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Gain without population inversion in two-level atoms

Helen K. Holt
Optical Physics Division, National Bureau of Standards, 8'ashington, D.C. 20234

(Received 29 April 1977)

For the case in which laser radiation interacts with two levels of an atom, it is shown that there can be
gain, even when there is no population inversion, because of recoil effects. The effect of recoil on certain
precision measurements is also shown.

For the case of a system in which laser radiation
interacts with just two levels of an atom, as well
as for more complicated systems, it is generally
thought that the population of the upper level must
be greater than that of the lower level in order for
gain to exist, i.e. , in order for amplification of
the radiation to occur. The purpose of this paper
is to show that, because of the effects of recoil, .

gain can be achieved with more atoms in the lower
level than in the upper level. The effect is small,
though significant for some precision measure-
ments, for visible laser light impinging on ordin-
ary atoms, but it can be large for light atoms and
short-wavelength radiation, such as x rays. The
effect is related to that underlying the free-elec-
tron laser. '

The problem under consideration is that of a
wave of circular frequency v traveling in the z di-
rection and polarized in the x direction, impinging
upon an atom with two states, a (upper) and & (low-
er). For simplicity we assume the atom to be hy-
drogen-like. Then the Hamiltonian describing the
system of atom plus radiation is

H =IJO+H',

where

2 2
0 + p + gp'

2M 2p,

e-- pH'=- —A(R) '
C p.

8 (z, t) = $(z, t)i,

=E(z) cos(vt-kz+qr)i,

The eigenfunctions of H, satisfy the equation
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where

Ann' 0 n un' s

E„„.=X„'/2M+ W„i.

Here,

( j'„/2M)p„=(q'„/2M)p„,

p„=(1/MV) exp(i7T„R/5) .

Also,

(p'/2 p+ eV)u„= W„u„',

u„ is an atomic wave function. The kinetic-energy
wave functions are normalized to a box of volume
V. Eventually, V

We expand the wave function for the complete
system in terms of the eigenfunctions of Ho:

0 =g a„„(t)P„„exp(-iE„„t/It) .
nn'

The time-dependent Schrbdinger equation,

Here, H and g are the position and momentum of
the center of mass, respectively, and r and p are
the relative position and momentum. M is the total
mass, and p is the reduced mass. A(R) is the vec-
tor potential of the radiation field at the center of
mass. [Exactly, A should be taken at the positions
of each particle separately; using A(R) is equiva-
lent to the dipole approximation. J

The laser beam is described by an electric field

8+
ik = (Ho +H')4',

results in the equation for the amplitudes,

ika„„,=P a...H„„,..„,exp(i(E, E,)t/@)
Ol tu

Here,
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I e eE j.
nn 'min g 2jp

b„=i~+a„expI[i(v u-, „)t]exp[-iv(p„, + e/2)t]

x 6(q„—q„+ ging), (6)
X . exp -g —

Nn~ ' where
(P yE $p

exp i vt -KZ+

-exp[-i(vt &&-+ p)] 'u—„dR dr.

The integration over dR is

(6q„f~-ling) .

Here, 6 is the Kronecker delta, and the plus and
minus signs go with the first and second terms in
Eq. (2), respectively. The integration over dr is

u„. u .dr =i+„. ~ (x)„,p.

6„. ~ = e(x)„. ~,

then
+n'm'~ n'm'

rm~

Thus states a„and &„such that ((t„=g„-RES (or
P„„=P„„,P„„=P„„P„,= P„,—e) are connected only
to each other.

In order to account for spontaneous emission, we
add phenomenological decay terms -(y, /2)a„and
-(y, /2)& to Eqs. (5) and (6), respectively, where
z, and p& are reciprocal lifetimes. ' To include ex-.

citation to levels a and b we use the density matrix
method and add ~,„and X& to p,"", and p&, , respec-
tively. ' Here X,„and &(, are the number excited
per second to states u„and &, respectively; also,
pea +n&n y phd am~my and pab ~n~m. The result-
ing equations, derived from Eqs. (5) and (6) with
the aforesaid additions, are

where

Qn = u-%s —v(Pn~- &/2)

Now suppose there are two atomic levels, a and
&, and that W & 8&. a„ is the amplitude of the state
for which the atom is in level a and has momentum g „;

is the amplitude of the state for which the atom is
in level & and has momentum g . Then

2 2

r.~ =(r. +y(,)/2.

