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Multiple scattering in the Compton effect.
IV. Operator formalism for nonstationary electrons
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The problem of correcting experimental Compton profiles for the effects of multiple scattering is shown to
be equivalent to obtaining the solution to a nonlinear operator equation. Two methods of solving the equation
are presented. One, analogous to the Newton-Raphson technique for algebraic equations, leads to a new

solution to'the problem, Another more efficient approach, based upon the idea of successive approximation,
is seen to be equivalent to the method of Felsteiner, Pattison et al. , though it fails to converge if the
fraction of multiple scattering is too great. The double-scattering operator is derived and examined in some
detail. Extensions to higher-order scattering are indicated.

I, INTRODUCTION

Considerable progress has been made in the
past several years toward the goal of understanding
and being able to correct for the effects of multiple
scattering in the measurement of Compton pro-
files. Insights have been gained into the factors
which determine the intensity, ' angular distribu-
tion, ' spectrum, "' and relative importance of
elastic and inelastic scattering' " in multiple scat-
tering, though these studies have generally been
based upon scattering from stationary electrons.

In addition, two methods have been proposed,
and applied with considerable success, to derive
the pure single scattered profile from experimen-
tal measurements which contain contributions from
multiply scattered photons. In the approach of
Halonen, Williams, and Paakari (HWP)" a theo-
retical single scattered profile is used to generate
the multiple scattering contribution, the intensity
of which is obtained from a Monte Carlo calcula-
tion. This method has the obvious drawbacks that
a reliable calculated profile is required as a
starting point and that it may prove exceedingly dif-
ficult to distinguish between two or more reason-
ably accurate calculations.

The technique proposed by Felsteiner, Pattison,
and Cooper (FPC) uses the experimental profile
as a first approximation to the single scattered
profile and obtains the latter by an iterative pro-,
cedure in which the spectrum and intensity of mul-
tiple scattering are calculated by a Monte Carlo
method. Particularly with its recent modification
to allow for the effects of electron binding ener-
gies, "the FPC technique appears to offer great
promise as a practical procedure for correcting
experimental profiles. However, no rigorous de-
monstration has yet been given either that the
iteration should converge or that, if it does con-

verge, the result obtained is the true single scat-
tered profile.

In this paper, we show that the problem of cor-
recting experimental profiles for the effects of
multiple scattering is equivalent to solving a non-
linear operator equation. We discuss several ap-
proaches to obtaining this solution, and find that
one of them corresponds to the FPC iteration
scheme. Analysis shows that the scheme should
converge to the desired profile if the fraction of
multiple scattering is not too large. A new, more
generally convergent, but less computationally
attractive method is also derived and applied to a
model experiment. In addition to our detailed
treatment of double scattering, we outline the ex-
tension of the operator formalism to higher-order
scattering. In paper V" of this series, we show
how the formalism developed here may be em-
ployed to obtain bounds on the errors associated
with single scattered profiles which have been ob-
tained by correcting experimental profiles using
the techniques described here or any alternative
methods.

II. OPERATOR FORMALISM

Consider a Compton scattering experiment in
which incident photons of wavelength A.

Q
are scat-

tered through an angle 8&. Let E~~ (A) be the nor-
malized single scattered Compton profile, i.e. ,
the intensity of scattered radiation as a function
of wavelength after the usual corrections for back-
ground, resolution, absorption, and detector effi-
ciency, '4 if there were no multiple scattering. De-
termination of I' ~ (X) is the object of conventional

. Q

Compton scattering experiments, since it is this
quantity which is directly related to the electronic
momentum distribution of the scatterer. " We de-
fine an operator 0 which when applied to F ~ (&)
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generates the normalized multiple scattered pro-
file G„~(X), i.e.,

a(8) = X, + (2'/mc) sin'28,

b (8) = (2XO/mc) sin2 8 .

(ea)

(eb)

OF',~ (~) =G',~ (X),

F',~(X)dr= G',&(~)u.= l.
(1a)

(1b)

Then, using Eq. (6), Eq. (5) may be written as

X, = X, —~, +a(e)+ (~,/X.,)b(e) p,
or

(7a)

For the moment we shall limit ourselves to the
case in which triple and higher-order scatterings
make negligible contributions, so that the multiple
scattered profile G~~ is simply the (normalized)0. 8 16double scattered profile D,~." In Sec. IV we show

0
how higher-order scattering may be included with-
in the present framework.

