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Multiconfiguration Hartree-Fock calculation of photoionization cross sections of the rare gases.
II. Final-state correlation*
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Cross sections and angular distributions for the photoionization of the rare gases have been calculated using
a modified Hartree-Fock equation for the continuum orbital and a multiconfiguration Hartree-Fock.
description of the ground state, The modification of the Hartree-Fock equation for the continuum orbital is
produced by virtual pair excitations of the ionic core analogous to those incorporated in the ground state.
The modification reduces to the addition of two terms to the standard V ' potential when small terms
are neglected. The addition of this final-state correlation effect gives improved agreement with experimental
cross sections as compared to a previous calculation which included only ground-state correlation effects.

I. INTRODUCTION

In a recent article, ' we used the multiconfigura-
tion Hartree-Fock (MCHF) method as a means of
including ground-state correlation effects in the
calculation of photoionization cross sections of
rare gases. The continuum wave functions used
in those calculations were solutions of the Har-
tree-Foek equation with a V~ " ' potential. ' The
results of these calculations showed a significant
improvement over the single-configuration Har-
tree-Fock results, but did not reproduce experi-
ment. as well as the random phase approximation"~
(RPA) or the more detailed many-body perturba-
tion theory (MBPT).' In this paper we describe a
modification to the V"""~ ' potential which takes
into account the dominant correlation effects in .

the ion core. Use of this modified V "~ ' to de-
termine the final-state wave function, along with
the previous improvements in the ground state,
brings our calculated values of photoionization
cross sections of the rare gases into good agree-
ment with experiment.

The usual V~ " ' calculation assumes that the
continuum electron moves in the field of the ion
which is described by a single configuration of
R-1 Hartree-Fock atomic orbitals. If the field
which the exiting electron sees is not well de-
scribed by this single-configuration approximation,
there will be significant final-state correlation
effects involving virtual excitation of the ion itself.
In order to improve upon the usual V" " ', one
can define a multiconfiguration V " ' (MCV) po-
tential in which a more accurate description of the
ionic field is given in terms of a superposition of
configurations. By letting this multiconfiguration
ionic state determine the potential of the el elec-
tron, one obtains an MCHF-type equation which
can then be simplified by neglecting small terms.

The principal ground-state correlation effects

which contribute to the np - fd transition in the
rare gases are the virtual excitations np' np n'd'.
In the present work, we consider analogous excita-
tions in the ground state of the ion; i.e.,
np'-np'n'd', and take into account their effect
on the ejected (ed) electron . After simplification,
the modification to the usual V~"" ' potential
produced by these ionic excitations is just two.
terms which result from the nonorthogonality of
the radial wave functions for the continuum and
correlating orbitals.

In Sec. II we briefly review the material covered
in SA and then derive the modified Hartree-Fock
equation for the continuum wave function. Details
of the calculation and results are given in Sec. ID.
%e suggest possible refinements and extensions,
and present our conclusions in Sec. IV.

II. THEORY

As in SA we describe the ground state of a rare-
gas atom by the expansion

I gg) =~ I~p"s)+2 &y I~p'sy&„~d'&, &y., 's),

where the weights (a, bj) and the radial wave func-
tions P„(~)~ P~(r) are solutions of the MCHF
equations. The nd notation indicates that the wave
function so designated is a pseudo-orbital. It can
be decomposed into a sum over bound (and integral
over continuum) wave functions P~(x) (P,~(x)) cal-
culated in a V" " ' potential. Consequently, con-
tinuum Ed orbitals are not orthogonal to the cor-
relating nd orbitals. The ground- state calculations
reported in SA showed that the b&'s are typically
of the order of 0.1 for the rare gases.

A similar expansion can be made for the final-
state ion core:
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To avoid overlap complications which arise if dif-
ferent basis sets are used in initial and final states
we make the approximation that all single-particle
wave functions in the expansion of g, are the same
as in the ground state of the atom (j),. That is to
say, (j), is not a solution of the appropriate MCHF
equations but rather a superposition of configura-
tions with fixed single-particle wave functions.
The description of the ion core is then fixed by
determination of the weights (&, P,z).

