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The R-matrix formulation of electron-molecule collision theory is applied to low-energy e-N, scattering in

the static-exchange approximation. Particular attention is given to the determination of basis sets for such

L -variational calculations, and a study of important basis-set characteristics in the context of this collision

problem is presented. Results for elastic e-N2 co11isions for scattering energies in the range from about 0.01
to 13.0 eV are reported. The importance of including long-range interactions is briefly discussed.

I. INTRODUCTION

The theoretical analysis of low-energy electron-
molecule collisions is complicated by the multi-
centered nature of the problem. ' The lack of spher-
ical symmetry in the electron-molecule interaction
potential makes application of standard scatter ing
theory methods such as close coupling' arduous in
cases where an exact treatment of effects due to
exchange or polarization is required. In response
to this predicament, attention has turned in the last
few years to a class of approaches which might be
called "basis set methods" or, more precisely,
"I '-variational methods. "' The basic idea under-
lying these procedures is to make use of the ob-
servation that in the region of space near the target
molecule, the electron-molecule system resembles
in many respects the corresponding negative mo-
lecular ion.

This notion has led to a variety of approaches,
including the pseudo-bound-state' and related low-
l spoiling'~' approximations, which are appropri-
ate if the effects of partial-wave coupling are short
range (e.g. , for low-energy s-wave e-H, collisions)
and, in the case of low-l spoiling, when the effects
of the long-range interactions are negligible. '~"

Recently, a more accurate T-matrix expansion
technique, ' wherein the Lippmann-Schwinger equa-
tion for the scattering amplitude is solved in a dis-
crete basis set consisting of Gaussian functions,
has been applied to low-energy elastic e-H, scat-
tering. ' All of these approaches involve the dia-
gonalization of the Hartree-Pock (static-exchange)
Hamiltonian in a large basis set made up of I,'-
variational functions.

Another method of this type is based on R-matrix
theory. Originally developed by Wigner and Eisen-
bud' in nuclear physics (see the review by Lane
and Thomas') and adapted to a variety of problems
in atomic physics by Burke and co-workers, "the
9-matrix approach was extended to electron-mo-

lecule collision problems by Schneider" and has
been successfully applied to low-energy elastic
e-H, and e-F, scattering. "'"

The selection of basis sets for calculations using
any of these methods is critical, as one wishes to
use a reasonably small basis set (to make the
computations tractable) without ignoring physically
important effects. To date, however, no extensive
attention has been given to this question. A truly
systematic study of basis functions would be pro-
hibitive, since there are a very large number of
parameters one could vary in such a study, and of
questionable value, since it would likely be highly
system dependent. In this paper, we have studied
some of the important characteristic py'opexties
one must incorporate into the basis set for an I.'-
variational calculation to accurately represent the
fundamental physics of the collision. In addition,
we have determined static-exchange cross sections
(converged in basis set) for e-N, collisions in the
energy range from about 0.01 to 13.0 eV.

The e-N, system has become quite important to
the developing field of electron-molecule collision
theory. In contrast to e-H, scattering, this system
is sufficiently nonspherical that the full character
of the electron-molecule potential is involved. At
the same time, it is "small" enough (14 electrons,
an internuclear separation of roughly 2a,) that
highly accurate calculations are feasible. Thus
e-N, scattering has been the subject of studies us-
ing close-coupling, "highly approximate Born" and
distorted-wave, "model-exchange, "low-l spoil-
ing, ' and other methods. "

In Sec. II of this paper, we briefly recapitulate
the conceptual basis of the R-matrix method and
present an outline of the procedure used to solve
the problem at hand. We also define the theoretical
context within which we treat e-N, scattering and
point out some modificg. tions in the R-matrix pro-
cedure as here applied beyond what has previously
been reported. In Sec. III we discuss vai ious basis
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sets, focusing on general characteristics as they
reflect on the physics of the scattering event or on
computational facets of the problem. Our final
static-exchange results for e-N, collisions are pre-
sented in Sec. IV together with some remarks on
the inclusion of the induced-polarization interac-
tion. We conclude in Sec. V by discussing future
directions of this research. Unless otherwise
stated, atomic units are used throughout this pa-
per.

