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A simple variation-perturbation method recently developed is applied to the calculation of electron affinities.
In this method a common basis is used for both the ion and the neutral system. The resulting secular
equations are of a very sma11 dimension, The matrix elements entering these equations can be evaluated by
diagrammatic methods. The formalism is compared with the one-body Green s function method. The electron
affinities of Li, Na, F, Cl, and OH are calculated.

I. INTRODUCTION

Electron affinities (EA's) are of interest both
from the experimental and the theoretical. point
of view. Traditiona. lly it has been difficult to
measure these qua, ntities accurately so that theo-
retica, l predictions are of great value. ' La,ser
detachment spectroscopy brought a breakthrough
in accurate experimental determination of EA's
of several atoms and a few molecules. ' There
is still a wide range of atomic and molecula, r
systems where an accurate measurement of the
EA is not yet possible. Unfortunately it is also
difficult to compute accurate EA's via ab initio
methods. The difficulties which arise a.re clearly
brought out by Sasaki and Yoshimine, ' who per-
formed large-scale variational calculations on
first-row atoms. Such extensive calculations
can hardly be performed on larger systems, where
accurate EA's are unknown. It is therefore of
interest to study different approaches with re-
spect to their abil. ity to predict EA's.

In the traditional. approach to calculate the EA
of an atom or molecule M from first principles
one computes separately the ground-state ener-
gies & of M and of the ion M and obtains. the
EA upon substraction. There exist also several.
promising attempts to calculate the EA directly,
e.g., the equation-of-motion~ and the Green's-
function' methods. The essential advantage of
the direct methods is that they avoid the sub-
tract'ion of large numbers (total energies) of
roughly equal. magnitude, as is done in the tra-
ditional approach. Here we try to incorporate
this advantage of the direct approach into the
traditional one.

The formalism used here is a combination of
variation and perturbation theory and has been
found very promising even in the case of large

perturbation. ' Up to now it has been applied to
the anharmonic oscillator„' to the hydrogen atom, '
where the whole Coulomb potentia, l is ta, ken as
a perturbation, and to the correlation problem
in molecules' a, lso for larger internuclear dis-
tances. In each order of the perturbation the
formalism contains as special cases the Rayleigh-
Schrddinger and the Brillouin-signer expansions„
the Goldhammer-Feenberg' refinement of the
Brillouin-signer series, and the analogous re-
finement of the Rayleigh-Schrddinger series, "
as wel. l as the continued™fraction expansion of
the resolvent matrix element. The variation-
perturbation method to calculate EA's is presented
in Sec. II and compared to the Green's-function
method in Sec. III. In Sec. IV the numerical re-
sults are discussed.

II. THEORY

For the theoretical development we use the
occupation-number formalism, where a„ is a
destruction operator for a fermion in the one-
particl. e state specified by the index k. The Ham-
iltoniari 0 of an atom or molecule can be decom-
posed as

H =IIo+ V.

By choosing the unperturbed Hamiltonian H, to
be the Hartree-Foek (HF) operator, H, and U

become

V=- —~ V, ,»a,.a,. a, a, —P v, , a~~a, ,

where the h, denote the one-particle HF energies
and the matrix elements V, ,» and v, , are given
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v;, a&
=

&
i (I)i (2) I r pa'I ~(I)I (2)),

N

v, , =Q v,.

~r~I-.urj —~iy~r —V;urn

N is the number of electrons in the system. The
unperturbed energy E» and the HF energy in the HF
ground state lHF) are

E„F—-& HFI HOIHF) = Q b

N

E„,-=&HFIJilHF) =E'„„-— p v..l ~.
m, n= j.

The HF operator is not always the best choice
of the unperturbed Hamiltonian, but is the most
common choice. The formalism does not depend
on this choice.