Two methods have been used to determine the
weights (&, P,&). If we view the problem as a stan-
dard superposition of configurations problem, the
weights are the components of the eigenvector cor-
responding to the lowest eigenvalue of the energy
matrix. A second simpler, albeit more approxi-
mate, scheme is to obtain the correlated ionic
ground state by annihilating a p electron in the
correlated atomic ground state. In this case we
find

a=a

p (p4S L ( lp3S L p)( 1)L2 sgeI y sj 3I b (3)

where the term in parenthesis is a coefficient of
fractional parentage. Since the atomic weights b,.
are small and the cfp's are ~1 in magnitude, the
ionic weights P,.~ are also small. We discuss the
two methods further in Sec. III and for the time
being consider the weights as known.

To complete our description of the final state
we need now consider the ejected electron. The
excited state wave function is the product of the
ion and the continuum electron wave functions:

l~.2=[I@,) x le.,)PP
=n lnp"P, ed; 'P)

where

V(r)= —Z —Yd nr'(m, m;r));

2 ~
X(r) = —~&„,Y~(m, el; r)P„(r)

5, , A. P
m (&nd )

2V(r}=2«glln Cnn(P«(r)R'(«P«P;dd, nd),

1
+ —(nd{ nd)V4(npnd)P«(r, ));

{nd{nd)=f P„,(r)P.,(r)-dr;
0

Y'(i,j;r)=r ' P, (r')P~(r')r" dr'

+ r )2e2 P (rd)P (rd)rr ( )) 1)drd .
r

8"(i,j; l, m) = Y~(i, l; r)P&(r)P„(r)r 'dr.

The remaining two terms, V'(r) and X'(r), are
quite complicated; however, they are quadratic
in the small mixing weights P, &

and are consequent-
ly small. We can, therefore, drop these two
terms in a first approximation. The coefficients
A

&
and B ~ are the usual yx-x(ss) direct and ex

change coefficients which are given by Kennedy
and Manson. ' The ~ 's are Lagrange parameters
which are adjusted to make the P„(r) orthogonal
to inner-shell wave functions of the same 1 (ex-
cluding nd, of course). The coefficients C f, result
from the angular integrations of the Coulomb ma-
trix elements and in this case are given by

+ gP&& nP'S, L„nd'S&L&, 2P, ed; 'P).
ij

(4) cl; = 6~1o(2
I I
c"

I I
1)'

A Hartree-Fock equation for P,~(r) may be found
by the usual variational method, i.e., by setting
the variation of (g„lII-E l

(I),g with respect to P,~(r)
equal to zero. The wave function P,„(r) is con-
strained to be orthogonal to inner shells with /= 2.
It is not, however, forced to be orthogonal to the
pseudo-orbital P~(r) since this wave function is
supposed to be a superposition of the "real"
P„(,)„(r) wave functions. This lack of orthogonality
means that P,„as given in Eq. (4) is not totally
antisymmetric; however, the extent to which the
exclusion principle is violated is small. Schemat-
ically the Hartree-rock equation is

+ V(r) + V'(r)+ 2Z) P.,(r)(
d2 l(l+ 1)

=X(r}+X'(r)+5, ,W(r), (~)

x g ( 1)~&'~o'2[S& -L: So Lo]2&2
Spl p

. 22LO
x (p' P(lp S,L, ,p S I, )

il 1 k

(6)

where [a]=2a+1, and (p52P(lp'S, I;,p'S,I,) is a
two-body cfp.'

Equation (5) is the usual Hartree-Fock or V" 2(~@

equation with the addition of. three terms. Two of
these terms, V'(r) and X'(r), will, as indicated
above, be ignored. The third term W(r) results
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"from the lack of orthogonality between the P,~(r)
and P- (r). Its structure can be clarified by de-
fining

D~ = 2ng Pq;C;y

and

W'(r) = gD'Y ~(np, nd; r)P„~(r)/r,

where W'(r) has no dependence on P,~(r). Then

W(r) = (nd
~

zd)W'(r) + P„~(r) J" W'(r')P, „(r')dr'.

yields three types of nonvanishing terms

«(nP"P, «; 'Pl lT I Int"S&,

&bz(nP"P, ed; 'P[ [T[ [nP S&L&, nd 'SzLz,' 'S),
P)~b~(np SqL(, nd2S~ Ly,

'P, ~d'P
) )

T
( ( np'S, L„nd'S,L„'S&.