Let x be the fraction of double scattering in the
experimental profile J~. Thus

Z, (~) = (1 —x)fF'„~ (~)+xa',~ (~)

= (1 x)IF,&-(X)+xOF,~, (&), (2)

where I is the identity operator. In general, x will
depend upon the scattering angle, the sample di-
mensions and orientation, the beam size, ' and the
cross sections for the various photon-electron in-
teraction channels. The value of x is generally ob-
tained from a Monte Carlo calculation, though it
may also be estimated from the observed relative
intensities of the elastic and Compton lines. "
Equation (3) may be formally inverted to yield the
desired profile F ~~ (&):

F i& (X) = [1—x (I —0)] i js (X) . (8)

Obtaining F ~~ (X) has now been reduced to solving
Eq. (2) for F~~s given Jz or, equivalently, carrying
out the inversion in Eq. (3).

We nom seek to construct the operator O. Pho-
tons which scatter twice through solid angles Qy

[= (e„y,)) and Q, have a spectral distribution given
by

p, = X,[~, ~, + X, -a(e)]/~, b(e) .
When the two. profiles are both normalized, me
must have

(7b)

(8)

where the factor in square brackets is required to
preserve the normalization of the profiles.

Equation (8) now allows us to write the double
scattered profile D of Eq. (4) completely in terms
of single scattered profiles at the experimental
conditions X„G~. We obtain

D (n~, A2 ) (x()
0

b (e,p
b(8,)b(8,) &'

xd', x a(d, )+ ' (X' —a(d, )))
b(e,)
b 8

x, b(e, )XF',~ a(8~)+—',
(

')

x[X X'+X —x(d, )])dx'.

F', (q) =F',~ (X)

for wavelengths X and I which correspond to the
same electron momentum P,. Thus, by setting
X =X, X, =XO, and 8 =8~ in Eq. (7a) and using Eq.
(7b) for p„we obtain the general result that

8 ( )
Lob(ed)
~,b(e)

xd'„' a(d, )x ' ' (x, x+ ,x-a( )d)),
~,b(e,)

a "i 2 (X)= F"(X')F"(X)d~'
0 Xo (4)

(9)

where the notation F~ (&,) signifies the normalizedXj
Compton profile which would be observed at a
scattering angle 8 and a wavelength X, as a result
of single scattering photons of incident wavelength

The integration in Eq. (4) is over all possible
intermediate wavelengths A, '. We now wish to re-
late F8~ (A ) to F~&(X) for any A.„X2, and 8;

A photon of wavelength A.~ which scatters through
an angle 8 from an electron mith momentum com-
ponent p, along the scattering vector undergoes a
wavelength shift given by

AA. = A —X~ = sin —,8+2 X, sin28 .2k . 2g pg
V?C VlC

We define

The spectral distribution given by Eq. (9) is nof,
as has sometimes been held, ' a convolution of two

single scattered profiles, since the shape of the
second profile depends upon the intermediate wave-
length X'. In fact F,', (a) is not even integrable as
a function of X'.

Equation (9) gives the double scattered profile
that would be observed if there were only a single
pair of angles (Q„Q,) which allowed double scat-
tered photons to emerge at 8~. Such an example
mill be considered later. However, in any real
experiment, there are many ways in mhich two
seatterings can combine to yield the observed
scattering angle, i.e., there is a distribution of
(Q„Q,). We denote the probability that a photon
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will scatter successively into solid angles bebveen
Q, and &y+dQy then0, and 0, + dQ, andfinally emerge
with total scattering angle 8~ as P ~(Q„Q2) dQ, dQ, .
This probability distribution will be determined by
the differential and total scattering cross sections
and by the sample geometry~ as well as by the
binding energies of the electrons. """It is per-
haps most conveniently obtained by a Monte Carlo
procedure, '0 although under certain circumstances
simplifications can be made. For instance, in. the
infinite radius limit, P &(Q„Q2) reduces to a sim-
ple analytic expression in closed form. Also, if
we assume perfect collimation of the incident
beam to zero diameter, the problem of calculating
the probability distribution may be reduced to a
three-dimensional integration, thereby significant-
ly increasing the efficiency of the Monte Carlo

computation relative to existing procedures. 6

Given the form of Pe~, we may write the actual
double scattered profile as

D„&(X)= D„"x'"2'(X)Pe&(Q„Q ) dQ, dQ (10)

0 =ARC .