II. THEORY AND PROCEDURES

A. Theory

The A-matrix method in atomic physics has been
recently reviewed by Burke and Robb. " The es-
sential idea is the division of configuration space
into two regions: an inner region "near" the tar-
get, where the electron-target interactions are
strong, short range, and (in the case of exchange)
nonloeal, and an oltex region "far" from the tar-
get, where the interactions are weak, long range,
and. (usually) known as a simple analytic form
(e.g. , permanent-quadrupole or induced-polariza-
tion terms). A boundary between the two regions,
the "A-matrix surface, " is defined. The 8-ma-
trix at the boundary can be calculated in terms of
a set of disn etc eigenfunctions of the system Harn-
iltonian which satisfy fixed (but arbitrary) loga-
rithmic boundary conditions on the 8-matrix sur-
face. The A matrix, which is a function of the
scattering energy, then provides the "connection"
between the regions. In the outer region, coupled
differential equations are integrated numerically
from infinity to the 8-matrix surface. The loga-
rithmic derivatives are matched, and the K-ma-
trix, phase shifts, and cross section extracted.
In general, then, the most difficult aspects of the
problem are incorporated into the discrete eigen-
functions defined in the inner region, which deter-
mine the 8 matrix. These functions can be cal-
culated using standard bound-state procedures and
codes. The R matrix thereby obtained is a mero-
morphic function of energy containing no branch
cuts associated with thresholds.

This approach is also desirable because only one
diagonalization of the electron-target Hamiltonian
is required to study scattering for a wide range of
incident energies. Further, resonances are easily
located by examination of the poles of the A ma-
trix.

The generalization of this theory to electron-
molecule collisions is discussed by Sehneider, "
so we shall only summarize the key points here.
The central feature of this application is the ex-
pansion of the scattering function in the inner re-
gion in a set of analytic basis functions, chosen as

floating Qaussians in prolate spheroidal coordin-
ates. Introduction of the Bloch operator" into the
Hartree-Pock equation for the scattering function
ensures Hermiticity of the resulting Hamiltonian
and allows a simple spectral expansion of the scat-
tering wave function even when the basis functions
used satisfy arbitrary logarithmic boundary condi-
tions on the 8-matrix surface. A third element of
the application of 8-matrix theory to electron-
molecule scattering is the use of the Buttle cor-
rection. " In practice, one has only a finite set of
discrete eigenfunctions of the static-exchange
Hamiltonian in the internal region with which to
calculate the 8 matrix at the surface. The effect
of the neglected levels can be incorporated via the
Buttle correction, which requires selection of a
zeroth-order Hamiltonian (usually chosen to be the
kinetic energy operator) for which the Schrodinger
equation can be solved in closed form. The cor-
rection is especially useful when for practical rea-
sons one must use a small basis of discrete func-
tions which by themselves inadequately represent
the full A matrix. (In the present study, we have
chosen to use sufficiently large basis sets that the
Buttle correction is not necessary„' see Sec. Ill).

B. Calculational procedure

The procedure for carrying out an A-matrix cal-
culation on a problem in electron-molecule scat-
tering has been discussed by Schneider and Hay. "
We shall present here only what is required to in-
troduce terminology for our subsequent discussion
and to describe the present application. Some pro-
cedural differences between the approach used
here and that reported in earlier papers in this
series will be described.

We have chosen to study low-energy electron col-
lisions with the ground-state (X 'Z~ )N, molecule.
The orbital occupancy for this state of the target is

I

X Zg . 1gg 1O' 20'F30'g2g 1'JT

The equilibrium internuclear separation is A
= 2.068a, . The nuclei will be held fixed at this sep-
aration, and the fixed-nuclei approximation mill be
made for rotation. " Therefore the cross sections
reported in Sec. IV correspond to averaging over
all molecular orientations. The collision will be
described in the static-exchange approximation, "
so that static, exchange, and permanent-quadrupole
interactions will be taken into account. (We shall
discuss the induced-polarization interaction at the
end of this section. ) We shall consider Z~, Z„, 11„
and II„symmetries of the electron-molecule sys-
tem, where for a 'Z~ target state, Z and II corres-
pond to the projection of the electron's orbital ang-
ular momentum on the axis of quantization (the in-
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ternuclear axis R=2). Thus we shall present re-
sults for "o-wave" and "m-wave" scattering. Given
this context, the procedure will be described in a
series of steps.