To be consistent with our previous approxima-
tions we ignore the last of these which is quadratic
in the sma3. 1 mixing coefficients and renormalize
the excited state correspondingly, i.e., set n = l.
The angular and radial integrals are separated to
give

o = (4/3) vo.a' P [ (tP,„f [ T f ) g & f
'co,

where

T= T&
——Pz, in the length form,

(10)

Given the correlating functions P-„~(r) and the co-
efficients D~ it is then a simple matter to incorpor-
ate these two additional terms into an existing
V " ' program. The principal advantage of the
usual V""" ' potential is that the forward going
perturbation diagrams diagonal in the hole states
are diagonal in the energy of the continuum elec-
tron. That is,

(nP 2P «. 1P~ e /r V& 1(E8 & ~nP-5 2P &t d. 2P) 0

for eOz'
The MCV potential has an analogous property. lf
we include all the terms in Eg. (5), the correspond-
ing matrix element is diagonal in the energy of the
continuum electron. Discarding the smaD terms
V' (r) and X' (r) introduces small off-diagonal terms.

%e have chosen to normalize the wave functions
in the energy scale (a.u. ) so that asymptotically

P, g (r) = (2/vk)' 'sin[kr+ (q/k} ln(2kr) + & 1v+ a, + 5,],
(9)

where k= (2~}' ', q= Z-N is the net charge of the
ion, a, = arg(I'(1+ 1+ iq/k)) is the Coulomb phase
shift, and o, is the residual phase shift.

Having specified the ground and excited states,
we can now calculate the photoionization cross
sections and the angular distribution of photoelec-
trons. The total photoionization cross section is
given in the dipole approximation by

.P,e~

=—A~A~, q

(nP"P, ed 'P
f
(rC'

f /nP~S~L&, nd~S~L)' 'S&

= ( 1)'a[L„S,]'~2

1 1

-=A~(« ~nd)R-„~,p,

where

~"nC, n V P„,(r}P„„,(r)r dr

in the length form and

d l'(l'+1)-l(l+1)
Xrg r r

dy 2r

in the velocity form. Then for the &d channel

&=~,R„„„Z+b,A, («t dn}R- ~

1+P(e)P, (q ' k),

=—A, T,„
For the es channel where no correlation is ta-

ken into account we have (g,„( (
T

( ( g,&
= &2R„~„

W2T„. -
In the dipole approximations photoelectrons ion-

ized from a particular subshell by light polarized
in a direction q will have an angular distribution'

T=T„=Q&j/i&o in the velocity form,

the sum is over excited states, and ~=E,„-E
is the photon energy. Substituting the expansions
from Eqs. (1) and (4) for P and P„ into Eg. (10}

where k is the direction of the emitted electron
and P(z) is the asymmetry parameter For the.
case of rare gases where there is only one final-
state angular momentum the Cooper-Zare' model
is valid. This reduces for our case where nj
~ Qsy Qd to
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TABLE I. Weights for the ionic ground states. & and p( ~ L;, &' L, .) correspond to & and
p;; of Eq. (4). I and II refer to the scheme by which the weights were determined. The coef-
ficients Di and D are defined by Eq. (7).

Neon Argon Krypton
I II

Xenon

p(4g 3p)

p(2~ ig)
'

p(2~ 3p)

p (2' iD)

p(2D, 3S)

p(2D iD)

0.9970 0.9957 0.9824 0.9775 0.9846 0.9799 0.9831 0.9779

0.0299 0.0362 0.0644 0.0743 0.0606 0.0706 0.0626 0.0729

-0.0365 -0.0466 —0.0993 —0.1139 -0.0925 —0.1074 —0.0982 -0.1138

0.0267 0.0314 0.0612 0.0643 0.0571 0.0611 0.0593 0.0631

0.0202 0.'0250 0.0504 0.0611 0.0469 0.0574 0.0495 0.0608

0.0341 0.0405 0.0765 0.0831 0.0716 0.0788 0.0742 0.0815

-0.0361 -0.0432 -0.0940 —0.1058 -0.0871 -0.0994 -0.0925 —0.1054

D3

-0.1259 -0.1503 -0.2940 -0.3269 -0.2751 -0.3098 -0.2875 -0.3230

0.0312 0.0376 0.0766 0.0870 0.0716 0.0822 0.0755 0.0865

6T'„- 127„r„cos(g,(e) —(,(e)]P')=
3(T'„+2T,',)

with g, (e) = o.,(e) + 5,(e).

