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Multiple scattering in the Compton effect. V. Bounds on errors associated
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The operator formalism developed in the previous paper is used to derive upper and lower bounds on the
maximum error associated with multiple-scattering corrections to experimental Compton profiles. In some
cases it may be possible to use these bounds to deduce the amount of multiple scattering in the experimental
profile.

I. INTRODUCTION

In previous papers in this series, ' ' we analyzed
the nature and the importance of multiple scatter-
ing in the brompton effect. We then developed an
operator formalism' which led to procedures for
treating experimental brompton profiles so as to
remove the effects of multiple scattering, leaving
the true single scattered profile. '

There are at least two ways to test the accuracy
of a single scattered profile J', which has been de-
rived from an experimental profile J~ by correc-
tion for multiple scattering. One may obtain J~
from a calculation (e.g. , Hartree-Fock, band theo-
ry, etc. ) and compare this profile with the Jz which
results from correcting the experimental profile.
This approach should be appropriate for small
molecules for which there exist very accurate wave
functions and profiles. For large molecules or so-
lids, however, where accurate calculations may
not be available, comparing the corrected J~ with
the calculated Jz may not yield a very informative
result. Also, some correction procedures' use
a calculated J~ to generate the corrections to J~.
Here again, comparison of the corrected and cal-
culated profile will not afford a meaningful test of
the results. An alternative method is to perform
the experiment on samples of different thicknesses.
If the corrected profiles are nearly independent of
sample thickness, then one assumes that the cor-
rected profiles are accurate. Such tests are use-
ful, but will give no information about certain types
of systematic error in the correction procedure,
e.g. , using an incorrect operator' to generate the
multiple from the single scattered profile.

In this paper we show that, using the formalism
developed in paper IV, it is possible to obtain an
upper and a lower bound to the maximum error in

J~. These bounds are derived in the next section
and are calculated explicitly for a simple model
experiment in Sec. III. We find that for certain
types of correction procedures, the bounds ap-
proach zero if x, the fraction of multiple scatter-

ing, is known exactly. We show how the bounds
may be used to estimate x if a good calculated J~ is
available.

II. DERIVATION OF BOUNDS

od (x)=d (e)=()F, '(x')d .'(x)dv), (2)

where X' is the intermediate wavelength and F),,(X,)
is the normalized single scattered profile observed
at scattering angle 8 and wavelength X, when the in-
cident photons have wavelength X,. The single
scattered profile of interest Jz(X) is, in this nota-
tion, Ft)~0(X), where 8~ is the experimental scatter-
ing angle and X, is the wavelength of the incident
beam. The angular brackets signify an average
over the scattering angles, i.e.,

(d(ee„ee, ))-=f e"&(()„ee,)d(ee„(),)dec, d(), , (3)

where P~& is the probability that a photon is scat-
tered first through solid angle 0„ then through so-
lid angle O„and emerges with total (observed)
scattering angle 8&. In Eq. (2) and in the equations
that follow, we adopt the following convention for
all profiles which have solid angles as arguments:

f(ee, )= e f e(e, ) ~ ' [V —e(e,))), (ee)

(4b)

As in paper IV, we assume that the experimental
profile J~ is known, and that we wish to calculate
from it the single scattered profile J~. The pro-
files are assumed to be related by the equation

J@= (I —x)Jq +xO Js e (1)

where x &1 is the fraction of multiple scattering
and the operator 0 applied to the normalized single
scattered profile J~ generates the normalized mul-
tiple scattered profile J„. Here we shall consider
only double scattering. In this case 0 takes the form'
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where

a(g }= X, + (2k/mc) sin' 28,

b(8) =(2XO/mc) sin~g .
(4c)

The factors multiplying the f functions on the right
side of Eq. (4) are required to insure that

The above inequalities hold for all real-valued
functions f and g provided only that all terms on the
right exist. Finally, if f(x, y) is a function of two
variables let II f(x, ~ )Il~p&~ denote the L~ norm tak-
en with respect to the y variable when@ is held
fixed (it is thus a function of x). Then (Minkowski s
integral inequality' )

fd ( )()dx'=f d ( )()dr= fd (x)dr=i.
f(x, y)dx ~ f(x, ~ ) dx.

ekg . p aJ& p
(12)

That is, Jz(Q, ) and J'z(A, ) are the intermediate sin-
gle scattered profiles appropriately normalized,
shifted and scaled' to take account of the fact that
observations are made only on photons of incident
wavelength Xor at a scattering angle 8~.