(i) We obtain the occupied Hartree-Fock molecu-
lar orbitals describing the X 'Z,' state of the iso-
lated N, molecule. We have used the primitive bas-
is sets of Huzinaga, "a 9s5P basis of nucleus-cen-
tered regular Gaussians of the form

m n -o(.r
V l(& S~ &) = &,"X7'&~*e '"~ (i =1,2), (1)

where j=1,2 refers to the nuclear centers and i
labels each primitive basis function. This set is
augmented by Sd polarization Gaussians as de-
scribed by Dunning. " We use one d-wave polariza-
tion function with n = 0.98. This primitive extended
basis set is uncontracted. We have also carried
out calculations using the (9s5P/5sSP) contracted
basis set of Dunning (see Table II.B of Ref. 26).
In any event, the "primitive atomic basis" is used
in the program pot, YAYOM" to determine the oc-
cupied molecular orbitals for N, .

The molecular quadrupole moment determined
in our fully contracted (9s5p/5s3p) basis is found
to be Q = -1.243ea'„while in a o -wave-uncon-
tracted basis (where only atomic orbitals which
combine to give molecular orbitals of m symmetry
are contracted) we find Q= -1.249ea', . These com-
pare adequately with the experimental value" of
[ Q )

= 1.04 + 0.07eao.
(ii) We next augment the primitive atomic basis

defined in step (i) with a set of dfffase nucleus-
centered atomic functions of the form of Eq. (1).
The Hartree-Fock (HF) potential energy is then
determined on this augmented basis. [One need
not use the same primitive atomic basis set in
steps (i) and (ii); e.g. , it might be desirable to use
a contracted basis in step (i) and to uncontract the
basis in step (ii). See Sec. III A. ]

The diffuse atomic functions are required in or-
der that the augmented basis will be nearly com-
plete over the region of configuration space of in-
terest. In the original R-matrix procedure, "the
virtual Hartree-Fock orbitals of N, would have
been determined and used to define the molecular
potential energy. However, in the course of this
study, we found that linear dependence of the mo-
lecular orbitals poses considerable problems,
particularly in the w-wave scattering calculations.
To avoid this difficulty, we now simply diagonalize
the overlap matrix in the augmented atomic basis
and delete linearly dependent functions from the
resulting set of eigenvectors. This new procedure
obviates the necessity for calculating molecular
virtual orbitals and resolves the linear-dependence
problem mentioned above. The diffuse functions
must be chosen with care lest the basis set repre-

sinv;p
t-8 q -n. (g-A )

cos vg (p
(2)

where v; =0 (1) for o (v) symmetry. The center of
the function y; is A. „and n; and P; are parame-
ters.

The basis set chosen for this calculation can be
found in Table II of Ref. 13. We transform the
molecular HF potential calculated in step (iii) to
the R-matrix basis of free functions using the in-
sertion technique of Schneider" and diagonalize
the static-exchange Hamiltonian for the scattering
electron,

v' 1 1K= ———Z + + (2J, —K),
i=a

where Z is the nuclear charge, n is the number of
molecular orbitals (n = 7 for N, ) and Z; and K, are
the usual Coulomb and exchange operators. " The
resulting eigenfunctions are used to calculate the
R matrix. It is important to stress that'the calcu-
lations in steps (i)-(iv), while time consuming,
need only be carried out once since they are inde-
pendent of the scattering energy.

(v) In the final step, we solve the differential
scattering equations" in the outer region, inte-
grating (via the Numerov algorithm" ) from infinity
to the R-matrix surface, "and determine the K
matrix. For this calculation, the surface was
chosen at g = 7a„which corresponds to r = 10ao.
For the e-N, system, this value of $ is large
enough that the exchange and short-range electro-
static interactions are negligible beyond the R-
matrix surface, leaving only the simple analytic
long-range terms in the potential energy. From
the K matrix, differential and total cross sections
can easily be calculated. '

The long-range interactions which are most im-
portant in the energy range under consideration are
the permanent-quadrupole and induced-polarization
terms. In spherical coordinates, the form of the

sentations of the kinetic energy and potential ener-
gy operators be inequivalent. We shall define the
augmented basis further and discuss selection of
the diffuse functions in Sec. III.

(iii) The Hartree-Fock potential energy, which
was calculated in step (ii) on the augmented atomic
basis, is now transformed to the orthonormal mo-
lecular basis consisting of the bound molecular
orbitals plus the eigenvectors of the overlap ma-
trix.