III. RESULTS

TABLE II. The coefficients C;& [as defined by Eq, (6)t.

2S i+i

4g

2S~+iL,i
—3vl0/25 9~10/175

2p

13v10/150 —9@10/175

—7~30/100 -9~30/700
2g 1D

3Q

~0/60
—33&2/100

-9v7 0/980

9&2/700

7v'210/300 -694210/4900

The weights (n, P,&) of the ionic configurations
are given in Table I. The weights listed under
scheme I are the components of the eigenvector
of the energy matrix with the lowest eigenvalue.
The scheme II weights are obtained from Egs. (3)
and the ground-state weights given in SA. Observe
that the weights obtained by scheme I are 10% to
20% smaller than those from scheme II. Since
terms which are quadratic in the small weights
are ignored, the only place these weights enter
the calculation is through the coefficients D~. In
Table II the coefficients C,z are given. Combining
these results with the weights from Table I using
Eq. (7) gives the D~'s listed in Table I. Again

the coefficients D~ determined by scheme I are
about 10% smaller (except for the case of neon)
than those from scheme Q. Cross sections have
been calculated using both schemes. We found
that a 10% change in the D~'s changes the cross
section by at most 2%. That is, to the degree of
accuracy which is consistent with the approxima-
tions made above, the schemes may be considered
to be equivalent. All the results presented here
were calculated using the scheme I weights.

The ground-state wave functions used here are
exactly as calculated in SA. Specifically, the wave
functions for the single configuration np' are cal-
culated first; then the P~ wave function and the
weights fa, b&j are determined with the other wave
functions frozen. These calculations, as well as
the determination of the weights in scheme I,
were carried out using the program MCHF 75." The
numerous angular coefficients required by this
procedure were computed by the program %EIGHTS.~'

Figures 1-4 display our results for the photo-
ionization of neon, argon, krypton, and xenon. The
channels included are np - zd, np - es, and ns- ep,
where the latter two have relatively small cross
sections and are computed using the V "" s' po-
tential without modification. For neon, argon, and
krypton the experimental cross sections are given
by--Marr and West" while those for xenon are from
Samson. "

A comparison with the results of SA where only
ground-state correlation (GSC) was included shows
that the effects of the MCV are (i) to bring length
and velocity forms into better agreement, (ii) to
increase the cross section in the vicinity of the
maximum and move the maximum closer to
threshold, and (iii) to give a sharper drop off
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FIG. 1. photoionization cross section and asymmetry
parameter for Ne. The upper solid line gives the length
form of the cross section; the dashed line gives the
velocity form. In this case the length and velocity forms
of the P parameter coincide and are given by the lower
solid line. The solid dots are the experimental cross
sections {Ref.12), the open circles are experimental
values of the P parameter {Ref. 15). The error bar in-
dicated is representative of those for the other points.

from the maximum. For the cases argon, kryp-
ton, and xenon the modifications seem to over-
correct somewhat. At low energies where the
GSC cross sections were too small, the MCV
results are larger than experiment. At slightly
higher energies in argon, and to a lesser ex-
tent in krypton, the MCV results dip below ex-
periment before coming back into agreement
near the Cooper mini~urn. The cross sections
calculated by the RPA'~ show similar behavior
although the RPA is in somewhat better agree-
ment with experiment overall.

1.0
PHOTON ENERGY (B.u.)

FIG. 3. Photoionization cross section and asymmetry
parameter for Kr. Same notations as in Fig. 2. The
experimental cross sections are from Ref. 12 and the
experimental P parameters are from Ref. 14.

The asymmetry parameters P are also displayed
in Figs. 1-4 in both length and velocity forms.
The final-state correlation affects the P parameters
in two ways: both the transition matrix elements
and the phase sMfts are modified. The effect of
correlations on the P parameters is not as pro-
nounced as their effect on cross sections. More-
over, the experimental values of the P parameters
as given in Refs. j.4-16 are not as well determined
as the cross sections. Experimental evidence for
the most part, therefore, does not support the
MCV over the HF approximations. Near the Coop-
er minimum, however, the difference between the
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FIG. 2. Photoionization cross section and asymmetry
parameter for Ar. Notation is the same as Fig. 1, ex-
cept the velocity form of the P parameter no longer co-
incides with the length form and is indicated by a dashed
line. The experimental cross sections are from Ref.
12 while the experimental P parameters are from Ref.
16.