C is the Compton scaling and translation operator
of Eq. (8). If f and g are any two functions, then

Combining Eqs. (1), (9), and (10), we are now able
to identify the operator 0. We may view 0 as a
bilinear operator' which maps ordered pairs of
functions (single scattered profiles) into a single
function (a double scattered profile). We write 0
as the composition of three operators:

C(f(e),e(e))= f e(e&)+ [e.' —e(e,)J, —,&; e(e&)+ —, & [e —e'+e +e(e)] ). , (12)

C is a linear operator on ordered pairs of func-
tions. The opera, tor R corresponds to the double
scattering integration of Eq. (9):

R(h, (A.'), h, (V))= h, (e[.')h (X') dX' .
~eee

Note that R is bilinear. Finally, A is the angular
integration, Eq. (10), which is a linear map:

(14)

Comparing Eqs. (8)-(10) with Eqs. (11)-(14), we
see that

D ~& = OF q& =ABC (F~~&, Feq&)
=B(F„me F~~—n) e

and thus 8 is a bilinear operator. Having defined

0, we now return to the problem of solving Eq.
(2).

III. SOLUTION OF THE EQUATION

Since the operator 0 is nonlinear, the simple
expansion of Eq. (4) as either

[i x(i o)] '=i+x-(I o)+x'-(i o)'+ ~ ~ ~

or as

[i x(i o))-'= i -——,o+——x,o—2+ ~ ~ ~1-x (1-x)' (1 -x)'
(18b)

may not be valid. Nonlinear operator equations
like Eq. (2) are difficult to solve, since direct ex-
pansion of the inverse operator as in Eqs. (16) may

not be possible, even if the inverse of 0 were
known explicitly. Several iterative techniques are
available for dealing with such equations, however,
and we present two such approaches here.

A. Newton-Raphson method

One of the most powerful ways of solving nonlin-
ear algebraic equations of the form f (x) =0 is the
Newton-Raphson iterative procedure. Provided
that the derivative f '(x) exists and is nonzero for
all x, a root of the equation, if one exists, is ob-
tained as the limit of the sequence (x„], where
.x ls gx " y

x„„=x„—f (x„)lf'(x„)=x„—[f '(x„)] ' f (x„) (17)

and the initial approximation xo may be chosen
arbitrar ily.

The above method may be generalized to nonlin-
eeee

ear operator equations. ' Given an operator 0, if
the solution to the equation Of =0 exists, it is the
limit of the sequence of functions (fj, where

f.,x =If.—(o'f ) 'of. (18)

provided that 0', the Frechet derivative of the op-
erator 0 (see Appendix A) exists and its inverse
0' ' exists and is bounded.

We wish to solve by Newton's method the equa-
tl on

TJ~ =-(1 —x)IJ'~+xB(Z~, J~) —Zs =0, (

where the bilinear operator Bis defined in Eqs.
(12)-(15)and J~ is the single scattered profile
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I e((X}. We have by Eq. (18)

j(n+1 ) [I T t 1(j(tl) }]TJ(tl (20)

where 8'(j~, , f) =B(j~,f)+B(f,j~) or, in the pres-
ent case,
Tt(j(n& Tj(n)) (1 x)Tj(n&+ &Bt(j(n) Tj(n)) (22)

T'(J, f ) = (1 -x)f+xB'(J,f ), (21}

The operator T at Js has the Frechet derivative
Itttt

Since T' is linear in its second argument its in-
verse has the series expansion [starting from Eq.
(»)]

T' 1 =[(1-x)I+xB'(j~,')] 'f = I — B'(j~, ')+
1 )2B' (j~, ') —' ' ' f .

Inserting this expansion in Eq. (20), we obtain

(28)

(24)

Using the linearity of B'(j~("), ~ ), Eq. (24) affords the following iteration scheme:

tt

j (tl+1) j(tl) (1 x)J(tl) +xB(J(ll) j(tt)) J1-x
(&0

+ ~ ( )( x(Bt(()(J(n) J(n))+ B(t)((7( )nB(j(n) J(n))) + ( )(+1 Bt(()(j(n) j ) (25)s s (1 —x)( S ~ S ~ S s
i=1

The sequence Js"' will converge to the correct
single scattering profile if x&0.5. The series of
Eq. (25) diverges if x~ 0.5. However if we replace
the series expansion [Eq. (23)] of T' '

by the series

T' '=[(1-x)I+xB'(j„)]'
=[I—x(I B'(j~, '))] -'

=I+x(I B'(j„))+x'(I B'(j„)P+",
(26}

then the iteration will converge to Js for all x &1,
though convergence will be somewhat slower for x
&0.5 tha. n if Eq. (23) had been employed.