We define two norms. For real valued functions
f defined on (-~,~}, let

00 ~lp
I(pile= f ' (f(x)(edxi(P e Positive integer)

m g)o

Substituting Eqs. (2) and (8) in Eq. (1), we obtain

d'(X) =(t -x)de(X) ex(f d' (()s)d' (,()s)dn ),
'

=(1 x)J;(x)+(1-x)&(~)

+~ J~ Q, J', Q, dX'+ J', Q, OQ, dX'

+ aQ, J', Q, dX'+ 6Q, 5Q, dX' .

and

llf II" =sup([f(x) [}. (6)

J;(X)+5(X)=J;(~). (8)

In particular, we shall seek to calculate bounds on
the largest absolute value of the error

II~II' =ll&;-J;II' .
To obtain our bounds, we shall need Holder's in-

equality'.

%e refer to these as the L~ and L" norms, respec-
tively. Sirice our Compton profiles are normalized
and are non-negative, we have

II J~ll, =ll J, ll, =ll J~ll, =1

Let Jz(A) be the single scattered profile which
has been calculated from an "exact" experimental
profile J s(X}by some correction procedure. Zz(&)
is an approximation to the exact single scattered
profile J'~(X). We wish to investigate the error in
the single scattered profile 5(X) defined by

+x J', Q, 5Q, dX'

6Q, J', Q, dX'+ 5Q, 6Q, dX'

(15)

Starting from J~, we can also calculate an experi-
mental profile J~~, e.g. , using a Monte Carlo tech-
nique, by applying the operator 0 to Z~ as in Eq. (1):

d( )n= ( -1)xd( )X+ (xf d s(D)d s('())d, V)*,(14)

Note that when 5 is identically zero, i.e., when J'~
is exact, then Jx(X) =Js(X).

Subtracting Eq. (14) from Eq. (13), we obtain the
difference between the measured and calculated ex-
perimental profiles:

e(~) =J;(x)-J;(x)
= (1 —x)5(x)

x gx dx~
p g

where

1/p+1/q=1,
and the triangle inequality:

Ilf+g llg~llf II",+llg II", .

(10)
In the Appendix, we show that if our calculated

single scattered profile is well approximated by a
single Gaussian

J;(x)=
1 X a(g) '

exp — ~, (16)
yes b(e,)

then application of the inequalities (10) (12) to Eq.
(15) leads to upper and lower bounds on II6II „. The
results obtained are

-xBC+[x'B'C' —(1 x)(xAB --II&II'„)j'~' '
), xBC —[x'B'C' —(1-x)(xAB+Il&II )]'~')'

1~)
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where

& = &II ~;(II,) II", ), (18a)

TABLE I. Exact and calculated sirgle scattered pro-
files for a model. experiment.

B 0
Ao sln2 —2

& =[2(f (8 )/&(0,))]"'.
(18b)

(18c)

0.715
0.720
0.725
0.730
0.735

0.5565
1.402
3.119
6.131

10.65

0.5565
1.402
3.121
6.136

10.66

0.0
0.0
0.002
0.005
0.010

Note that aside from the appearance of the pro-
file-width parameter y in Eq. (18b), the quantities
B and C are completely determined by the geome-
try and initial wavelength of the experiment.

Under most experimental conditions currently
employed, the wavelength shift in the first scatter-
ing is sufficiently small that the integral in Eq. (2)
is well approximated' by a convolution of two sin-
gle-scattered profiles:

OZ~(q) =Z~(q) = (J', (Q,)*J~(Q,)) (19)

if (~'- X,)/~, « I.
If Eq. (16) is valid, then application of the convo-

lution inequalities'

0.740
0.742
0.744
0.746
0.748

0.750
0.752
0.753
0.754
0.755

0.756
0.757
0.758
0.759
0.760

16.34
18.73
21.05
23.19
25.05

26.53
27.55
27.86
28.04
28.08

27.98
27.74
27.37
26.87
26.25

16.36
18.76
21.09
23.24
25.10

26.59
27.61
27.93
28.11
28.16

28.06
27.83
27.46
26.97
26.35

0.02
0.03
0.04
0.05
0.05

0.06
0.06
0.07
0.07
0.08

0.08
0.09
0.09
0.10
0.10

llf*gll' —ll f II', . ll g II',
Ilf+gll.' —ll f II' llg II', ,

llf~gll', —llf II', ll gll'„
to Eq. (16) affords a new set of bounds on 116II „.
While these bounds are not as sharp as those of Kq.
(lV), they are independent of any assumption about
the shape of J~, such as the Gaussian approxima-
tion of Eq. (16). These "convolution" bounds also
appear to give a more well-defined minimum for
the determination of x by the method described in
Sec. IVA.

