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Numerical test of the semiclassical approximation to the multicurve-crossing problem:
Three-state model for He+ + Ne collisions*
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Transitions between adiabatic surfaces are described semiclassically via trajectories propagating about their
complex intersection point. This intersection point is a branch point of the potential function and a simple
pole of the nonadiabatic coupling. Thus transitions may be described without explicit introduction of the.
nonadiabatic couphng. This structure is independent of the total number of states, but is most easily shown
for two-state systems. A three-state model of the He + Ne collision system is solved by treating the three-
state interaction as a sequence of two-state interactions. The results are in excellent agreement with accurate
quantum calculations.

I. INTRODUCTION

Recently there has been considerable interest
in theoretical descriptions of collison-induced
electronic transitions in atom (ion)-atom and
atom-diatom systems. ' ' We have been working
on a general semiclassical description of these
processes based on Stueckelberg's theory of atom
(ion)-atom collisions. The description requires
only the electronic adiabatic potential-energy
surfaces of the collision system, and is based on
the following features of their analytic structure.
First, a complex point of degeneracy of two elec-
tronic states is a branch point of the correspond-
ing adiabatic surfaces. Second, around the branch
point, the leading term in the nonadiabatic coupling
is a simple pole with residue independent of the
particular electronic system. Thus transitions
between states are effected by complex-valued
trajectories propagating about the branch point,
switching smoothly and continuously from one sur-
face to the other. In this manner, transitions be-
tween adiabatic surfaces are described without the
explicit introduction of the nonadiabatic coupling,
which is responsible for the transition in a purely
quantum- mechanical treatment.

Within the two-state approximation it is clear
that the adiabatic surfaces exhibit the desired
analytic behavior, supporting the validity of the
semiclassical method. While the two-(electronic)
state approximation has been reasonable for a
number of collision systems, e.g. , H'+ D, -HD + D
involving transitions between the two lowest sigma
states, '' there are many collision systems in-
volving significant coupling among three or more
surfaces. For example, the interaction of a halo-
gen atom (whose electronic states are split by the
spin-orbit coupling into 'P, i, and 'P, i, states) with
a hydrogen molecule gives rise to three electronic
surfaces. " ' In addition, preliminary investiga-

tions into collisions in the presence of an intense
laser field" indicate that four or more electronic-
field adiabatic surfaces may often be required for
an accurate description of the collision-field sys-
tem.

The analytic structure of electronic adiabatic
surfaces in the vicinity of their complex intersec-
tion points is independent of whether the states
arise from the diagonalization of a 2 && 2 or a 100
& 100 matrix. " Thus, for a multistate system,
we intuitively expect a straightforward generaliza-
tion of the two-state result, where transitions be-
tween surfaces are localized at their complex in-
tersection points and the local transition probability
is independent of all other surfaces. Thus the
scattering process can be viewed as a series of
local transitions between pairs of states. Recently
the semiclassical theory was formally extended to
the three-state case,"and the simple result de-
scribed above was obtained if terms containing all
three nonadiabatic couplings were neglected.
Hwang and Pechukas, " in their analysis of the
problem, found a possible additional source of
transition amplitude in the three-state case, but
were unable to state when it might be important.
We will use the straightforward approach of local
two-state transitions, and compare results of this
method to those of exact quantum-mechanical cal-
culations.

In this paper we restrict ourselves to atom(ion)-
atom scattering, which may be described by a
single nuclear coordinate R. This allows us to
focus on electronic transitions and greatly re-
duces the amount of computer time required to
analyze any model. In particular, we wish to
study the excitation

He (ls)+ Ne(2P') -He'(ls)+ Ne(2P'3s), (1.1)

which has been of considerable interest both ex-
perimentally' ' and theoretically. "" A three-
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state model-of this process has been proposed re-
cently by Cho and Eu" as a test of their semiclas-
sical method. %e adopt their model so that we may
compare our semiclassical procedure against
theirs.

In Sec. II we outline the semiclassical and quan-
tum descriptions of atom(ion}-atom scattering.
Angular and Coriolis coupling are neglected, the
states coupling via radial coupling alone. In Sec.
III Cho and Eu's model potential for the He'+Ne
system and the results of our calculations of tran-
sition probabilities and cross sections are pre-
sented. A discussion in Sec. IV concludes the pa-
per.