While the calculations in Eq. (25) appear formid-
able, the series in i converges after'3 or 4 terms,
and for small x, the method should be practicable.
As a test, we have applied Eq. (25) to a very sim-
ple model of a Compton scattering experiment.
Figure 1 shows a single electron surrounded by a
planar ring of electrons. Photons are incident
along the radius of the ring, and a detector with

perfect collimation is located at a scattering angle

8&. Clearly, all single scattered photons detected
must have 8l=8~, while double scattering requires
8, =180'-8~, 8, = 180' for detection. The distribu-
tion function Pe('(Q„Q,} has been reduced to a 5

function, removing the angular integrations.
With this simplification, we apply Eq. (25) to the

problem of extracting the single scattered profile
from an "experimental" profile. J~ is constructed

by choosing a form for I ~~&, computing D~& by the
0

prescription of Eq. (9), and substituting in Eq. (2)
using an assumed value of x. Table I gives the re-
sults obtained when the single scattered profile is
taken as a Gaussian of half-width 0.833. All of the
integrations required to compute the B operators
were carried out numerically using a 20-point
Gaussian quadrature. '0 Tails of all functions were
set to zero for ~q ~& 5 a.u. The experimental pro-
file J~ was used as the starting approximation
J(0)

We see that even after a single iteration the ani-

detector

FIG. l. A model Compton scattering experiment. Note

that in order to be detected, single or double scattered
photons must scatter first from the central electron.
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Exptl b

profile
1st 2nd Exact

iteration iteration single scat.

0.715
0.720
0.725
0.730
0.735

0.740
0.742
0.744
0.746
0.748

0.750
0.751
0.752
0.753
0.754

0.755
0.756
0.757
0.758
0.760

0.762
0.764
0.766
0.768
0.770

0.775
0.780
0.790
0.795

0.5009
1.261
2.846
5.614
9.793

15.12
17.38
19.59
21.67
23.50

25.00
25.60
26.09
26.46
26.71

26.84
26.83
26.70
26;45
25.58

24.28
22.63
20.70
18.60
16.41

11.11
6.767
1.864
0.8534

0.5565
1.402
3.137
6.157

10.70

16.45
18.87
21.22
23.40
25.29

26.81
27.40
27.87
28.20
28.40

28.46
28.38
28.16
27.80
26.71

25.15
23.23
21.04
18.68
16.26

10.54
6.03
1.32
0.485

0.5565
1.402
3.121
6.136

10.66

16.36
18.76
21.09
23.24
25.10

26.59
27.17
27.61
27.93
28.11

28.16
28.06
27.83
27.46
26.35

24.79
22.86
20.67
18.32
15.92

10.29
5.87
1.32
0.514

0.5565
1.402
3.119
6.131

10.65

16.34
18.73
21.08
23.19
25.05

26.53
27.10
27.55
27.86
28.04

28.08
27.98
27.74
27.37
26.25

24.68
22.75
20.56
18.22
15.82

10.20
5.81
1.30
0.511

All profiles normalized to unity.
Calculated from Eqs. (2) and (10) with 0& ——150, z =0.1.

TABLE I. Correction of a model experimental profile
for double scattering using Eq. (25).

sotropy has been greatly reduced, and accuracy
has been improved by nearly an order of magni-
tude. The major drawback of this technique is that
it appears to be computationally inefficient. Even
in this simplified case where only one pair of scat-
tering angles is allowed, several minutes of com-
puter time are required to correct the model J~
for double scattering.

The correction procedure was also applied to
two x-ray Compton profiles of water, with sample
thicknesses 0.3 and 2.0 cm. The experiments
were done by Halonen as part of the Compton pro-
file standardization project." The Monte Carlo
routine gave the double scattered contributions as
10% in the thick sample, 4.5% in the thin. The re-
sults of the corrections are shown in Fig. 2. The
peak heights are brought into agreement, although
this may be fortuitous, since higher-order (more
than double) scattering was neglected. The cor-
rected profiles differ somewhat at low momenta
away from P =0. We believe that this is due to the
symmetrizing of the experimental profiles. As
we see from the model calculation, there is a dis-
cernible anisotropy in a Compton profile with 10%
double scattering. If this is averaged out by sym-
metrizing the profile, the corrected profile will
be asymmetric. Although this effect is somewhat
more pronounced in the model, it may be a source
of error in real systems as well.

