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Oscillator strengths and excitation energies are computed for electric dipole transitions connecting valence-
shell states of Mgr and of Car. The method used is the variational solution of two-particle Bethe-Goldstone
equations for both initial and final states of each transition, with a common frozen core determined by a
matrix Hartree-Fock calculation. Results are compared with available theoretical and experimental data, and
are found to be in excellent agreement with previous results for the two resonance transitions. For Mg, the
computed length and velocity oscillator strengths are closer together for most transitions considered than are
previous theoretical values, and fall within their range. For Ca, the computed results confirm conclusions
about valence-shell even-parity states inferred from analysis of recently observed two-photon ionization
spectra.

I. INTRODUCTION

Rydberg series of even-parity J=0 and 2 states
in Ca have recently been observed by two-photon
laser spectroscopy. ' The observed energy levels
wei'e analyzed by multichannel quantum-defect the-
ory." This theory makes use of the asymptotic
behavior of Coulomb wave functions. Hence it is
valid for orbital wave functions outside the valence
shell, but must be augmented by a more detailed
description of states involving valence shell orbi-
tals. As a preliminary step toward a fully quanti-
tative theory, including two-photon intensities, the
present paper reports results of calculations of
energy levels for valence shell excited states of
Mg and Ca and of oscillator strengths for electric
dipole-allowed transitions among these states.

There have been many previous theoretical stud-
ies of the resonance transitions (Ss') '8-(SsSp) 'P'
in Mg (Refs. 4-9) and (4s') 'S'-(4s4P) 'P' in Ca.""
Reference is given here to the most recent calcula-
tions. Transitions to even-parity states from the
(nsnP) "P' states have been less thoroughly stud-
ied. The most complete survey is that of Victor
et al.' "who used a semiempirical two-electron
model potential. " The present calculations treat
all orbital functions explicitly, without semiem-
pirical parametrization.

Details of the computations are given in Sec. II
and results are presented in Sec. III.

II. COMPUTATIONAL METHOD

Mg{7, 5,4, 1) Ca{9,7, 5)

3s 1.47233
0.89173
0.54008

3P 1,47233
0.89173
0.54008

48 1.43414
0.86666
0.52373

4P 1.434 14
0.86666
0.52373

citations at level [nsnP]„ in the notation defined
previously. " This is a frozen-core approximation,
with variational solution for the two outer elec-
trons, limited only by the orbital basis set used.
For singlet states, reference orbitals are deter-
mined by a preliminary matrix Hartree-Fock cal-
culation on state (nsnP) 'P', and for triplet states,
by a similar calculation on state (nsnP)'P'.

The orbital basis sets used are defined in Table
I. All configurations of structure [nsnP], in the
linear space generated by these basis orbitals were
included in the variational calculations. The basis
sets shown are obtained by augmenting ground-state
double-zeta functions" by additional orbitals whose
exponents form a geometric series. An extensive
series of preliminary calculations was carried out
on the Mg and Ca resonance transitions to examine
the effects of variations of the basis sets. The
criterion used was stationarity of the computed ex-
citation energy. This criterion is not rigorous,

TABLE I. Parameters & for basis orbitals r" ~

x exp(-&r), in addition to double zeta (Clementi and
Boetti, Ref. 15) for inner shells.

The present work uses the same method as pre-
viously applied" to valence shell excitations Be,
except that inner shell virtual excitations are not
considered here. The theoretical model uses val-
ence shell configuration nssP as reference (SsSp
for Mg; 4s4P for Ca) and considers all virtual ex-

3 d 1.47233
0.89173
0.54008
0.327ll

4f 0.89173

3d 3.92715
2,37320
1.434 14
0.86666
0.52373
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but would apply to exact wave functions. The pre-
liminary investigation indicated that the very sim-
ply defined basis sets of Table I could not be sub-
stantially improved without adding orbitals of high-
er I values or relaxing the frozen-core approxima-
tion.

The notation Mg(7, 5, 4, l) in Table I indicates
that the orbital basis for Mg includes 7, 5, 4, and
1 independent radial functions of type s, P, d, and

f, respectively. Similarly, Ca(9, 7, 5) indicates
9, "I, and 5 functions of type s, P, d, respectively.

A 3d orbital is defined by a matrix Hartree-Fock
calculation on the state (n83d) 'D, with n = 3 for Mg and
n =4 for Ca. A specified state of configuration 3d is
identified by scanning eigenvectors of the configura-
tion interaction matrix for the one with greatest
weight in the designated configuration. " The N-elec-
tron wave functions are independent of this arbitrary
definition of the 3d orbital since they include all
basis d orbitals equivalently. The "D states of
configuration 383d for Mg or 4s3d for Ca are
uniquely defined as the lowest states of their sym-
metry type. In each case it is found that the nom-
inal configuration 383d or 4s3d, respectively, cor-
responds to the dominant eigenvector component.