(iv) We now turn to the scattering function and
select an R-matrix basis of free functions. These
are chosen to be elliptic floating Gaussians of the
for LI1

X (h, n, p) =&"n '[(&' —1)(1-n')]"' '
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long-range potential energy is

o.', n, Q
ULa(r) —

2
+ —P (cos6),„2r' 2r4 y' (4)

In the static-exchange calculations reported in
Sec. IV, the A-matrix surface is chosen at a radi-
al distance of 10a, from the center of mass of the
N, target. Beyond this radius, the low-order
partial waves that contribute to the cross section
are effectivelyuncoupled for low scattering ener-
gies. ' ' Therefore, for r & 10ao, we have included
only the diagonal quadrupole matrix elements
(tm~P, ~lm). That is, we solve uncoupled differen-
tial equations in the external region. Five partial
waves (s,P, d, f, g) are taken into account in this
region. We shall discuss the effects of including
the induced-polarization terms in Sec. IV;

III. CHOICE OF BASIS SETS

As in any variational procedure (e.g. , calculation
of bound-state wave functions for atomic or mo-
lecular systems), the key to successful application
of the A-matrix method to problems in electron-
molecule collision theory is the choice of basis
sets. We have introduced three basis sets in Sec.
II: (1) the Primitive atomic basis of step (i),
which describes the occupied target molecular or-
bitals; (2) the augmented atomic basis of step (ii),
which includes the primitive atomic basis functions
plus diffuse functions required for the transforma-
tion of the HF potential via the insertion technique;
and (3) the analytic R matrix basis of f-ree elliptic
floating Qaussians. In general, the idea is to pick
a primitive atomic basis which accurately repre-
sents the core (occupied) molecular orbitals. The
use of contracted functions is appealing in HF cal-
culations because it can reduce the size of the ba-
sis." In the choice of the diffuse basis, one must
select functions which overlap sufficiently with the
analytic 8-matrix functions to satisfy closure in
the transformation of the molecular HF potential
[see Eq. (11) of Ref. 12 and accompanying discus-
sion]. Finally, the analytic R-matrix basis must
be sufficiently flexible to accurately represent the
scattering function in the inner region.

In this section, we shall discuss three points be-
yond these rather obvious remarks: (1) the effects

where n, and +, are the spherical and nonspherical
polarizabilities" of N2 Qp 11 8900 Q2 4 19a'„
and Q is the permanent quadrupole moment (see
step (i) above]. In prolate spheroidal coordinates,
taking into account the fact that we are far from
the target, Eq. (4) becomes

8oo 8o,, 8Q
Ui, a(~9 I) (4R4 $4R4 $3R3 2(1) '

TABLE I. Description of the augmented atomic basis
sets used in this study of elastic e-N2 collisions. The
analytic R-matrix basis can be found in Table II of Ref.
13. The various columns are described in Sec. III of the
text. In the column labeled "Diffuse functions, " r is the
geometric ratio used.

Basis Diffuse No. of
set Symmetry Contraction functions at. orbs.

0 cont.

cr uncont.

7r cont.

vr uncont.

x uncont.

~ uncont.

~ uncont.

8,pz

s, p~

p (r =1.7)

p~ (r =1.7)

p, (r = 1.4)

p, (r = 1.4),
a„(r=1.7)

p (r =1.7),
10 tight p

98

70

98

80

of contraction in the primitive atomic basis; (2)
the selection of diffuse functions for the augmented
atomic basis; and (3) the importance of including
free functions which are primarily localized in the
target region in the analytic 8-matrix basis. To
study these and other aspects of basis-set selec-
tion, we have carried out full static-exchange e-N,
calculations using se&e+ different augmented atomic
basis sets. In order to avoid an extensive list of
functions, we have made the tabulation of these
basis functions available on request from the au-
thors in a separate document. " The salient fea-
tures of each basis set are summarized in Table I.

Briefly, sets 1 and 2 are used for g-wave scat-
tering calculations while 3-7 are for m-wave cal-
culations. In sets 1 through 4 we change the primi-
tive atomic basis used to represent the occupied
molecular orbitals, while in 5-7 we alter the
character of the diffuse functions. The analytic
8-matrix basis is the same for all seven cases
(see Ref. 13). Additional calculations in which
certain types of free functions in this basis are re-
moved will be discussed in Sec. III C.