The simplest expression for the wave function
obtained by the variation-perturbation approach'
~~~d~ {Q=I—IHF&&HFI)

I q& =IHF&+r,b.-e, (4)

with variational parameters y and h. From this
we obtain for the ground state energy E =& gl H

l f&/
& gl g) the simple expression

3 2 g 3 2 g 2

where

E, =&HFl v=, vlHF&,
0

s=&HFl v —, , vlHF),
(h -H )'

E, =& HFl v —, —v — vl HF) —(E„„-E'„„)s.
0 0

To calculate such matrix elements with the Ham-
iltonian (2) one can use a diagrammatic method
described in the Appendix.

In principle the EA, E(M) -E(M ), can be
evaluated from two separate calculations of the
type described above, one for the molecule M
and one for the ion M . In this way one is faced
again with the subtraction of large numbers of
roughly equal magnitude. By starting from two
different finite-basis-set HF calculations, one
actually deals with two different Hamiltonians
and as a consequence the ground-state energies
E(M) and E(M ) are obtained on a different level
of accuracy. Thus it should be of advantage to

start from a single HF calculation for both sys-
tems and to derive expressions for E(M) and
E(M ) which have explicitly in common the large
numbers appearing in the calculations, e.g. ,
&„'„,~», and those parts of the correlation ener-
gies which are roughly equal for both systems.

We choose the HF one-particle wave functions
of the ion M to be the basis for the Hamil. tonian
(2). If one starts from the molecul. e as the ref-
erence system, then the energy of an u+0&&@P&ed

orbital is the first-order approximation to the
EA. By choosing the ion as the reference system
an 0ccuPied orbital is related to the EA. Un-
occupied orbitals are usually much more sensitive
to the choice of the basis set than are occupied
orbitals. In addition the energy of the lowest
unoccupied orbital is known to be a poor approxi-
mation to the EA. On the other hand, we shall
see in Sec. IV that the energy of the highest oc-
cupied orbital provides a reasonable first-order
approximation to the EA.

Li is a useful example to study the choice of
the reference system. The negative value of the
energy of the lowest unoccupied orbital of Li cal-
culated in the RHF (restricted HF) scheme is"
5.34 eV, whereas the negative value of the energy
of the highest occupied orbital of Li cal.culated
with the same scheme is 0.40 eV. The experi-
mental EA of Li is" 0.620 eV. It seems that more
information about the EA of M is included in the
HF calculation of M than in the corresponding
calculation of M.

It is also interesting to note that the EA of Li
obtained by performing two separate HF cal-
culations, one for Li and one for Li, is" —0 122
eV. This underlines the importance of having
a common starting point for both systems and

of cal.culating the total energies on about the same
level of accuracy.

A further though only for mal reason for choosing
the ion as the reference system is that several
systems with EA's of interest have negative ions
with a nondegenerate ground state. For such
systems the RHF scheme is the appropriate one
to use, i.e., there is no symmetry dilemma, "
and since & r„.. . , r„lHF) is one Slater determin-
ant, all expressions simpl. ify. For simplicity
we restrict ourselves in the fol. lowing to ions with
a nondegenerate ground state. The generaliza-
tion to degenerate ground states is straightforward.

Let us now return to Eq. (4) and rewrite the
expression for the ground state of the ion M .
With the Hamiltonian (2) one easily finds

l g& =l HF) +-,'y g ~
' a~ a~a, a, l HF),

j,j~N mnJt
m,n»
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where

=$-$ —S +S.+S
cupied orbital.

In complete analogy to Eq. (4) the ground state
I Q& of M can be written as (Q = 1 —

I k) ( kl),
By eliminating one electron in the HF ground state
of the ion M a suitable reference state I k& for
the molecule M is obtained,

I 0& =I k&+y-S-a, (10a)

which is the same result as obtained in the first-
order approximation

EA =& kI HI k) -& HFI HI »)
=&HF —~k —~HF = —k. (9b)

This result has been found to provide a reasonable
approximation to the EA if k is the highest oc-

I k& =a,
l HF&.

In the lowest possible approximation the EA takes
the form

EA=&klH. lk& -&»IH. IHF&

This result can easily be generalized to the case
where several states I k) of the same symmetry
interact with each other (Q = 1 -P I k) ( kl ),

I y) =P (r,.I a) ~ r,. ~ z, ~
- H- V I a)I .Q

+ HF- k- 0

(10b)
I

All the numerical calculations discussed in Sec.
IV have been performed with Eq. (10a.), which is
a special case of (10b). Nevertheless we would

like to continue the theoretical investigation with

Eq. (10b), which might prove important for larger