B Successive approximation

An alternative, though less generally applicable
technique for solving nonlinear equations is suc-
cessive approximation. We rewrite Eq. (2) as a
mapping:

(27)

3.6

A solution to Eq. (3) is thus a fixed point of this
mapping, that is, a function f, such that

~: fo-fo.
The f, which satisfies this condition is the exact

single scattered profile J~, since by assumption

1 XJ~= J~- OJq.1-x 1 —x (28)

I

-0.4
I

-0.2
I

0
q (a. u. )

I

0.2
I

0.4

FIG. 2. Experimental (&} and corrected (4) Compton
profiles for 2.0 cm (—) and 0.3 cm ( ) samples of
water.

J&&+j & J 0J~&~1-x ~ 1-x (28)

With the choice P~o'= Je, Eq. (29) is identical
to the FPC iteration scheme. ' if the operator 0

To generate a successive approximation scheme,
we simply use the nth approximation to Js on the
right-hand side of Eq. (28) to yield the (vi+1)-th
approximation on the left-hand side:
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IV. HIGHER-ORDER SCATTERING

The techniques developed in the previous sec-
tions have assumed that only single and double
scattering contribute significantly to the observed
profile. While this is probably a good 'pproxima-
tion in most cases, higher-order scattering can be
important, particularly if thick samples are used
or if very high accuracy is required. The opera-
tor formalism is easily extended to deal with
higher-order scattering.

We have thus far approximated the operator 0
of Eq. (1), which generates Ge&& from F~~~ by the
double scattering operator 6„, which generates
De~I,' from I' ~,. The true 0 is a sum over all or-
ders of scattering

0= x;0; (30)

where the ith-order scattering operator 0,. is de
fined by

o,.»', (x)= J»'&o„o„.. . , o,)

xdQ, dQ, . . . dA, dk, dk, . . .dA, , (31)

were linear, repeated application of Eq. (29) would
yieM a series solution of the form obtained in Eq.
(16b) by expanding the inverse operator. Since 0
is not linear, one must take care not to attempt
such a series solution but must follow the iterative
prescription of Eq. (29). The work of Felsteiner
et al.' '~ suggests that their method converges
rapidly in most cases. It should be more compu-
tationally efficient than the Newton-Raphson
scheme.

From a, mathematical point of view, Eq. (29}
will converge to the correct Zz if F in eq. (27) is
a contraction mapping. " While we have been un-
able to determine that this is the case in general,
we do show in Appendix B that I is not a contrac-
tion mapping for x~ 2. Further, if we assume that
the major contribution to the integral for the dou-
ble scattered profile [Eq. (9)] is from A, /A. , -1
(this turns out to be an excellent approximation},
the operator becomes a convolution. Then it can
be shown (see Appendix B) that for 8, =8, the con-
vergence is further limited to x& —,. This condi-
tion on 8, and 8, would hold, for instance, in the
experiment proposed by Felsteiner and Qpher, "
which would measure the spin dependence of the
Compton profile. Thus the FPC self-consistent
iteration procedure [Eq. (29)], if the correct oper-
ator is employed, should be the most effective way
of correcting for multiple scattering so long as the
fraction of multiple scattering is not too large.

Eq. (3) generalizes to

Z~ = (1 —xr) IJ~ + Q x; 0;J'~ . (32)

Equation (32) may be solved by the same proce-
dures as Eq. (2). The condition for the conver-
gence of Eq. (25}becomes xr &-,', i.e. , the amount,
of single scattering must exceed the sum of all
the higher-order scatterings.

Since the operators 6,. are i-linear, the Frechet
derivatives 0,' are easy to compute. The Frechet
derivative of an i-linear operator is a linear oper-
ator, and the required derivatives for our Newton-
Raphson procedure are of the form

0',.(a, . . . , a)(x, . . . , x)=Qp, [0( xa, . . . ,. a)], (33)

where P, permutes .the n-tuple (x, a, . . . , a) so as
to place x in the jth position. Clearly, use of Eqs.
(30) and (33) in Eq. (25) will render the Newton-
Raphson procedure even more unwieldy. The
complications introduced in the successive approx-
imation approach should be less serious, though
if higher-order scattering is non-negligible, x~
may be large enough to make convergence a prob-
lem.