In all o-wave (v-wave) calculations, the primi-
tive s and P atomic functions contributing to the m

(o) occupied molecular orbitals are contracted. In
basis 1 (3) the o (v) symmetry s and p atomic or-
bitals are also contracted, while in basis 2 (4) they
are uncontracted. The d-wave polarization func-
tions are not contracted in any case.

The exponents o., in Eq. (1) for all the diffuse
atomic orbitals are chosen by a geometric pro-
gression. Tabulations of these bases can be found
in Ref. 35. In sets 4 and 7, only diffuse nucleus-
centered P, Qaussians were included with a geo-
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TABLE II. Eigenvalues of the static-exchange Hamiltonian for e-N2 scattering for the boumI
molecular orbitals in atomic units. Table II A contains the 0 orbitals and Table II 8 the m or-
bitals. Primed basis sets do not contain tight free functions in the analytic R-matrix basis
(see Sec. IIIC). The column labeled SCF contains the molecular-orbital energies determined
from a HF calculation on N&(X ~Z') as described in the text.

II A
2' SCF

10'
26'
3a~
1~u
20'

-16.2188
—1.5546
-0.7721

—16.1810
-0.8523

-15.7092
—1.4847
-0.6882

-15.7080
-0.8140

-15.6808
-1.4767
-0.6332

-15.6771
-0.7754

IIB

-15.6805
—1.4764
-0.6326

-15.6769
—0.7752

-15.6785
-1.4758
-0.6310

-15.6749
-0.7747

SCF

—0.7429 -0.6716 ~-0.6173 —0.6167 -0.6130

metric ratio of 1.7 (the smallest exponent n; being
3&& 10 '). In sets 5 and 5, a. larger set of P, func-
tions was used, with a, geometric ratio of 1.4 (the
smallest n, =1x 1. 0 '). In addition, diffuse d„
Gaussians were included in set 6 (ratio= 1.7, smal-
lest o., =2.9&&10 '). The addition of diffuse d„
functions in the case of m-wave scattering is partly
suggested by our desire to accurately represent the
H, d-wave resonance in e-N, scattering. Finally,
in basis 7 we supplemented the diffuse P, functions
of basis 4 with ten additional P, functions localized
in the region of the target. These were inter-
spersed among the core functions. Introduction of
these additional functions was an attempt to im-
prove the completeness of the augmented atomic
basis. In the present discussion, we wish to em-
phasize the changes in the results obtained as we
alter the nature of the basis; our final e-N, results
will be presented in Sec. IV. (In all cases below,
only illustrative results will be shown. More com-
plete tabulations are available in Ref. 35.)

0 and m orbitals against the self-consistent-field
(SCF) results obtained from a HF-SCF-MO calcu-
lation on the N, target using the uncontracted
(9s5P ld) basis defined in Sec. II. Notice that the
least-tightly-bound orbitals are the most poorly
represented. The effect of contraction on the ei-
genphases" is shown in Table III for a few selected
energies for s„j,P „and d„scattering. The
effects of contraction of the primitive atomic basis
are seen to be the greatest in the case of m-wave
scattering, although some improvement in both 0-
and m-wave results is obtained when the basis is
uncontracted.

The dramatic effect of contraction in the m-wave

TABLE III. Eigenphases for a.-wave (III A) and m-

wave (III B) static-exchange e-N& scattering in various
basis sets which differ in their treatment of the primi-
tive atomic basis set (see Sec. IIIA).

III A

A. Contraction in the primitive atomic basis

In a prior study of e-F, scattering, it was found"
to be important to ensure that the primitive atomic
basis not be overcontracted. In particular, a com-
pletely contracted basis provides an insufficient
number of molecular functions to transform the
HF potential to the A-matrix basis. The effects of
contraction on the scattering are reflected in the
eigenvalues of the static-exchange Hamiltonian
[Eq. (3)j, which can be determined by a diagonaliza-
tion in the full A-matrix basis. Since the basis in-
cludes the occupied molecular orbitals (MO) along
with the analytic free functions, this calculation
should reproduce the bound eigenvalues. In Table
II we compare these eigenvalues for the occupied