.5
I

1.0
PHOTON ENERGY (Q.U.)

I

1.5

FIG. 4. Photoionization cross sections, and asymmetry
parameter for Xe. Same notations as in Fig. 2. The
experimental cross sections are from Ref. 13 and the
experimental P parameters are from Ref. 14.
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HF and MCV theories is considerable. This is
evident in argon where the MCV gives much better
agreement with experiment than the HF calcula-.
tion. '

IV. DISCUSSION AND CONCLUSIONS

The effects we have considered here have been
included in previous studies of the rare gases
using different methods. The B-matrix calcula-
tion of Burke and Taylor" for neon and argon
photoionization explicitly includes ionic configura-
tions with virtual np -F7d excitations. Their cal-
culation also includes interchannel effects, ig-
nored here, which give a good account of the
resonances preceding the ep threshold. Aside
from the method used, the chief differences
in the treatment of intrachannel effects are the
choice of pseudo-orbita. l.s and their use of R re-
laxed ionic core basis set. The effect of core re-
laxation is to lower the maximum and make the
descent from maximum. less abrupt. Such a change
in our results would br'. ng the two calculations in-
to better agreement. Amusya" has pointed out,
however, that because the rearrangement energy
for outer shells is small the rearrangement. time
is long and therefore core relaxation is essentially
a post-collision phenomenon. That is to say, ex-
cept at energies very near threshold, the field
which the ejected electron sees is unrelaxed.
While core rela"ation effects may, in principle,
be taken into account in the B-matrix calculation
using an ionic core basis set, fewer pseudo-or-
bitals may be needed if an atomic basis set is
used for outer-shell photoionization calculations.

Though the RPA as derived by Chang and Fano"
does not explicitly introduce the MCV effects, a
comparison of their Eq. (21) with our Eq. (5) re-
veals some parallels. In particular, their p(y)
plays a role analogous to (nd I ~d)P-„,(r) while g(x)
is analogous to P,~(r). The modification of the HF
V" "~~' potential in the RPA is proportional to
y "(Q, np; x)P~(x)jx which corresponds to the first
half of W(x) [Eq. (8)t. Calculations using the
coupled differential equation form of th;". BPA have
been performed by Chang for neon. ~v.-' argon using
atomic wave functions in the core .:;;li;!;neglecting
all but the intrachannel effects. ~ AitII.doug'h the RPA

is in somewhat better agreement with experiment
for argon, the neon results are very similar to
the MCV cross sections of Fig. . l.

There are R number of possible refinements and
extensions of the treatment given here. We have
ignored terms in the potential and in the transition
matrix elements which are quadratic in the small
weights. While each of these terms is on the order
of 1% or less their cumulative effect may be lar-
ger. Unfortunately much of the simplicity of this
approach is lost when higher-order terms are in-
cluded. Another effect investigated in SA is the
truncation of the ground-state expansion to include
only the first nd' terms. In SA we found that the
weights of the next terms in the series (n+ 1)d
were an order of magnitude smaller, that is, of
the same order as the terms which have been ne-
glected here. Modifications to the V~ "~ ' can be
derived for other types of correlatiu. *~. but the form
may not be as simple as the term W(r). In par-
ticular where single-particle virtual excitations
are possible a large number of nonignorable terms
will arise. Open-shell atoms pose no particular
problem in the MCV approach, but other types of
correlation and interchannel effects are of greater
importance in open-shell atoms and will require
in most cases a more sophisticated approach.
However, in the case where only one ionic term
contributes to a particular final state we expect
that most of the final-state correlation wi11 be in-
trachannel and should be we.11 accounted for by the
MCV.

Our conclusions are threefold. First, the photo-
lonlzatlon cross sections Rnd asymmetry pRra-
meters of the rare gases can be well accounted
for quantitatively by the inclusion of a simple cor-
rection to the HF approximation. Secondly, while
final-state correlations are not as important as
ground-state correlations in rare-gas photoabsorp-
tion their effect is significant. Lastly, certain
terms in the RI'A can be interpreted as corres-
ponding to virtual pair excitations in the ion.
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