systems.

Using Eq. (2) we arrive at

j,J'& Nj&N

y»a»l HF&+y, »
— g &

a,. a„a, l HF)+ — P &'
' " a, a, a a, a„IHF)

k m, l «N ikl m m, l«N f2l m

We have seen that I i]& in Eq. (7) contains doubly
excited configurations with respect to the unper-
turbed ground state. The state

I Q& also contains
doubly excited configurations with respect to all
I k), but in addition contains singly excited con-
figurations with respect to I 1&, where the index
1 runs over all orbitals occupied in the ground
state of M .

By denoting I k) by I 0), , the term of the wave
function having three fermion operators by I 1)»,
and the last term in (11) by I 2)„, we may write

I y& =-Q (y.»l 0&»+y„l », +y.»l 2&»), (12)

where an additional variational. parameter y»
has been introduced to allow for the separate
variation of the singly and doubly excited con-
figurations. With Eq. (12) we have to solve a
secular equation which is 2 times larger than the
secuiar equation obtained from Eq. (11), but no
new matrix elements have to be evaluated.

If K is the number of states I k) taken into ac-
count, Eq. (12) leads to the fol. lowing secular equa-
tion for the energy of M:

(H -ES)y =0,

where JI and S are 3&&3 matrices with submatrices
H,-, and S,, of dimension K. The submatrices
S,, and H, , have elements (S„)»» and (H, ,)»
which are simply given by, (i I j)»r and

,( i I H
I j)„, i, j= 0, 1, 2, respectively. In most

actual cases K is 1 or 2 and H and S are 3&&3 or
6&6 matrices only. In the Appendix it is shown
how explicit expressions for 0 and S can be ob-
tained.

It can be shown that 0 can be decomposed ac-
cording to

II =II+I'-HF S,

where II does not include &HF any more, e.g. ,
(H„)»», =(E„F $»)5»» and (S-„)»»r = 5»» We may.
now obtain E =8 -E»by solving the secular equa-
tion for H,

(14)

(H ES)y =0. -
The EA is now given by

EA==E(M)-E(M )=E(M)-E(M ), (16)

where E(M) is obtained with Eq. (15) and E(M )
with the aid of Eq. (5). The final result is thus
independent of the total HF energy &HF.

We have attempted above to obtain compact ex-
pressions for the ground-state energies of M and
M which l.ead to reasonably accurate EA's. Only
the simplest form of the perturbation-variation
formalism' has been used. There are many ways
to improve the individual energies together with
the EA itself. One possibility is to start from
several reference states instead of starting from
I HF) alone. The numerical effort in such a pro-
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cedure is negligible compared to the effort in-
troduced when the next-order wave function is
us ed.

III. COMPARISON WITH THE t REEN'S-FUNCTION
METHOD

E(M) =- h, -M,',)(8,) -M,",'(h„)

+E, +E, +O(V').

The EA is simply given by

EA = —&» —&»»'(~») ™»'»'(&»)+ O (V')

(21b)

(22)

Since the Green's-function method has con-
siderable success in predicting ionization po-
tentials of atoms and molecules, it is of interest
to compare it with the present method. The one-
particle Green's-function matrix G(v) has poles
at ~ values which are equal, up to the sign, to
the ionization potentials and EA's of the system
under consideration. To find the poles of G(&u)

it is convenient to start from the well-known
Dyson equation"

G=C' +O'MG, (1'7)

EA=- S, -i]f„(-EA)
= —S„-M,„($,) + O( V'). (19)

The terms of the expansion of M(e) up to third
order in the interaction V are discussed in detail
in the literature. "

To compare with the variation-perturbation
method we put, for the sake of simpl. icity, y»
=]» as suggested by Eq. (11). As was done for
the self-energy part in Eq. (19) we choose

~ Q)
to include only one reference state

~
k). Then

H and S in Eq. (15) become 2X2 matrices. If
the perturbation expansion converges rapidly, we
may put the variational. parameter h equal to
zero, which is the value proposed by the Rayleigh-
Schrodinger expansion, and obtain

(20)

where M" and 3I ' are the second- and third-
order terms in the expansion of M, and E, and
E, are given in Eq. (6).

From Eq. (5) it follows for 8 =0,

E(M ) =E, +E~+O(V4),

and from Eqs. (15) and (20) we get at h =0,

which relates the Green's function to the self-
energy part M(~). G' is the free Green's func-
tion with elements

Gl, (~) = 5;,/(~ —&;).

Considering only a diagonal self-energy part, one
obtains for the EA (the ion M is the reference
system)

1 g»m[nl]»'m[nl ]M ~ 1 —
2 g g

(2)
( )

1 ~ »rn[»& 1 »'~[»i]

(23)

In third order there are three Abrikosov dia-
grams, one of them, denoted bye, is independent
of ~. The remaining diagrams are a ladder-type
diagram, denoted by C, and an RPA- (random-
phase-approximation-) type diagram denoted by