S „= P&e'~s, (2.1)

where I',. is a product of all probability factors for
the particular trajectory to either make or not

II. THEORY

A. Semiclassical

The semiclassical method as applied to two-
state models of atom(ion)-atom scattering is well
documented. 4'" Transitions between adiabatic
curves are localized at their complex intersection
(branch) points. Thus a typical trajectory propa-
gates on an initial surface from a large internu-
clear separation until it reaches the real part of a
complex intersection point. At this point it may
either switch to the other surface [with a local
probability p=exp( —2img), where Q is the phase
accumulated in propagating about the branch point],
or it may stay on the same curve (with a proba-
bility 1-p). The classical trajectory then con-
tinues, making the choice of switching or not
switching at each intersection point, until the nu-
clei are again well separated. 8-matrix elements,
connecting an initial state n with a final state m,
must include the contributions from all possible
paths connecting those states and ean be written
as

make a transition at the branch points, 4,. is the
real phase accumulated along the trajectory, and
the sum is over all classical trajectories starting
on curve n and ending on curve m.

The enumeration of all possible paths in a com-
plicated potential system could be tedious and er-
ror-prone if done by inspection. A matrix formu-
lation of the propagator, an appropriate product of
local propagators, "yields a correct enumeration
of paths as outlined below. A similar representa-
tion has been presented by Child" for the two-state
case. The elements of the local propagators are of
the form ye'~, where d&.= f kdR, k=(2p[E
—W,(R)]}'~'jk, and y is a preexponential factor.
Transitions are localized at the complex intersec-
tion points and involve only two states. Thus, if
we consider this propagation near an intersection
point of curves 1 and 2, no phase will be accumu-
lated on the third curve, and the matrix represen-
tation of the local propagator is

p X/2

G+ ,'pPl /28k&x
0)
0 i, (2.2)

where

p = exp(- 2 imp),

y= Re/+ 5,

(2.3)

(2.4)

(k, —k,) dR, (2.6)

k,. =(21 [Z- W,.(R)]}'"la, (2 6)

i = v'- 1, A is the complex intersection point of
adiabatic curves 8', and 5'„6 is a constant phase
factor, A is the internuclear separation, and the
upper (lower} sign corresponds to the incoming
(outgoing) portion of the trajectory. The subscripts
on G denote the pair of adiabatic curves which in-
tersect.

In regions devoid of intersection points, the
pl opagator ls simply

exp &i k, dg

E'(R„R,) = exp +i k, dg (2.V)

exI: + ksdg

where again the upper (lower} sign corresponds to
propagation on the incoming (outgoing) segment of
the trajectory. The total propagator is an appro-
priate set of such matrices, as determined by the

potential system. Consider the potential system
sketched in Fig. 1 which is the model of the He'
+Ne system. R„(R„)is the real part of intersec-
tion point R~, (R,}between adiabatic curves W,
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FIG. 1. Potential-energy system: Diabatic potentials
chosen for the He++Ne system are the solid curves, and
adiabatic potentials &&, &2, and ~3 are the dashed lines.
E and & are in atomic units.

K„=[p,(1 p)]'~ -(exp{i[2(A,+B,)+E,]]—F}
x exp[i(G, +G,)], (2.10)

K„=[p, p,(1-p, )]'~'exp['(A, +A, —F,)]

x jexp [i(2B~ —E2}]—exp [i(2B2+ F2}])

x exp[i(G, +G,)],
where

(2.11)

6'= exp[2i(A, —E,}][(I-p, ) exp[2iB, ]

+p, exp [2i(B,—E,)]),
(2.12)

A,. = k,.dR,
Rp2

(2.13)

R02

B,.= k,.dR,
TPg

(2.14)

and W, (W,). For this system, the propagator is

K=E (R„RO,)G,,E (RO„RO,)G23E (RO„TP)

x F"(yP, R„)G;,F'(R„,R„)G"„F'(R„,R,),
(2.8)

where Tp collectively represents the turning points
of the curves and R, is large. Equation (2.8) is
valid for energies high enough that R„ is classi-
cally accessible on all curves. Evaluation of the
matrix multiplications leads to