0.017
0.066
0.135
0.222
0.577

0.004
0.059
0.248
0.670
4.527

0.072
0.114
0.187
0.393
0.894

0.070
0.177
0.475
1.481

10.866

u (a.u. ) Z (ev)
s~-wave

1 2

-0.036
-0.142
-0.289
-0.471
-1.209

—0.036
—0.142
-0.290
—0.477
-1.275

0.001
0.005
0.017

-0.033
-0.586

-0.001
—0.004
-0.016
-0.131
—0.709

III 8
P, -wave

3 4

p~-wave
1 2

0.0
0.0

-0.001
—0.011
-0.386

0.0
-0.002
—0.012
-0.049
-0.488

0.0
-0.002
-0.018
-0.190
—0.355

0.0
0.0
0.001
0.095
2.501

d, -wave
3 4
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B. Diffuse functions

The relative insensitivity of our 0-wave phase
shifts seen in Table II suggests that our o -wave
basis 2 is quite good. The construction of a basis

TABLE IV. Eigenphases for 7t.-wave static-exchange
e-N2 scattering in various basis sets which differ in the
diffuse atomic functions used in the augmented atomic
basis (see Sec. IIIB).

k (a.u. ) E (eV)

IV A

p, -wave
5

0.172
0.553
0.830

k (a.u. )

0.402
7.519
9.366

E (eV)

-0.013
—0.314
-0.649

IVB
d, -wave

5

-0.013
-0.322
-0.669

—0.014
—0.308
-0.653

case is further illustrated by the fact that the dia-
gonalization of the static-exchange Hamiltonian for
basis 3 reveals the presence of an unphysical bound
state (with an energy of —0.038 a.u.). Note from
Table II that the lm„molecular orbital is bound by
about 0.1 hartree more than is the SCF result.
Finally, the well-known e-N, ll, shape reso-
nance"'" at about 2.3 eV does not appear at all in
this energy range if the basis of m-wave functions
is contracted.

These results suggest the need for sufficient
flexibility in those basis functions which are con-
centrated in the core (target) region to ensure sub-
stantial overlap with both the occupied molecular
orbitals and the analytic free functions. If too
many of the virtual orbitals are removed by con-
tracting the primitive atomic functions, a poor
representation of the HF potential for the scatter-
ing problem may result. This problem can be
overcome by uncontracting the basis (which can be
very expensive for the SCF calculation) or by put-
ting the HF potential on a large basis after carry-
ing out the SCF-MO calculation of the bound-target
orbitals. The latter procedure requires handling
many more integrals and increases the time re-
quired for the transformation [step (iii) of Sec. Iij
but is nonetheless preferable to using a completely
uncontracted basis at the SCF stage of the calcula-
tion.

TABLE V. Comparison of R-matrix static-exchange
eigenphases for e-N2 scattering with the low-/ spoiling
results of Ref. 5(a). Basis 2' was used for the s, and

p, calculations and basis 6 for the p, and d, cases (see
Table I). In these calculations no long-range interac-
tions are included beyond $ =7ao, the R-matrix boun-
dary.

Symmetry u (a.u. )

Low-l
spoiling

' R matrix

0.017
0.066
0.179
0.491

0.135
0.361
0.577
1.098

0.114
0.253
0.372
0.830

0.393
0.518
0.631
0.894
1.182

-0.041
-0.16
-0.42
-1.05

-0.015
-0.19
—0.48
-1.4
-0.006
-0.052
-0.132
—0.592

0.06
0.09
2.35
2.52
2.33

-0.037
-0.144
-0.388
-1.08

-0.012
-0.176
—0.489
-1.28

-0.004
-0.039
-0.116
-0.669

0.084
0.899
2.397
2.511
2.402

for the m-wave symmetries has been studied beyond
the question of contraction. In particular, we have
examined the choice of the diffuse functions which,
together with the primitive atomic Gaussians,
make up the augmented atomic basis. In the case
of m-wave scattering, we focused our attention on

the representation of the ~~ d-wave resonance.
Three basis sets, 5, 6, and 7 in Table I, were
considered. Results for P„- and d„-wave scatter-
ing in these basis sets are shown in Table IV. Not

surprisingly, the best results are achieved with
the largest basis, 6, which includes both P, and

d„, nucleus-centered Qaussians. Including the lat-
ter functions does significantly alter the eigen-
phases, bring the P -wave results into better
agreement with other published results (see Table
V). The addition of diffuse functions in the core
region (cf. basis I) appears not to substantially im-
prove our results. In all cases, the H, resonance
is present, although at too high an energy.