D. Each of these diagrams has six time-ordered
diagrams A, -A „C,-C„D,-D, .

For 8 =0 the elements of H...i, j = 0, 1, 2, in
Eq. (15) can now be explicitly written as

H00 = —h„,
H ~ H~0 ——M»[»)(1);—

H„=H„=—(A, +A, +C, +D,),

Hii = —(C6+ D6) ™»'»'(I) —~» Sii

H„= —[ C, +D, + 2(C, +D,)+A, +A, ]

+ M»[2») (2) —E2 +Es —8» S»2.

which is identical up to third order with the EA
obtained via the Dyson equation (19).

For atoms and molecules it has been found"
that even if the third-order contribution is large,
accurate ionization potentials are obtained by
applying a renormal. ization procedure in which
only terms up to third order ar'e needed as input
data. This implies that the higher-order con-
tributions are mainly due to terms which "arise"
from the second- and third-order terms. There-
fore one may gain understanding of how higher
orders are included in the present formalism by
comparing the H, &, i, j=0, 1, 2, with the indivjdual
contributions of the Feynman diagrams of Min
its expansion up to third order.

To be able to proceed some information is needed
about the individual time-ordered Feynman dia-
grams"'" "appearing in the expansion of M up
to third order. %e follow here the nomenclature
introduced in Ref. 15, where these diagrams are
discussed in detail. In second order there are
two time-ordered Abrikosov diagrams" (an
Abrikosov diagram contains several Feynman
diagrams). Their contributions are given by"
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It should be noted that for k = k', which is assumed
here, the following relations hold: A, =A4, A, =A„
C2 = C3, D, =D„C~= C„D4 -—D,. All the contribu-
tions of the diagrams in Eq. (24) are for cu = h».

It has been shown" that among the time-ordered
diagrams of third order there are pairs of dia-
grams which nearly compensate each other, e.g. ,
C, and D, Th.e only diagrams which (for k~N)
are not members of these pairs are A„A.„C„
and D4. These diagrams, especially D„play an
important role in the renormalization procedure.
It is therefore instructive to see that also in the
present approach all these diagrams are collected
in one element, namely, II».

As soon as the value of 8 obtained via variation
of the energy is far from zero, a simple com-
parison of both methods cannot be made. It is
noteworthy that the quantity 4 enters the expres-

sions given in Eq. (24) in a completely different
way than does the quantity (d in the self-energy
part. A demonstrative example is supplied by a
comparison with the self-energy part of second
order as given in Eq. (23). The term —H» in Eq.
(24) becomes

V~m[n» ['a~[n~]

g+g +g g g

i.e., (d - Sk —8, while the term &, -H» becomes

1 g ~km[nl ] Vkm[nl ]
2 „„„+8+6„+8—h„- 8, '

i.e., e- 4k+ S. In addition one finds those terms
in H which are equal to A. ,-A, for 8 = 0 to depend
on h, while the corresponding Feynman diagrams
in the expansion of I do not depend on e, e.g. ,

~Ar [kt ] ~ts(ab 3 ~ab(rs 3

2, „,«s (8+ h, + 8, —8, —$,)($+ h, + 8„—8, —8,) '

a,b&N

(25)

IV. RESULTS AND DISCUSSION

The variation-perturbation method described
above has been applied to calculate the EA's of the
atoms Li, Na, F, and Cl, and of the molecule OH.
The calculation of the self-consistent-field (SCF)
wave function has been performed with the pro-
gram system MUNICH, "expanding the orbitals
in Cartesian Gaussian functions. In the variation-
perturbation part of the computation the linear
variational parameters y were determined by
matrix diagonalization, while the optimum value
of the nonlinear parameter 8 was obtained by a
pointwise calculation of the & (h) curves with a
small set of virtual orbitals. The set of virtual
orbitals was subsequently enlarged and ~ re-
determined. When 4 was found to be constant
this value was used in the final calculation ex-
hausting the basis set.

The influence of different basis sets on the
quality of the computed EA's was studied for the
F atom. For the s-P part of the basis set the
(lls/VP)/[5s/4P] basis of Salez and Veillard"
was considered to be flexible enough except for
the long-range part of the wave function. Thus
an additional s-type function with exponential
parameter n, (F) =0.05 and an additional P-type
function [o.~ (F) = 0.05] were added. Care was
taken in this as well as in all other calculations
that the s- and p-type functions with the smallest
exponential parameters were only used to a small
extent in the expansion of the occupied molecular
orbitals (MO's) so that a correct long-range be-

TABLE I. Basis sets used in the calcul'ation of the EA
of F. For the exponential parameters of the s-p basis
set see text.

Uncontracted Contracted
Basis basis set basis set

I
II
III
IU
U