K» =((1-p, ) exp [2i(A, + B,)]+p,P) exp(2iG, ),
(2.9)

D,.= k,.dR,
R02

(2.21)

4

g (2'+1)Is,(I}I'
j a l 0

(2.22)

where l is the partial-wave index. The partial-
wave expansion adds a centrifugal term to the po-
tential, yielding the effective potentials

w,.(R) = w,.(R)+
2p,R' (2.23)

Here, the I,anger correction ' has been incorpora-
ted. As l increases, the centrifugal barrier in-
creases and the turning points become larger. As
the turning points approach the vicinity of Rp2 and

R„, the simple formulas (2.9)—(2.12) must be mod-
ified. One must keep in mind that the semiclassi-
cal theory is based on a Feynman path-integral
representation of the propagator. This integral. is
evaluated by the. method of stationary phase, and
when the paths of stationary phase are well sepa-
rated, the results (2.9)-(2.12), the so called prim-
itive semiclassical results, are valid. However,

and 5, and 5, are constant phase factors.
These phase factors, although associated with

individual isolated transitions, are dependent on
the overall dynamics of the collision process. In
this sense, we can define a value to the total phase
factor 5 = 5, + 5„which is determined by the be-
havior of the diabatic curves, analagous to the
two-state case.' For low energies, R„ is classi-
cally inaccessible, and hence 5= 5, =-,' &. For
higher energies such that R„ is classically ac-
cessible, the choice 6, =0, 5, =-,' p yields excellent
agreement with the quantum results. Thus the
crossing point at the highest energy appears to be
the most important. (Various authors3' "have
proposed analytic forms for the phase factor 6

associated with two-state transitions, but for our
present study we found the constant phase factors
to yield better agreement with exact quantum re-
sults than these analytic forms. }

The total cross section for an inelastic process
is
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as the paths of stationary phase begin to coalesce,
more sophisticated methods are required to evalu-
ate the path integral. 4'4 As the turning point on
the upper surface approaches the real part of the
inner intersection point, the following uniform
expressions are needed:

where

A' 2iuA'

x,.(a) = q,.(fi)/ft.

(2.32)

(2.33)

(2.24)

S„=((1-p, ) exp(2iA, )+p, exp[2i(A, —E,}]
&& (1—ii')"') exp(2iG, ),

S„=[~,(1-~,)]"'
x (exp[i(2A, +D,)]—exp [i(2A, —E,)](1—ii')' 'j
x exp[i(G, + G,)], (2.25) q(ft) =i ~q(B),

(0 1)
dR —

(W 0)— (2.34)

The set of W second-order coupled differential
equations is first rewritten as a set of 2N first-
order coupled differential equations. In matrix
notation, this is

S„=(pi)'i'ii exp[i(A, +A, + G, + G, —D,)],
ii=[p (1 p )]&i&2pii2g&i4/i( g)

'I

z = [-',(B, B,)]'i'.

(2.26)

(2.2'I)

(2.26)

where

d)tldR)
e(f~) =

I
(2.35)

B. Quantum

An inelastic collision between an atom (ion) and
an atom is described in the coupled-channel rep-
resentation by a set of simultaneous equations
which may be written in matrix form as

V'-„—E 1+ V(R) g(R) =0, (2.29)

where g is a matrix of indexed probability-ampli-
tude functions g, , related to the electronic state
transitions Q,. -Q, , and where V is the matrix
representation of the potential

V,.i(R)=&P IV(R r)lyi} (2 30)

V(R, r) contains the electronic kinetic energy as
well as the Coulombic potential terms. If the po-
tential matrix V depends only upon the radial co-
ordinate, i.e. , no angular coupling, we can expand
the wave functions in terms of spherical coordi-
nates and obtain

These formulas are used when ~z ~(5. For larger
E, or smaller E, A02 is classically inaccessible
on both W, and W„~z ~) 5 and i~= exp[i(D, —D, —B,
—B,)]. As l increases further, transitions between
W, and 8', become negligible, and TP, becomes
closer to R». Thus it i.s necessary to make the
1-2 transition uniform in a manner analogous to
(2.24)-(2.28) for the 2-3 transition.