If we define

7= (8 l.n 2 8 2/S '1tl 2 8p ),
-(1+x) + [(1+x)'+4x II@ II ', ]'i'

2(1+x)

typical convolution bounds are given by

II+II'. -»6, 11&gll'.
6 x II&II'. +x«, ll~gll'.

1 —x+xr(1+6,) 1-x-xr(1 q6, )

(21)

Seven other sets of upper and lower bounds may
also be found' by applying different combinations
of the inequalities (20a) and (20b) to Eq. (16). Which
of these afford the greatest lower. and least upper
bounds depends upon the detailed shape of the profile.

III. MODEL CALCULATION

To test the sharpness of the bounds, the above
expressions were calculated for the model system

0.762
0.764
0.770
0.775
0.780
0.785

24.68
22.75
15.82
10.20
5.812
2.925

24.79
22.86
15.92
10.29
5.871
2.960

0.11
0.11
0.10
0.09
0.06
0.04

IV. DISCUSSION AND FURTHER APPLICATIONS

Examination of the two itera. tive approaches to
the multiple scattering correction derived in paper
Pf shows tha, t if those procedures are carried to
convergence, then II6II „ is identically zero. This
observation has a number of consequences. First,
it implies that such iterative procedures are the

treated in paper IV, a single electron surrounded
by a planar ring of electrons. In this model, the
angular averaging becomes trivial, since only a
single pair of scattering angles (Q„Q,) can occur.

With an assumed scattering angle g~= 150' and x
=0.1, we calculated J'~ for a Gaussian J~ of half-
width 0.833 (y= 1) assuming only single and double
scattering. An approximate J~ was generated by
performing one iteration of the Newton-Haphson
procedure described in paper IV. This profile was
then used in Eq. (1) to produce J'z'. In Table I we
give J'~(X), Z~z(X), and 6(X). The greatest lower
and least upper bounds calculated from Eq. (1V) are

0 &II6II '„&0.1V

as compared with the observed result II6II~ =0.11.
This model is investigated further in the following
section.
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best correction methods, since if x is known exact-
ly and the iteration is carried to self-consistency,
then J~ is obtained with a vanishingly small error.

This will also be the case, however, if an incor-
rect value of x is used in the above correction pro-
cedures. That is, for a given J~, there exists an
infinity of solutions (x, Ja) satisfying Eq. (1). Any
such solution will yield II5II „=0. Thus, the bounds
derived here will not be of direct applicability in
such cases. ' However, if x is,obtained indepen-
dently, either by using the ratio of elastic to in-
elastic scattering'"' or by extrapolating tabulated
estimates of the dependence of x on sample content
and thickness, " then reliable bounds may be cal-
culated. Alternatively, if J'~ is derived either by
an extrapolation procedure'"' or by a method which
starts from a theoretical profile, ""' then our error
analysis can be applied directly. If a self-consis-
tent iterative correction procedure is used, then
other methods of utilizing the error bounds may
also prove fruitful.

A. Estimation of x

If we are given the experimental profile J~ and
the true single scattered profile J~, then there is
a unique value of x which satisfies the operator
equation (1). For this value of x, the error bounds
calculated using J~, J~, and x should be a mini-
mum. Therefore, if we have a good calculated
profile (e.g. , from a molecular orbital calculation),
we ca.n vary x and calculate the bounds on II&Il „un-
til a minimum is obtained. Hence the error bounds
provide an independent method of estimating x.

In Fig. 1 we show the results obtained by treating
the model discussed in the previous section in this
manner. We have used the true single scattered
profile, varied x from its exact value of 0.10, and
computed the upper bound on IIIII ~. The variation

in the error is sufficiently marked to define the
true x. Of course, in a real case the exact J~ will
not be known and we expect the minimum in the
curve to be somewhat less pronounced. The re-
sults of the same calculation for the convolution
operator bounds are shown in Fig. 2. The result
is much more dramatic, although the bounds them-
selves are not very good.