UI

12s8p2d
12s8p2dlf
12s8p3d
12s8p4d
12s8p4d
12s8p3dlf

6s5p2d
6s5p2dlf
6s5p3d
6s5p4d
6s5p4d
6s5p3d lf

1.23, 0.3
1.23, 0.3
1.8, 0.6, 0.2
2.2, 1.0, 0.4, 0.15
5.4, 1.8, 0.6, 0.2
1.8, 0.6, 0.2

0.5

1.0

havior could be obtained. The basis set for the
F atom thus consists of six s-type and five p-type
contracted functions. The total SCF energy ob-
tained with this basis set is &s„", = —S9.448 855
a.u. and the orbital energy of the 2P orbital is
—4.93 eV. To this basis d- and f-type functions
were added. The different sets used are listed
in Table I. From two to four d-type functions
'were employed and different sets of exponential
parameters were tried. Since the F ion has a
diffuse charge distribution in contrast to the neu-
tral F atom it is expected that correlation energy
changes arise from this difference. Consequently,
relatively diffuse d-type functions have been in-
cluded in the basis. f -type functions have been
added to a basis with two and another one with
three d-type functions. Table II contains the
results of the calculations with the different basis
sets. Prom basis I to basis VI the correlation
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TABLE II. Variation of the electron affinity of F with
basis set ($ given in a.u. , all other quantities in eV.)

Basis g(F ) EA g(F) E(F) -E(F )

I
II
III
IV

VI

-5.739
-5.988
-6.389
-6.491
-6.706
-7.065

-0.8
—0.7
—0.8
-0.8
-0.8
—0.8

3.67
3,73
3.68
3.68
3.65
3.74

-2.5
—2.5
—3.0
-3.0
-3.0
—3.0

3.58
3.67
3.58
3.57
3.52
3.62

energy of the F ion changes by about 1.3 eV,
but the EA changes by a much small. er amount,
only by about 0.1 eV. When considering only the
ca'lculations with different d-type functions the
variation in the EA is only 0.03 eV. The EA is
thus found to be stable with respect to the vari-
ation of both the number and the exponential. pa-
rameters of the d-type functions. The error with
respect to the experimental. value of" 3.448 eV
is 0.2 to 0.23 eV. When f-type functions are
added the EA increases and the error is about
0.3 eV. f -type functions (at least as chosen here)
are thus more important for the description of
the correlation energy in the F ion than in the
neutral atom.

Using a large basis set of Slater-type functions
up to i-type, Sasaki and Yoshimine' computed a.

valence correlation energy of 8.19 eV for F by
a configuration-interaction cal.culation including
all single and double substitutions, and 8.47 eV
including triple and quadruple substitutions as
well, which they estimate to be about 95% of the
total valence correlation energy. The present
result for the correlation energy (7.07 eV) is
thus 85 /o of the corresponding value of Sasaki
and Yoshimine.

The optimum value of 8 is —0.7 to —0.8 a.u.
for the ion and -2.5 to —3.0 a.u. for the F atom.
The two values are thus very different. The vari-
ation of 8 turns out to be considerably more im-
portant for the neutral atom than for the ion, for
which the correlation energy is a very flat func-
tion of h around the optimum value. The neutral
atom is in the present method described with the
orbital basis of F and the parameter 8 in part
corrects for this. Choosing $(M ) to be the same
as S(M) leads, because of the flat character of
the curve, onl. y to slight changes in the EA's.
This procedure results in computational savings
and tends to improve the computed EA's. The
corresponding results for the F atom are given
inthecolumnheadedE(F) —E(F ) in Table II. The

E, is the valence correlation energy of F calculated
with Eq. (5).

E(F ) is E(F ) calculated at g= g(F) (see text).

EA's are smaller by about 0.1 eV and thus agree
better with experiment. The reason for this is
that there is in the present method a tendency
to describe the M ion better than the neutral.
M; the EA's thus tend to be too large. Using
now the @(M) value for the ion systematically
leads to a poorer description of M and thus to
a "better" EA.

Based on the investigation of the EA of the F
atom it was decided to use three d-type functions
on all. the atoms except for the H atom, where two
P-type functions were employed. It should how-
ever, be kept in mind for the calculation of EA's
of larger molecules that fewer polarization func-
tions could be used without necessarily deterior-
ating the quality of the computed EA's. The fol-
lowing basis sets were used in the calculations:
I 1, (13s6P3d)/[8s6P3d]; this is the basis set of
Salez and Veillard" with two additional s-type
functions (a, = 0.006, 0.002) six P-type functions
(n~ = 5.0, 1.2, 0.4, 0.1, 0.25, 0.005), and three d-type
functions (n, = 0.45, 0.15, 0.05). Na, (15slOP3d)/
[9s6P3d]; this is the basis set of Veillard" with