This formulation ignores second-order effects
predicted in formal developments of the three-
state theory. "" The neglect of these terms yields
a straightforward formalism that can easily be
extended to the general N-state system.

For a short interval d, the solution of Eil. (2.33)
may be written

I

(0
g (R+ —,

'
d}= exp d

(wN)

1

P(B ——,
'

d) .

(2.36)

This is the lowest order of the Magnus approxima-
tion4' and was used in our calculations. The pro-
pagator for a large distance, A, is a product of
short-interval solutions, where the size of these
intervals, d, is chosen such that

Z,. i~„.i') i
d

~

144@ g ~ ]2
s ii

(2.3V)

where X~, are the eigenvalues of W(B). In our cal-
culations, we choose n = 7 x 10 '.

The propagation is initiated at small B„buried
far below the potential barrier, such that the
initial conditions X

= 0 and X' = 1 are satisfied. As
one propagates in the classically forbidden region,
exponential growth of the solution matrix is en-
countered. Left unchecked, it would soon over-
flow the computer. A number of remedies for this
problem have been proposed, ""of which we use a
modification of the Riley'4 method. Under the
barrier the propagator is stabilized every few
steps and is restarted with appropriately revised
initial conditions. The propagation is continued to
large internuclear separation B„where

d2,„.X(B)= W(f~)X(f~), (2.31) &fr (R,) =A g (Ro) =
(I'X-O'F j

(2.38)
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IV. DISCUSSION

.2

20 40
/I

@so 280 500

FIG. 4.
~ s&2~ vs l: The curves are labeled as in Fig.

3. Between I =50 and l =260 these curves oscillate 17
times; all methods are in excellent agreement.

partial wave index l at a collision energy 2.605
hartree (V0.9 eV). In both figures the solid curve
represents the accurate quantum results, and the
dashed (dotted) curves represent our (Cho and
Eu's) semiclassical results. A large range of /

values are excluded in each case where all meth-
ods are in excellent agreement. Only two trajec-
tories contribute to 8» [see Eq. (2.11)] such that
it has the general structure of the well-known two-
state result, "with a preexponential factor op, and
some phase factors due to the presence of W, .
Thus it is no surprise that our result is in such
excellent agreement with the quantum results, as
can be seen from Fig. 3. At large l, the turning
points on W, and S; coalesce with AO2, and the
uniform procedures cannot completely duplicate
the quantum results. The disagreement is over a
very small range of partial-wave index and has a
small effect on the total cross section.

Sy2 is a more severe test of our semic lassie al
theory, as three trajectories contribute, and
phase differences among all curves determine the
probability. However, we again find (Fig. 4) ex-
cellent agreement with the quantum results by
following the prescription of Sec. IIA. Our results
appear somewhat better than those of Cho and Eu,
but both are in excellent agreement with the accu-
rate quantum results.

In the Introduction we asserted that the branch-
point structure at degeneracies of adiabatic elec-
tronic surfaces was independent of the total num-
ber of surfaces. This allowed us to treat transi-
tions between adi:abatic surfaces locally, by the
same procedure as. in the two-state case. Any
possible corrections due to the presence of the
third surface"'" were ignored. As can be seen
from Figs. 2-4, for this model potential system,
these additional corrections were unnecessary.

This procedure may readily be extended to larger
numbers of adiabatic surfaces. The matrix meth-
ods outlined in Sec. IIA can be used to enumerate
al.l possible paths, once the complex intersection
points are located. S-matrix elements may be
written as in Eq. (2.1) with all quantities calculated
using analogies to two-surface results.

Although in this paper we have restricted our-
selves to atom-. (ion) atom scattering, the formal-
ism is not restricted to this case and may easily be
generalized to atom-diatom three-dimensional
scattering. This is most easily visualized within
the decoupling approximation, "where the transi-
tion probabilitity is calculated locally by integrat-
ing in the complex plane over the nuclear coordi-
nate which couples most strongly to the electronic
transition. In addition to the conceptual simplicity
of the decoupling procedure, substantial computa-
tional savings result since the potential-energy
surfaces need to be analytically continued locally
rather than globally. In multistate applications of
the semiclassical theory, we expect the decoupling
approximation to be valuable.
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