0.273
0.393
0.518
0.631
0.894
1.182

1.013
2.100
3.648
5.413

10.866
18.995

0.009
0.082
0.904
2.364
2.500
2.401

0.010
0.084
0.899
2.397
2.511
2.402

0.010
0.084
0.892
2.403
2.510
2.402

C. The analytic R-matrix basis

The basis of free elliptic floating Gaussians [see
Eq. (2)j used in the above calculations" consists of
94 functions. Some of these are centered at the
center of mass of the molecule and have fairly
large exponents ; and P;; i.e., they are concen-
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trated in the region of the target molecule. The
use of these functions with a contracted basis of
primitive atomic functions can lead to inconsisten-
cies in the calculation. We have found that deleting
the tight origin-centered free functions" from the
analytic B -matrix basis usually improves the re-
sults. As Table II illustrates, the new basis sets,
denoted 1' and 2' for o-wave scattering and 3' and
4' for the m-wave case, yield eigenvalues for the
occupied orbitals in better agreement with the SCF
results than those obtained with the unprimed
bases. The phase shifts are also improved some-
what, as ca,n be seen by comparing the columns
labeled "2" in Table III with those labeled "2"'in
Table V.

In the m-wave scattering calculations, we must
distinguish the nonresonant (p„) symmetry from
the resonant (d„) symmetry. In the former case,
the change produced by deletion of the "tight" free
functions is not pronounced. In the d, resonant
symmetry, deletion of these functions causes the
shape resonance to vanish in all basis sets studied
(3-'I). This observation is consistent with the fact
that the amplitude of the resonant wave function is
largely confined to the region of the target mole-
cule. In order to study this result further, we de-
composed each of the eigenvectors of the static-
exchange Hamiltonian by expanding in an ortho-
normal set consisting of the eigenvectors of the
overlap matrix. We find that the resonance pole of
the R matrix at 0.199 hartrees (-5.4 eV) va, nishes
when the tight origin-centered functions are re-
moved from the analytic R-matrix basis. In fact,
about 90%%up of the particular eigenvector which cor-
responds to this pole arises from these functions.
(It ik interesting to note that none of these impor-
tant tight functions has significant d-wave character
at the R matrix surface. ) Thus inclusion of these
functions, while undesirable in general, is essen-
tial to treat scattering in a symmetry where a
shape resonance is present.

IV. RESULTS FOR e-N& SCATTERING

In the above section, we have discussed some of
the properties which should characterize the vari-
ous basis sets required in our L -variational cal-
culation of electron-molecule scattering. Based on
this study, we selected as optimum basis sets for
the e-N, calculations basis 2' for o -wave and basis
6 for v-wave. scattering (see Table I). Both sets
have uncontracted primitive basis sets. (for o and
m functions, respectively). Basis 2' has no "tight"
free functions, but basis 6 does contain these func-
tions, since the resonance appears in the TI~ sym-
metry.

This choice of basis sets was based in part on

TABLE Vg. Eigenphases for e-N2 scattering in s„p„
p„and d,

' symmetries at selected energies. The "no
LR" numbers set the long-range interaction potential to
zero beyond $ =7ao. The "Quad. "numbers contain the
permanent quadrupole interaction in the outer region,
and the "Pol." numbers include quadrupole and induced
dipole interactions in the outer region.

k (a.u. ) Symmetry No LR Quad. Pol.

0.1

0.3

0.5

1.0

Sff

PQ

Pe
dg

SII

~a
p~
d~

—0.217
-0.005
—0.003

0.0
-0.650
-0.111
-0.064
-0.017

—1.103
-0.368
-0.253
-0.603

—1.281
—1.134
-0.810
-0.670

-0.217
-0.027
-0.008
-0.002

-0.650
-0.135
-0.051
-0.010

—1.103
-0.377
-0.249
-0.599

-1.281
-1.139
-0.807
-0.672

-0.167
-0.009
—0.023

0.001

-0.627
-0.102
-0.024

0.032

-1.097
-0.366
-0.241
-0.611

-1.286
-1.132
-0.803
-0.666

physical arguments concerning the need for an ad-
equate representation of the HF potential and of the
scattering function as suggested ip Sec. III and
partly by a study of the bound eigenvalues of the
static-exchange Hamiltonian (see Table II).