three additional s-type functions (a, =0.01, 0.004,
0.001), four additional P-type functions (a~ =0.15,
0.05, 0.015, 0.005), and three d-type functions
(n„=0.45, 0.15, 0.05). Cl, (13s10P3d)/[ 7s6P3d];
this is the basis set of Veilla, rd" with one ad-
ditional s-type function (o., =0.06), one additional
P-type function (o.'~ =0.035), and three d-type
functions (n~ = 1.8, 0.6, 0.2). 0, (12s8P3d)/
[6s5P3d]; this is the basis set of Salez and Veil-
lard with one additional s-type function (n, =0.04),
one additional P-type function (u~ =0.025), and
three d-type functions (n~ = 1.35, 0.45, 0.15).
H, (7s/2P)/[4s2P]; his is the basis set of Salez
and Veillard with an additional s-type function
(a, =0.025) and two P-type functions (o.~ =1.2, 0.45).
The equilibrium distance of the QH molecule"
(R =1.834 a.u. ) was employed in order to obtain
the vertical EA and not the electron detachment
energy. The polarization functions were chosen
appropriately to calculate the valence correlation
energy in all cases. In the case of Li the K shell.
was included in the calculation because it might
be inappropriate to treat it as an unpolarizable
core. The basis set, on the other hand, was
chosen to have maximum flexibility for the 2s
orbital. A smal. l. part of the E shell and of the
intershell. correlation energy will thus only be
obtained, but the computation of the total cor-
relation energy of the core does not significantly
influence the EA.' The inclusion of the K shell
in the calculation supplies the dominant correc-
tion to the approximation of an unpolarizable core.
The same comment applies to the Na atom, for
which the L shell was included in the calculation.
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The results for the total SCF energies, cor-
relation energies (for M ), 8 values, and EA's
are presented in Table III. (Note that for the F
atom the calculation involving three d-type func-
tions has been entered for consistency with the
other systems. ) It is seen that the valence cor-
relation energy for first-row atoms (as F) is
considerably larger than for second-rom atoms
(such as Cl). The h values for M and for M
are quite different for the systems and even differ
considerably in cases where a greater similarity
could be expected (F versus Cl). The calculated
EA's are in quite good agreement with the ex-
perimental values listed in Table III as well. The
errors for Li, Na, and Cl are about 0.04 eV and
for F and OH about 0.2 eV. The excellent agree-
ment for the Cl atom is regarded as fortuitous.

Sasaki and Yoshimine' found that (a) even with
very extended basis sets, which gave about 94
to 95 /& of the correlation energy for the first-
row atoms, only about 83% of the correlation
contribution to the EA is obtained and (b) that
triple and quadrupole substitutions play a non-
negligibly larger role for the ions than for the
neutral atoms. The findings of Sasaki and Yoshi-
mine may not entirely apply here. They described
the neutral atoms better than the ions resulting
in EA's that were too small. In the present scheme
the ions are usually better described than the
neutrals, which is just the reverse situation re-
sulting in EA's that are too large. Higher than
double substitutions might thus give additional
flexibility to the neutral system and in the end
contribute as much to M as to M in the present
scheme.

There is considerable literature on the calcu-
lation of EA's. The theoretical work on EA's of
first-row atoms (B to F) has been discussed by
Sasaki and Yoshimine in comparing their CI re-
sults to other methods. There is further a recent

review article by Hotop and Lineberger' on the
EA's of atoms with a discussion of various theo-
retical methods and extensive literature data.
The discussion will thus be restricted to work
on atoms not mentioned in these two articles and
to the EA of the OH molecule. Sims et al. '4 per-
formed a very accurate CI calculation on the EA
of Li. Estimating relativistic corrections they
arrived at an EA of Li of 0.609+0.007 eV, which
is so far the most accurate calculation of this
quantity and is in very good agreement with the
experimental value of 0.620+ 0.007 eV." Ceder-
baum and von Niessen' computed the EA of Li
Qy a Green's-function method by expanding the
self-energy part up to third order. They ob-
tained a value of 0.55 eV with a basis set which
is somewhat poorer than the one used in this work.

Staemmler and Jungen25 used an independent
electron-pair approximation to calculate the EA's
of first-row atoms. The quality of their results
is about the same as in the present variational
method. The EA of OH has been determined by