These equations can be solved by assuming

The result is

In the rotating-wave approximation, the first term
on the right-hand side of Eq. (3) canbe neglected as
nonresonant. Then Eq. (4) and a similar equation
for & give

a„=i'„exp[ i(u u(, ()-t] exp-[i v(P„, —e/2) t]
where

(&../y. -~n /y(, )6(P -P.+e&)
l +»r'~/(&! + r.'~)

e '""(&,„/r, —x, /y()6(p p„+ &$)

(0„+ty, ~)[l + 8 a(r,'g/(0'„+ y,'g) ]

x6(j„q„ IKj}, (5) The polarization is given by

P= *ex dv.

&,*u(~,„/r, & &, / Vy)e p[--x( t a)]-~

~(0„+tr, ()[1 + 8 uy,'~/(tc + y,'g]
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Here, A,„/y, 'V is the number of atoms per cm' in state a with g„and X,„/y], V is the number per cm' in b

with p, = p„,—e. Since states an and bm are not connected to states other than each other, we may say
that one state an (with p„, = p,) and one state bm (with p, = p, —e) are populated and integrate over p,. ~e
write X,„/y, V-n, (v)d v, where n, (v)d v is the number of atoms per cm in state a with velocity v- v+ d v.
Tgen

l~., l
E w., [n,(v) —n, (v c—ek)]d v

2))
= '"" "" *"" ())+() )() +tl » ' ~( D+ ~'.)] I

-=Ref(C+i S) exp[-i(vt-&& +p)]j.

Here, 0 = v(1- P, + e/2) —w,„.
If relativistic effects are important, they can be included by solving the problem in the rest frame of an

atom in state a traveling with velocity cP. Then, after P is transformed back into the laboratory frame,
Eq. (I) becomes

l(p, ), l'~ w, (, . [n,(v)-n, (v- cc'k)jdv
(II

'
)[1 8 /(

where

Q' = v'(1 + e'/2) —w, (, ,

81-P )
p2)l/2

e' = bv'/Mc'

In order to calculate the gain from the polariza-
tion, we use Maxwell's equations to get the wave
equation, ' along with Eqs. (1) and ( I), to find the
gain

G =(-v/~, c)(S/E) .

6 is defined so that

I =I e '
0

where I is the intensity of the traveling wave.
From Eq. (7) we see that

S= ' F.
—

l
(p„l' wc), [n,(v) n, (v ——cek)]dv

V
Vab 0 +p t

where

y = y,„(1+8o.)'~'

For a Maxwellian velocity distribution,

c'p ' cd/
n, (v) =,~, exp

7r Q EC

where N, is the total number of atoms per cm' in
state a, and u is the most probable speed, so that

l(Ps]) I wa~ ii N, c exp[—(cP,/u)'jdP, -N, c
[v(1- P. +~/2) —w.o]'+y' Mw

exp (-[c(P.- e)/u]') d()),
[v(1 —P, + e/2) —w.,]'+y'

In general, the expression for G must be integrated numerically. However, in the Doppler limit, y/ECu
== 1, we have

2

G= '@" "" (N, exp(-[(&/uv)(v-w„+ ve/2)]'j —N, exp(-[(c/uv)(v-w„- ve/2)]'])
EpS P QP

j(p„l'
(N, exp[-(x+a)'] —N, exp[-(x- a)'] j,eo (1+8n)' uv (8)

where

x=—(v —w„)/Ku

a -= ve/2'.
Figure 1 shows the individual terms in the paren-
theses of Eq. (8) for N, =N, and a = 0.1. There is
positive gain for all x= 0.

