)

where the self-consistent fields g(q) and f(q) are
described by a scalar polarization potential,

4,.&(i, ~) = ((q) ( p(i, ~)), (A2)

and a vector polarization potential,

A,.i(4, ~) =f(q) ( J(~, ~)) (A3)

Here, (p(q, v)) and (J(q, &u)) are the particle- and
current-density fluctuations induced by an external
probe and X„(q,x) is the usual screened density-
response function representing noncollective as-
pects of the atomic motion. 'The term involving
f(q) represents the well-known backflow. Aldrich
et al."recently used Eq. (Al) to analyze liquid 'He
studied by Skold et al."by neutron-scattering tech-
nique.

In order to study the effect of this additional
backflow term e'f(q)X„(q, &u)/q2, inthedenominator
of Eq. (Al), on the dynamics of classical liquids,
we attempted to analyze liquid-rubidium data.
Since the backflow term vanishes for ~ =0, Eq. (8)
for S(q) remains unchanged. The mean-field t/r(q) is
still related to S(q) through Eq. (8) when X„(q, w) is
assumed to be either X,(q, co), its free-particle val-
ue, or X,(q, a) for self-motion of atoms. Having
fixed P(q) from Eq. (8), we calculate the second
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mean-field f(q) by demanding that the fourth mo-
ment of S(q, e) be satisfied; thus, .'|2-

vrhere
(A4)

(A5)

N
.08-

3
U .04-

e 0 e
1 I I I I I

are the frequency moments of g„(q, e), and

")(q) =&"'&/&"'&.

Further, the second moment relation yields

(A8) .12

(~/",7) &"'& = &4&.,& [1—&".,&f(q)!q'] ' (A')

If X„(q, ur) is replaced by y, (q, &o), Eqs. (A4) and

(A7) reduce to

-q2a 7 n
f(q) =1—— s 8+ g(q) (A8)

m (o)(q) m @AT

08- '

q=2.OX
'

(A9)

3
D

.0Q-

However, if y„(q, &o) is assumed to be the response
function y, (q, &u), Eq. (A4) gives

1/a

(Alo)
0

0 4 8 12 16 20

8-

u)(ps )

FIG. 7. S(q, co) vs u forq=1.25 and 2.0A i. Solid
circles: neutron inelastic scattering data; solid curve:
obtained by Ailawadi using Eq. (1); dashed curve:
present calculation using Eq. (Al) and the free-particle
approximation for the screened response function
x „(q,~).

6-

3 4-

2-

FIG. 6. Second. moment of $'(q, ) versus the wave
vector q. Solid circles: q k&T/m; solid curve: obtained
from Eqs. (A9), (Alo), and (8); dashed curve: obtained
from Eqs. (A9), (A8), and (8).

where 0,' is defined through Eq. (19). &&u'& is still
given by (A9). Thus if f(q) is determined through
(AB) or (A10), the second moment of S(q, ur) is vio-
lated.

In Fig. 8, &&u'& is plotted as a function of q using
Eqs. (A8) and (A9) and compared with the exact re-
sult as well as with that obtained from Eqs. (A10)
and (A9). In this calculation, the AMN data for S(q)
is used. Note thatuse of y, (q, &o) for y„(q, ur)

through Eq. (9) satisfies the second moment &uP &

for all practical purposes.
The dynamical-structure factor S(q, &u) is now

computed from Eqs. (Al) and (8). For 1.25 & q
& 5.5 A ' investigated in this paper, the effect of
the backflow term involving f(q) is negligible when

X,(q, ur) calculated from Eq. (9) is used in Eq. (Al).
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However, this term has a definite effect in
the structure of S(q, &u) if y, (q, e) is used for
)t„(q, ar) in Eci. (Al). This is shown in Fig.
7 for q = 1.25 and 2.0 A ', where S(q, &u) calculated
in this way is compared with the result of Eq. (1) in
the absence of the backflow term. S(q, ~) calculated

from (Al) seems to have a, three-peak structure
reminiscent of its behavior in the hydrodynamic
region, which persists here up to @=2.5 A '. How-
ever, an inspection of Fig. 7 shows that this peak
(or shoulder) does not bear any relationship to the
structure observed experimentally.
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