Meyer" using the variational pseudonatural or-
bital CI method and extended basis sets, which
give a value of 1.265 eV, and the nonvariational
coupled-electron-pair approximation, which gives
a value of 1.46 eV. Since the latter approximation
incorporates the correlation energy contributions
of 2n-fold substitutions this tendency is in agree-
ment with the findings of Sasaki and Yoshimine.
Smith, Chen, and Simons" used the equations-
of-motion method for computing the EA of OH.
This method is closely related to the Green's-
function method. They obtained the very good
result of 1,76 eV. They used, however, the wrong
distance (minimum of the Hartree-Fock energy
curve of OH instead of the distance determined
from experiment or CI calculations) and a much-
less-extended basis than is used in the present
work. Deleting from the basis set of Cade and

TABLE III. Comparison of calculated and observed electron affinities (Total SCF energies
and g in a,u. , all other energies in eV).

System Orbital
M energy E tpg (M ) g(M ) EA g(M)

Observed
EA

Li
Na
F-

Gl
OH

0.396
0.362
4.93
4.09
2,98

-7.427 97
-161.821,68
—99.449 61

-459.551 28
-75.408 56

-1.548
-2.846
-6.389 d

-4.806
-5.674

0.08
0.08

-0.8
—0.2
-0.7

0.577
0.578
3.68
3.66
2.07

-0 ~ 22
-0.12
-3.0
—1.2
-1.5

0.620
0.548
3.448
3.613
1.825

Only a small part of the E-shell correlation is included (see text).
Reference 12.
Only a small part of the I -shell correlation is included (see text).
Valence correlation energy.
Reference 21.
Reference 29,
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Huo" some of the functions which are used to
describe the inner shells is justified, but they
deleted as well a part of the polarization func-
tions. It would be interesting to repe'at their cal-
culations with a l.arger basis set.

V. CONCLUSIONS

A variation-perturba. tion method recentl. y de-
veloped is applied in its simplest form to the
calculation of EA's. It is argued that a good start-
ing point is obta. ined by choosing the ion as the
reference system and using its orbital basis to
construct the Hamiltonian. The wave functions
for M and M consist of the first-order perturbed
wave function with linear and a nonlinear vari-
ationa, l parameters. The reference state for Af

is the HF ground sta, te, whereas the reference
state for M is a linear combination of a. set of
states obtained by annihilating suitable HF pa, r-
tic les fr om the HF ground state. With thes e wave
functions EA's are computed which agree up to
the third order in ihe perturbation with the
Green's-function results.

This method has been applied to calculate the
EA's of the atoms Li„Na, F, and Cl and of the
molecule OH. For Li, Na, and Cl the errors in
the computed EA's a,re about 0.04 eV and for the
other systems about 0.2-0.3 eV. The excellent
value for Cl is regarded as fortuitous.

The ions are in the present method usually better
described than the neutral atoms, yieMing some-
what too large EA's, in contrast to the results
of Sasaki and Yoshimine, who described the neutral
systems better than the ions and thus obtained
somewhat too sma. ll EA's. In view of the task
of determining EA's for larger molecules it ap-
pears to the authors to be extremely difficult
to cal.culate accurate EA's via the criterion of
best total correlation energies. Sasaki and Yoshi-
mine obtained 94 to 95 /0 of the total correlation
energies but only about 83 /p of the correlation
energy change occurring in going from M to M .
It is necessary to aim directly at the correlation
energy difference upon electron attachment; and
describe only this part accurately. In this respect
there still remains something to be done. The
basis sets used in the present investigation are
quite extended, at least what concerns molecular
applications. But based on the findings for F it
is expected that reasonably accurate EA's could
be calculated with less-extended basis sets, which
is essential for wider molecular applications.
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APPENDIX

The matrix el.ements of H and the overlap of
the wave functions appearing in Secs. II and III
ean„ in principle, be eva, luated by simple algebra.
This "brute-force" method is, however, very
tedious. The situation is very simila, r to the case
of evaluating the Green's function. Here one
could, in principle, use the we11-known"'"'" ex-
pa, nsion of 8 '8' to obtain the terms in the ex-
pansion of the Green's function. The amount of
work which has to be invested is reduced con-
siderably by using the diagrammatic expansion
of the Green's function. A simila, r diagrammatic
method is used here to evaluate ma.trix elements
appearing in the variation-perturbation approach.