B. Higher-order scattering

Our treatment thus far has assumed that essen-
tially all the multiple scattering is double scatter-
ing, i.e. , that triple and higher order scattering
are negligible. As we point out in paper IV, a
more rigorous treatment would replace xO in Eq.
(1) by Z";, x;0; where 0; is an operator which gen-
erates the ith order scattered profile from J~.

Our derivations of error bounds on II5II"„can eas-
ily be augmented in this manner, though the alge-
bra becomes somewhat tedious. Perhaps a more
practical approach to including higher-order scat-
tering in the estimate of error bounds is to carry
out the correction using standard techniques which
allow only for double (or for thick samples, triple
as well) scattering, but to obtain Jz from J'a by in-
cluding higher orders of scattering. 'The bounds
are then calculated using the double-scattering-on-

I.O-

0.8-c
O

0.6-

Ct.
CL 04-

0.2-

I I I I I I I I I

0 0.02 0.04 0.06 0.08 0.10 0.12 O. I4 O. I6 0.IS 0.20
X 0.02 0.06 O.IO O.I4 O.IS 0.22 0.26

FIG. 1. Variation in upper bound to the error llew ll

in the single scattered profile as x is varied from its
true value 0.10.

FIG. 2. Variation in upper bound to the error II &II in
the single scattered profile as x is varied from its true
value 0.10. Convolution operator.
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ly formulas derived here, and they give an esti-
mate of the errors caus ed by neglect of highe r- or-
der scattering. The higher-order x; need not be
calculated explicitly, but may be estimated either
in the course of the Monte Carlo calculation of J~
or from the fractions of lower-order scattering and
the fact that x,„/x,. reaches a constant value in
most samples for i~2.' The single calculation re-
quired of J~ including higher-order scattering is
easily performed by currently available Monte Car-
lo programs. "'"'""'

P = [A,b(8~)/b(0, )] [X+A.,—a(0,)] . (A4b)

If Zz is a Gaussian of the form exp(-x'/y'), then as
X'- ~, the integra. nd in Eq. (A3) approa. ches
exp(-o2/y')/X', and the integral diverges. Thus the
inequality (A2) will not yield a useful result in this
case.

The case p=1, q=~ is also unproductive. How-
ever, by choosing P =q =2, we are able to obtain a
more meaningful inequality. We need to evaluate
all of the angular averages in Eq. (A2). In order to
do this, we approximate J z by a single Gaussian:
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J;(X)= exp—1 A. —a(gp)

yWmb(e, )

Then, setting

a' = [o. —a(0,)]/y,
p'= p/y,

(A5)

(A6a)

(A6b)

6(Q,) J'(Q, ) dA

6(Q, ) 6(Q, ) dX

(Al)

We use the Minkowski inequality (12) to move the
L" norms on the right-hand side of Eq. (Al) inside
the angular averages. Application of inequality (10)
to the integration over X' then gives

ll~ll
' ~ (I —~)llsll' +~(& ll~;(Q, )ll,' lllls(Q, )ll,' ll

'
)

+ ( Ilb(Q, )II,' IIII '' (Q, ) II,' ll '.
&

+ & II b(Q, ) II,
'

ll II 6(Q,)II,"II '.
& ) . (A2)

Several inequalities may be obtained from Eq. (A2)
with different choices for P and q. Some may be
immediately discarded. Consider, for example, P
=~, q=1. We have

lid $(Q,)II", = ~p(0,), ~p(0, )
~ b(e, ) ' ( ~ ~'b(0, )

APPENDIX. DERIVATION OF UPPER AND LOWER BOUNDS

Taking the I." norm of Eq. (15) and applying the
triangle inequality, we have

Ilcll"„—(& -x)ll&ll'„+x( f z;(&)&(&)d&, ,

II d'(Q ) II
'=

p yV'2v b(e, )

erf ' —erf

we find it easier to use the upper bound obtained by
replac ing thh uppe r limit of the integral by +~. We
thus have

I/2—
II &;(Q,) II", —

yv vr b(82) 2P' 2
(A6)

Recalling the definition of P' [Eqs. (A4) and (A6)],
we obtain

i/4 ~ x/2 1
2 2 b(e) [x ~ (0)]''

(A9)

where n and P are defined in Eq. (A4), we have

d c (Q ) 0 -(u'+8'/v)1

yvÃb(0, )
~

The L' norm is therefore

Il&*,ID, )ll", = " f d&„
yv v b(0,)- ~,

~ 1/)t0 2 1/2
0 e ' dt-2 (o'+g't )

yv~w b(8, ) —~o

(AV)

While the integral in Eq. (AV) ma. y be evaluated ex-
plicitly to yield

where

xp(g ) 1 . p
b(0 )

o. =a(0,) X,b(0,)/b(0, ),

(As)

(A4a)

We now need to find the L" norm of Eq. (A9) with
respect to A. . Since a(0,) and b(8, ) do not depend
upon X and s ince X0 & X & ~, the sup of the right- hand
side of Eq. (A9) must occur at X= X,. Therefore,
using Eq. (4c), we have
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IIII &;(fl,)II,"II '.