For an atom of infinite mass, the two curves of

Fig. 1 would be centered on x=0; the maximum of
the gain due to the atoms in state a and the loss
due to the atoms in state b would both occur at v

=so,b. For finite mass, the curves are displaced
from x=0. The N, exp[-(x-a)'] curve is displaced
to the right because the atom gains a small amount
of kinetic energy at the absorption. This energy
must be supplied by the incoming photon whose fre-
quency is thus higher than (()„. The N, exp[-(x+a)'j
curve is displaced to the left because the energy
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of the stimulated photon plus the extra kinetic en-
ergy of the atom must add up to the transition en-
ergy, so that v is less than m„.

Equation (8) can be written

where

g(x, a, r) =- exp[-(x+a)'] -r exp[-(x- a)'],

r = NI, /N, .

If r ~ 1, there is no population inversion.
Figure 2 shows g(x, a, r) as a function of x for a

=0.1 and r=0.9, 1.0, and 1.1. Only the curve for
r =1.0 is antisymmetric about both axes. As r
grows above 1.0 (as N~/N, grows), the portion of
the curve below the x axis, the portion for which
absorption occurs, increases while the positive
gain portion decreases. For r & 1(N, & NI,), the
positive gain portion of the curve is greater than
the absorption part. Here, for a =0.1 and r =0.9,

g(x, a, r)

FIG. 1. N exp I- (x+g ) ] and N& exp f —(x -a j J in arbi-
trary units for a =0.1, N, :=N&. G(x) is positive over
the shaded region.

FIG. 3. g(x,a, y) fora=0. 01, r=0.9, 1.0, and 1.1.
For x near 1, there is still substantial positive gain
even for a = 0.01. The curves are r = 0.9 and 1.1 ap-
proaching the usual emission and absorption shapes,
although their maxima are displaced from x= 0. The
positive gain part of the r =1.1 curve is much smaller
than in Fig. 2, but is still present in the wing of the ab-
sorption curve.

the gain part of the curve is quite shifted from
x=0.

Figure 3 shows g(x, a, r) for a =0.01, y =0.9, 1.0,
and 1.1. Here, for a smaller value of a, the
curves are approaching the usual emission and ab-
sorption curves except. for r near 1.0. However,
the curves are not exactly symmetrical about the
ordinate and their maxima are shifted from x =0.
For r=1.1, the positive gain portion of g is small.
However, it is possible that the other factors in G
could be made large enough for G to be substantial
even for r as large as 1.1 and a=0.01.

The curves for r =1 for all a exhibit as much
area above the x axis, of positive gain, as below.
If a is smaller than about 0.1, the exponentials in
g(x, a, r) can be expanded, and one finds that

g(x, a, y) = -4axe " .

Setting dg/dx equal to zero, we find the maximum
for r= 1 is always atx„= 1/V 2 andthat g{x„,a, r= 1)
=1.716a. Thus, the size of the effect is direct-
ly proportional to a for r =1.

Another effect of recoil, one which is of impor-
tance to precision measurements, is the fact that
the central resonance is shifted away from x =0(v
=w„) for r &1. The shift can be found by taking the
derivative of g(x, a, r); for r & 1, the maximum oc-
curs at

1 —r —[(1-r)'+Ba'(1+r)']'~'
4a(1 +r)

—2— /

FIG. 2. g(x,a, r) fora=0. 1, x=0.9, 1.0, and 1.1. The
curves are asymmetrical unless r =1. The region of
positive g decreases as r increases (as the inversion
decreases).

1-r»a,
x = -a(1+r)/(1- t) .

0
For a 6000 A transition in H at room temperature,
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a is about 2& 10 4, so that for r =0.9, x =3.8
x 10 '; for Ku/2m=3500 MHz, v-m„=l. 3 MHz.
For r-0 (N, /N, -~), x„-2x 10 ', and v-w, „-700
KHz.

l have shown that there can be gain with zero or
negative inversion density due to recoil effects and
that recoil can affect precision frequency measure-
ments in the specified way.
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