In the following we denote the HF ground state
by ~ l) and the doubly excited part of

~ g) in Zq.
(7) by ~

2). The nonvanishing matrix elements
of 0, ean be easily ca,leulated directly by using
the relations a, a,. a, =a, a, a, -e, 5„and a,.a, a

&t t

(i~a, ( l& =Z'„,,

& 2IH. I 2) =(&+&'„F)&2I 2) -(2I l'I l),
, & 0[a,[ o&„=—8, +~,'.,„.,

,( &[a,[1) = [s+z,', ,
——,'(h, + 8„,)](s„)„,

(Al)
-2(a& lI i'l »~ +~«l l'1»s ),

„&2~H,~ 2&„=[s+z„„,—-(a„+s„,~](s„),„,
--,"(,&2j Vi 0&„+,&0[ V) 2&„).

We now decompose V into its one-particle and
two-particle parts:

V, =- v&, a &a, ,

[ut]a &a saia
I

To evaluate the matrix elements diagrammatical. ly
symbols must be introduced for V„V, and for
the wave functions. These symbols are shown
in Fig. 1. The rules to obtain the diagrams which
contribute to a given matrix element are given
in the following:

(i) Draw the "skeleton" representing the matrix
element. A skeleton A: B:C is obtained by drawing
the quantities C, B, and A below each other.

(ii) Draw all topologically nonequivalent dia-
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V2 V) I~ + I + I

I I

if

i

fk

I 0Q

k&OI

k'

(b)

FIG. 1. Definition of symbols used to evaluate matrix
elements. V& and V& are the one-particle and two-par-
ticle parts of the interaction V, respectively. ~1) stands
for ~HF) and ~2) for the doubly excited part of ~I») in

Eq. (7). ~0)«, ~l)», and ~2)» are defiped by Eq. (12).

= +2I2&= S

Ik' 6- ik'

= k0IV2I &k

k

xk' Lk'

«(01 Vl I I &»

. . k'

= kC)IVIlhk

(b)

FIG. 2. (a) Skeleton (2~: ~2) leads to only one diagram
which is equal to S in Eq. (6). (b) Skeleton «(0~: V2. ~ 1)»
leads to two diagrams, where one of them is equal to
-»(0(VI~1)» . Thus «(0~ V(1)«contains only one diagram.

grams which can be obtained by connecting the
arrows of the skeleton. (If two arrows are con-
nected, a so-called free line results; see Fig. 1.)

A simple example is shown in Fig. 2(a). To
obtain the overlap ( 2[ 2) the skeleton (2~: ~ 2)
is drawn on the left-hand side of the figure. There
are four possibilities to connect the arrows of

FIG. 2. '(a) Sum of diagrams leading to (2~ V~2). The
last two diagrams are each a product of two diagrams.
The sum of these two diagrams is S(E„~-,—Eq~~:). (b) Sum
of diagrams leading to «(2~2)» . The first diagram is a
product of two diagrams, Sb» .

the skeleton. All these possibilities lead to the
same diagram. Another, more complicated, ex-
ample is given in Fig. 2(b). The skeleton
»(0~: V,, :

~ 1), leads to two diagrams. The skel-
eton «(0~: V, :

~ 1)» leads only to one diagram,
which is equal, apart from the sign, to the second
diagram of the first skel. eton. Thus, only one

diagram contributes to „(0~ V
~ 1)» .

The skeletons shown in Fig. 2 lead to linked
diagrams only. There are also examples where
unlinked diagrams appear. As shown in Fig. 3(a),
five diagrams contribute to (2~ V~ 2). The last
two diagrams do not cancel as was the ease in

Fig. 2(b). It is a general. rule that the diagrams
due to V, which contain a free line starting and

ending at the same dot eaneel the corresponding
diagrams due to V, . The only exception is when

two free lines start and end at the same dot.
The rules for evaluating a given diagram are

given in the following:
(i) Multiply the elements appearing in a skeleton,

leaving out the creation and destruction operators
appearing in them as well as the factors in front
of them„e. g. , the factor & in V, .

(ii) Carry out the summation after inserting
the Kronecker symbols according to the definition
of the free lines in Fig. 1.

(iii) Multiply the result obtained in(ii) byafac-
tor 2 '(-1), where q is the number of permuta-
tions of two equivalent free lines in the diagram
leaving the diagram unchanged. f =f, +f„where
f, (f,) is the number of times free lines pointing
downwards (upwards) cross each other.

As a consequence of the above rules the con-
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2

g24 j j~N mnjj
m, n& N

(A3)

tribution of an unlinked diagram is equal. to the
product of the contributions of the linked dia-
grams contained in it. I et us discuss four ex-
amples briefly. The overlap (2~ 2) is found with
the above rules to be

(2 +mn J' i mni 2 ) ~mn I' i8=
g2

mnJ' j
(A4)

where i, j are now doubly occupied and nz, n empty
orbitals. Analogously one finds the first dia-
gram on the right-hand side of Fig. 3(b) to give
a contribution SD» . The sum of the two last
diagrams in Fig. 3(a) gives S(&„„-EOH„)and the
last diagram in Fig. 2(b) leads to

If we deal with a closed-shell system, 8 can be
written as

(A5)
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