1/4 y 1/2 1 X/2
0

2yb(e, )) (i., —(2h/mc) sin'(8, /2))

Next, we evaluate 116(Q,)112~'. Setting p= 1, q=~,
we have Holder's inequality (10):

II ~(Il,) II",

(t() II/*, (Q, )ll", II'. &(~ ) (2 ~' )

If we set

A =
& II & g(fl, ) II", &,

9 = — A0 — sin' —'
(18a)

J~Q, —J~Q, dA, '

J, Q, J', Q, J', Q, -J', Q, dX'

—(II&;(fl,) -&;(fl,)ll", ll~'(fl, ) -~;(fl,)ll".)' '

(A10)

(18b)

(18c)
b gp

then Eq. (A2) becomes

ll~ II'„&(1-x) 11611'„+x[AB+ 2BC(llbll ')"'] (A16)

By the defin'ition of 6,

ll~;(~, ) -&;(~,)ll '=116(~,)ll" (All)

Equation (A16) is a quadratic in (11611~)' and it may
be solved to yield t'he lower bounds

Because of the normalizing factors which were in-
cluded in Eq. (4), we must have

and

ll~ g(fl, ) II", =II& s(~,)ll ';=ll~ gll ', =1 (A12a)

(A12b)

ll~(fl, ) II
"=[b(0,)/b(g, )]11511'..

Combining Eqs. (All) —(A13) with Eq. (A10), we
now have

(Ai&)

- X/2

115(fl,)ll", ~
b

' llbll'. ll&;(~,) -~g(fl, )ll',

'
ll ~ II '.( ll &;(fl, ) II

"
, +II &;(fl, ) II ", )

b 8,

b(e, )
(A14)

where 11611„ is the quantity we seek.
Finally, we must estimate 11116(&,)II, II „. We ob-

tain a bound by assuming that our ca,lculated single
scattered profile is sufficiently accurate that

Ilb(0, )II", =Ilz', (~1,) —Z', (f~,)II", &II&;(~l,)II", (A15)

We have now found all of the quantities necessary
to evaluate Eq. (17). We summarize: (a)
IIX q(&,) Il,', found by numerical integration;

(b) II lie (fl,) II
", II

' & ll II &;(fl,) II
", II

'
;

X/2

(c) ll~(fl, )ll", & 2b2 b 8

116(fl,) II", =lib ll ', .
The change of variables in Eq. (4) together with

this preservation of normalization also implies that

—x BC + [x'B'C' (1 —x)—(xAB —Ile II
~ )]'~ '

(Alt)

Closer examination of Eq. (A16) shows that if
lie II „&xAB then the inequality will hold for any val-
ue of 11611"„, and the only lower bound available in
this case is the obvious

if Ilail '„~xAB, then the quadratic has two real
roots 6, and 6, with 6 &0& 5, and 15 I& fb, l. For
the greatest lower bound on 11611~ we must choose
5„ the positive root in Eq. (A18).

Upper bounds on 11511~ are obtained by writing
Eq. (15) in the form

(1 —x)ii(z)=a(i) —x ized(Q, )ii(Q, )dv

6Q, J' Q, dX'

+ 6Q, 6Q2 dX' . A19

Applying the inequalities (10)-(12) in the same
manner used to derive the lower bounds, we obtain

(1 -x) lib ll
'

&ll& II '. +x [AB + 2 BC (11511.')'~']

or(, ,/, xBC + [x'B'C'+ (1-x)(xAB+ll~ II '„)]'/'
CO

1. —x
(A20)

withA, B,C as defined in Eqs. (18). In this case,
the roots of Eq. (A20) will always be real with
6 &0& 6,and fb, l&fb 1. Now, sincewe seektheleast
upper bound, we choose 6, the negative root of Eq.
(A20).
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