Of the published theoretical studies of low-energy
e-N, scattering, the one which most closely re-
sembles ours in its treatment of the physics of the
collision is the low-/ spoiling calculation of McKoy
et a/. ' ' In Table V, we compare our R-matrix
static-exchange eigenphases for s„p, p„and d,
scattering with the low-/ spoiling results from Ref.
5(a) at selected energies. In these calculations we
have set Q = 0 in the outer region to facilitate this
comparison. Of course, the full quadrupole inter-
action is included in the potential energy inside the
R -matrix surface.

The effect on the eigenphases of including the
long-range diagonal quadrupole interaction term
for r &10a, can be seen in Table VI. As expected,
the effect of this interaction on the eigenphase
shifts is greatest at the lower incident energies.
However, at very low energies (k' &0.01 Ry), e-N,
scattering is essentially pure s wave, " i.e., the
total cross section is determined from the s
eigenphase shift, and the effect of the quadrupole
interaction is somewhat mitigated.

The final static-exchange e-N, eigenphases for
s „P„P„, and d „scattering are plotted in Fig. 1.
The corresponding total cross sections are shown
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FIG. 1. Static-exchange eigenphases (in rad) for e-N&
scattering for s~, P~, P„, and d~ symmetries. Bases 2'
and 6 were used for 0 and ~ symmetries, respectively,
The Iong-range diagonal quadrupole interaction was in-
cluded in the solution of the coupled equations for (
& 7.0ao with Q = —1.249eao.

in Fig. 2 and representative differential cross sec-
tions in Fig. 3. The II, resonance occurs at -5.4
eV in these static-exchange calculations.

These results do not take into account the effects
of induced polarization. These are known to be
important in low-energy electron-molecule scat-
tering. " For example, in e-H, collisions the qual-
itative behavior of the cross sections below a scat-
tering energy of about 0.25 eV is determined by the

140
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I
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160

FIG. 3. Differential cross sections for e-N& scattering
in the static-exchange approximation including s~, p
and d~ symmetries. Three energies are shown: k
=0.10ao (E =0.14 eV), k =0.55ao (E =4.11 eV), and
k =1.0ao' (E =13.60 eV). The long-range diagonal quad-
rupole interaction is included with Q =1.249 ea&.

presence or absence of the induced-polarization
interaction in the theoretical formulation of the
problem.

In Table VI we show the effect on the eigenphases
of including the diagonal/ matrix elements due to
the polarization interaction in the outer region
(i.e., for $ - 7ao). However, this modification is
not sufficient to fully correct for neglect of polar-
ization, since this interaction is effective for E
& 7a, . A number of theories of electron-molecule
scattering incorporate polarization effects semi-
empirically, using a cutoff function to truncate the
polarization term in the potential energy, Eq. (4),
at some cutoff radius. ' "'" An alternate pro-
cedure is to introduce pseudostates into the repre-
sentation of the system wave function in the inner
region. " Pseudostates are essentially distorted
electronic states which represent the effects of the
polarization interaction. We are at present pursu-
ing such a calculation for e-N, scattering.

20—

oo
1

0.2
)

0.4 0.6
k(ao1 )

I

o.e '

1.0

FIG. 2. Total (integrated) static-exchange cross sec-
tions (in ao) for e-N& collisions including s, p~, p„, and
d~ symmetries and the long-range diagonal quadrupole
interaction with Q =-1.249eao.

V. CONCLUSIONS

In this paper, we have reported an ab initio sta-
tic-exchange calculation of low-energy e-N, scat-
tering. Within the framework provided by this
problem, we have studied the question of basis-set
selection hoping to provide guidance for future L'-
variational calculations. We have found that, in
general, uncontracted basis sets are necessary to
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provide accurate L' representations of the HF po-
tential. Moreover, care must be exercised in sel-
ection of basis functions to represent the scattering
function in eases where a shape resonance is pres-
ent in the electron-molecule symmetry under con-
sideration.

With this study, we feel that the treatment of low-
energy electron scattering from closed-shell tar-
gets in the static-exchange approximation by the
R-matrix method is well in hand. %'e must now

turn to an accurate treatment of the polarization
interaction (as discussed in Sec. IV) to complete

the analysis of elastic scattering.
Beyond this, work is underway on the R-matrix

treatment of electronic excitation in diatomic
molecules by electron impact, with initial atten-
tion focused on e-H, collisions. "
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