III. RESULTS

Results for Mg are shown in Table II, and com-
pared with recent theoretical' ' and experimen-
tal" "data. Experimental energy levels are from
Risberg" or Moore. " The general agreement with
previous results is good.

The most complete theoretical calculations for
Mg are those of Weiss, ' who used a (7, 3) orbital
basis set for the ground state, augmented by addi-
tional orbitals for excited states, included config-
uration interaction for the two valence electrons,
as in the present work, but carried out separate
matrix Hartree-Fock calculations for each state
considered. To test the possible significance of
this latter point, both (3s3P)'P' and (3s3d)'D were
used as reference states (defined by matrix Har-
tree-Pock calculations) to compute the transition
energy and oscillator strength between these two
states. For Mg, the difference in results was
negligible, not affecting the numbers shown in
Table II. A similar comparison for Ca shows a
much larger effect, which can be attributed in that
case to perturbation of the 3s'3P core by the 34
orbital.

TABLE D. Mg excitation energies (Hartree atomic units) and oscillator strengths.

Initial
State

Final
4&(obs) '

(cm ~) (a.u. )

&&(calc)
(a.u.)

f(calc)
fi f~ f (other)

Ss2 3 Sp iPo 35051 0.15971 0.15673 1.746 1.717 72/1 737$
] 665 d 1 757 e

1.760, 1.86, g

2.4," 1.75'
3s limit

Ss3p ~P' 3s3d ~D

Ss limit
Sp2
3p2 1D

Sp limit
3d D
Sd2 ~S

3d limit
3s3p 3P' 3sSd ~D

Sp2 3P

Ss limit
Sp limit

Sd2 3P

Sd limit

61671 0.28100
11352 0.05172
26620 0.12129

62350 0.28409

98111 0,44703
26066 0.11877

35963 0.16386

39780 . 0.18125
755M 0.34405

111271 0.50699

0.04836

0.14685
0.21923

0.35688
0.37046

0.11936

0.16043

0.42180

0.205 0.198

0.201 0.196
0.096 0.115

0.003 0.006
0.000 0.000

0.655 0.634

0.640 0.630

0.000 0.000

0.290 b 0.232c

0.618, 0.570,
0.565, ' 0.86, 3

0.607, 0.635
0.621, kO. 50 "
0.552 '

~Risberg, Hef. 21, or Moore, Ref. 22.
Victor et a/. , Ref. 4.
Weiss, Ref. 5.
Stewart, Ref. 6.

~ Fischer, Ref. 7.
~ Saraph, Ref. 9.

g Smith and Lizst, Ref. 17.
"Berry et al. , Ref. 18.
' Lundin et al. , Ref. 19.
' Andersen et al. , Hef. 20.
"Beck and Sinanoglu, Ref. 8.
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The present f, and f„values are generally closer
together than those of Weiss, ' indicating somewhat
better convergence of the present calculations.
For the resonance transition, Weiss has f, =1.VVS,

f„=1.701; for (SsSP) 'P'-(Ss Sd) D, f, =0.279,
f„= 0. 185; and for (Ss3P) 'P'-(SP') 'P, f, = 0.654,
f„=0.615. The present values, shown in Table II,
are closer together and fall in between the f, and

f„values of Weiss. The only apparent discrepancy
is for the (SsSP) ' P'-( Ss Sd) 'D transition, where
Weiss has f, =0.5I2, f„=0.569, outside the range of
the present values and closer together. His com-
puted energy is 0.1193a.u. exactly equal to the pre-
sent value. The experimental results appear to
favor the lower value of f in this case. A careful
study of convergence for this particular transition
and examination of inner shell effects would be
needed before a definitive choice could be made
among the available results.

The states of configuration 3P' and 34' lie above the
3s or 3P ionization limits and correspond to auto-
ionizing states. The lifetime or width depends on
the strength of interaction with the ionization con-
tinuum. The computed energies should lie within
the width of these resonances. " In the particular
case of the state labeled (3P') 'D, the SP' configura-
tion is also a large component of the wave function
computed at 4 E = 0.13491 a.u. , below the (SP ') 'S
state. .This may indicate a very broad resona, nce,
or sharing of oscillator strength from SP' over a
broad range of 'D states, including the continuum
extending beyond the 3snd Rydberg-series limit.