V. CONCLUSIONS

The operator formalism described here pro-
vides a useful and flexible approach to the problem
of multiple Compton scattering. It has enabled us
to derive a new technique for correcting profiles
and to understand better the advantages and limi-
tations of an existing method. The operator ap-
proach can also be adapted to a number of related
problems. For example, by employing a transla-
tion operator, which is linear, in place of the non-
linear multiple scattering operator, one may apply
an expansion similar to that of Eq. (16) to derive a
method for carrying out the n, —n, separation in
x-ray Compton experiments. The method turns
out to be equivalent to the commonly applied
Raehinger technique. "

Perhaps the most important consequence of the
operator view point is that it enables us to derive
upper and lower bounds to the error in profi. les
which have been corrected for multiple scattering
effects. These results will be presented in paper
V of this series.

The distribution function P e is again best found by
a Monte Carlo procedure. Defining

x,=gx, ,
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APPENDIX A FRECHET DERIVATIVES

We summarize some results from the theory of
nonlinear operators. "

(1) Given spaces X and Y and an operator 0:
X- Y, the derivative of 0, called its Frechet
derivative, is defined as follows:

If, at a point xcx,
0(x+ h) —Ox = U(x, k) + W (x, h), (A1)
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where U(x, h) is a bounded linear operator in h cX
at x and

II W(x, 0) II

I Ills

then U(x, h) is the Frechet differential of 0 with
remainder R"(x,h). The operator itself, U(x, ~ )
[also denoted 0'(x, ~ ) or dO(x, )] is called the
Frechet derivative of 0 at x. Equivalently U is a
linear transformation in A, satisfying

(A2)

lim
II hll o

I I 0(x+ h) —Ox —U(x, k) I I

l I A I t

(A3)

(2) The Frechet derivative of a, linear operator
is the operator itself; i.e. , it is clear that if 0 is
linear, U(x, h) =Oh satisfies Eq. (A3).

(3) The Frechet derivative of a bilinear operator
B at (x„x,) in the direction (y„y,) is the linear
operator

B(x,+ ty„x, + ty, ) —B(x„x,)dB~x» x2~i y„y2g = lj.m

B(x„x,)+B(x„fy, )+B(fy„x,)+ IJ(ty„ fy, )
t o t

tB(x„y,)+ tB( y„x,)+ f 'B(y„y,)
t~o t

= B(x„y,) + B(y„x,) . (A4)

In our application, we shall need only the deriva-
tive at (x, x) in the direction ( y, y), which from
Eq. (22) becomes

B'(x, x)(y, y) = B(x,y)+ B(y, x) = B(x,y) + B*(x,-y)

(A 5)

where B*(x,y) =B(y, x) is called the permutation
of B. To simplify the notation a bit, we shall write
derivatives of the form (A5) as

B'(x, y) =B'(x, x)(y,-y).

Ilfll=-J If&»l&~

We first show by a counterexample that F in Eq.
(27) cannot be a, contraction mapping for x» —,'.
From Eq. (27), we have

[x/(1 —x)1 II Of- Og
f f

for any f and g in L'. Now choose f to be a nor-
malized Compton profile and g to be identically
zero. Then

of

APPENDIX B: CONVERGENCE OF THE SUCCESSIVE
APPROXIMATION METHOD

The fixed-point theorem" states that an iteration
procedure like Eq. (29), based upon the mapping
E of Eq. (27), will converge to a root of Eq. (28) if
F is a contraction mapping, i.e. , if for all f,g c L,
there exists a real number k &1 such that

where the norm
I I I I

is defined by

Pa

since Of is normalized to 1 by the definition of 0.
since

f I f-gf f=
I I f f

I=1, we have

unless

x/(1-x) ~k&1,
i.e. , unless x&0.5.

We now simplify Eq. (9) by letting 8, = H„and
under the assumption X,/X'-1 we obtain: J~,„»,
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=J„-„„~J„„„,where * signifies convolution. Thus
the mapping becomes

II f*f-g*gll=ll(f -g) *«+g) Il=llf -gll llf+gll
=

I I f -
gl I ( II f II+ II gll) .

G: f- ~&- f*f1 —x @ 1 —x (B2) The last equality holds because f,g~o. Since

w~e~e f«)=«or a»~ »dllfll=llf*fll=l ~e
wish to show that 6 is a contraction mapping if and
only if x&3.

Consider

f *f-g*g=f *f-z*g+f*g-f*z
Using Eqs. (B2) and (BS) we obtain

Vfe have

=f *(f-z)+z*(f-z)
=(f-g) *(f+g). Thus in order for (Bl) to hold and G to be a con-

traction map, we must have 2 x/(I —x) & I or x & —,',
proving our assertion.
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