Results for Ca are shown in Table III, compared
with theoretical ' "and experimental" data. Ex-
perimental energy levels are from Risberg" or
Moore. " Agreement with previous results for the
resonance transition and for the transition
(4s4p) 'P'-(4p') 'P is good. For the transition
(4s4p) 'P'-(4p') 'D the present values of the os-
cillator strength are an order of magnitude larger
than an earlier calculation, "which, however, used
much more restricted variational wave functions.

Configurations 4s3d, 4P', and 3&' are found to
interact strongly in the 'D states. While configura-
tions 4s3& and 3&' are the largest single compon-
ents of the 'D states so labeled, the state designa-
ted (4P') 'D has nearly equal weights from all three.
This may account for the very large oscillator
strength computed for the transition from (4s4P) 'P '
to this state.

The 'D and 'S states identified with configuration
3&' are computed to be above the 4s ionization lim-
it, in agreement with conclusions by Armstrong
et al. ,

' from muultichannel quantum defect analysis
of their data. They reassign the state designated
(Sd')'D by Risberg" to (Sd5s) 'D, and find no 'D
state below the 4s limit that can be labeled 3&',
although the 4sn& Rydberg series shows an admix-
ture attributed to this configuration. This is in
accord with the present calculation of a substantial
oscillator strength in the (4s4P) 'P'-(Sd') 'D tran-
sition, and strong configuration mixing involving
(Sd') 'D. This state would be characterized as a
broad resonance in the 4sn& ionization continuum,

TABLE III. Ca excitation energies (Hartree units) and oscillator strengths.

Initial
4E(obs) '

(cm ) (a.u. )

AE(calc)
{a.u.)

f (calc)
fg f. f (other)

4s2 ~$4s4p ~P'

4s limit
3d limit

4s4p iP 4s3d iD

4p2
4p2 i$

4s limit
3d2 'D
Bd2 1$

3d limit
4s4p 3P' 4s3 d ~D

4p 2;3P

3d P
4s limit
3d limit

23652
49306
62992
-1803
17068
18134
25653

f

39340
5094

23245
33288
34043
47729

0.10777
0.22465
0;28702

-0.00821
0.07777
0.08263
0.11689

0.17925
0.02321
0.10591
0.15167
0.15511
0.21747

0.10419

0.00650
0.09025
0.08297

0.14155
0.16495

0,05013
0.10469
0.17674

1.885 1.782

0.001 0.013
1.694 1.380
0.157 0.197

0.326 0.181
0.010 0.006

0.255 0.259
0.622 0.623
0.044 0.033

822 175 c

1.83, ~ 1.75 '

0.17

0.514, b O.52'
O.104 '

'Risberg, Ref. 23, or Moore, Ref. 22.
Victor et al. , Ref. 10.
Friedrich and Trefftz, Ref. 11.

~Kim and Bagus, Ref. 12.
Smith and Lizst, Ref. 17.
The state classified as (3d ) D in Ref. 24 is reassigned to (3d5s) ~& in Ref. 1, and

(3d ) & is not identified below the 4s limit.



R. K. NESBET AND H. %. JONES r6

extending down into the Rydberg series.
The 4s', 4P', and 3d' configurations are found

to interact strongly in the computed 'S states.
Configuration 4&' dominates the ground state, but
4P' and 3d' occur with nearly equal weight in the
'S states so labeled. The lower of the two states
is designated as (4P')'S in Table III. The comput-
ed excitation energy is in excellent agreement with
the state denoted (4P') 'S by Risberg. " The transi-
tion to the upper state, labeled (3d') 'S in Table III,
is found to have a smaller oscillator strength.
This agrees with the finding by Armstrong et al. '
that only two independent "unperturbed" series,
states 4sns and the unique interloper state labeled
(4P') 'S, need be considered in analysis of the ob-
served '8 Rydberg series. Nevertheless, the pre-
sent calculations show that it cannot be concluded
from such analysis that an isolated state belongs
to a pure configuration.

Although configurations 4P' and 3d' also interact
strongly in the computed 'P states, one configura-
tion clearly dominates each of the computed wave
functions, so the designation of these states in
Table III is unambiguous. The computed
(4s4P) 'P'-(4P') 'P transition energy is close to its
spectroscopic value. " For both (4s3d) 'D and
(3d ) 'P the computed excitation energy is too high

by approximately 0.025 a.u. , probably indicating a
quantitative inadequacy of the frozen core approxi-
mation for configurations involving 3d orbitals. Al-
though the computed (3d') 'P energy is above the 4&

limit, the state is still bound, since autoionization
into the 4snl continuum is parity forbidden.
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