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The dipole oscillator strengths (f) for some transitions within the ground complex of the magnesium
isoelectronic sequence up to nobelium (Z = 102) are calculated using the relativistic wave functions obtained

by the parametric-potential method. The length and velocity formulations are used for the transition operator.
For the resonance lines, the trend along the sequence differs str'ongly from the predictions of the
nonrelativistic Z-dependent theory of many-electron atoms. This behavior is explained in the framework of
the relativistic Z-dependent theory, which introduces a double power-series expansion in Z (for correlation)
and Z'a' (for relativistic effects). The f value for the first resonance transition increases for low values of Z,
as the departure from the Russell-Saunders coupling becomes more important, agd decreases at high values of
Z owing to the contraction of the orbitals toward the nucleus. The f value for the second resonance transition
does not fall off for large Z, since the frequency of the transition increases approximately as Z' for high
values of Z, owing to the relativistic corrections (spin-orbit, Darwin, and p' terms). The length and velocity
formulations are discussed, with particular emphasis on how relativistic contributions to the transition energies
or to the transition matrix elements occur. Corrections coming from the finite size of the nucleus, the Breit
interaction, and the 'Lamb shift are introduced; although they are significant, they do not alter the general
shape of the curves giving the Z dependence of the f values. On the contrary, retardation effects remain
unimportant over the entire range of Z.

I. INTRODUCTION

With the increasing interest in controlled ther-
monuclear reactions, it becomes necessary to
study the dipole oscillator strengths (f) for the
resonance transitions of highly ionized atoms, in
order to estimate the energy loss through impurity
ions in the plasma. For the lower stages of ion-
ization (& 15), the systematic trends of the f val-
ues along an isoelectronic sequence have been
studied in great detail. " For higher stages of
ionization where no experimental data are avail-
able, the theoretical studies are mostly based on
a perturbation expansion of the nonrelativistic
many-electron Hamiltonian in inverse powers of
the nuclear charge Z.' In this model, for transi-
tions without change in the principal quantum num-
ber of the excited electron, the f value for high
values of Z decreases as Z '.

Recently several authors have obtained a very
different Z dependence, pointing out that relativis-
tic effects cannot be neglected. Sinanoglu and
I uken' introduced semiempirically the spin-orbit
interaction to study oscillator strengths within the
shell n = 2 of the boron sequence. Weiss' carried
out intermediate coupling calculations with the
low-Z Pauli approximation. ' More recently,
Younger and Weiss' evaluated in the hydrogenic
approximation, the magnitude of the relativistic
corrections to the dipole transition matrix element

expressed in the length form. Lastly Kim and
Desclaux' studied the resonance transitions of Li-
and Be-like ions in the relativistic Hartree-Fock
approximation; they showed that for highly charged
ions of the Be l sequence the results deviate
strongly from the predictions of the nonrelativistic
Z- expansion method.

In this paper we point out that a similar Z de-
pendence can be obtained for the resonance lines
of the magnesium isoelectronic sequence, in the
framework of the relativistic parametric-potential
method. ' We show that such behavior can be an-
alyzed by means of the relativistic Z-dependent
theory of Layzer and Bahcall, "which introduces
a double power-series expansion in Z ' and Z'n'
(o =»', is the fine-structure constant). Correc-
tions arising from the finite size of the nucleus,
and from radiative corrections (Breit interaction
and Lamb shift) are studied, but they do not alter
ihe main features of the Z dependence. The oscil-
lator strengths are calculated with the length and
velocity formulations of the electric dipole opera-
tor. We show that the distinction between the con-
tributions of the relativistic effects either on the
energy or on the transition operator is somewhat
arbitrary, on account of the equivalence between
the length and the velocity formulations. More-
over the length formulation is scarcely modified
by the relativistic effects; on the contrary, in the
velocity formulation relativistic effects cannot be
neglected.
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II. RELATIVISTIC CALCULATION
OF ATOMIC ENERGY LEVELS E(y J) = Z' g g A&,(y J)(Z o.')~Z '

p=p qw

A. Z dependence of the relativistic Hamiltonian
for a many-electron atom

=Apo Z +Ao~ Z+Ap2+A1oZ & +A&i Z Q + ' ' ' .

The relativistic study of one- and two-electron
atoms has been extensively reviewed by Bethe and
Salpeter. ' Layzer and Bahcall" extended the non-
relativistic Z-expansion formalism to include rel-
ativistic effects up to quantities comparable in
magnitude with the Lamb shift. Doyle" calculated
energy levels for atoms with up to ten electrons
in the first two shells, using unscreened relativis-
tic hydrogenlike wave functions. We recall here
only the main results.

In the central-field approximation the wave
function for a relativistic state can be written as

where l = 2j —1 .

The small component I'„„.is of the order of Z~
compared with the large component 0„„., which
reduces to A„, in the nonrelativistic limit. For
an atom of nuclear charge Z, the unit of length

a, /Z is chosen, where a, is the Bohr radius. The
radial wave functions (G„„./y and F„„/wZo) and.
the corresponding eigenvalue q„„.can be written
as an expansion in powers of y=Z'~'. " In the
particular case of the Coulomb potential —Z/~,
the coefficients of the expansion do not depend up-
on Z.

As in the nonrelativistic case the electrostatic
interaction Q between the electrons is of the order
of Z ' compared with the Dirac Hamiltonians
(H'=Z, . k,.) of the electrons moving in the potential
of the nucleus. If Q is treated as a perturbation of
H', the matrix elements of Q can be expanded in

powers of Z ', the leading term, which is propor-
tional to Z, corresponds to the electrostatic inter-
action between states belonging to the same com-
plex. '

The Breit interaction 8 is a relativistic correc-
tion to the electrostatic interaction between the
electrons. Layzer and Bahcall" have shown that
the most often used form of the Breit interaction
obtained for y«1 is accurate over the entire
range of Z, up to quantities of higher order than
the Lamb shift. The leading term of B is of order
y compared with Q.

Finally relativistic energies can be written as a
double-power-series expansion in Z ' and y (in
atomic units)

In the hydrogenlike approximation App ls the same
for all the states of a given complex: A»= —Z 1/
2n', A» corresponds to the nonrelativistic elec-
trostatic interaction among states belonging to the
same complex, and A» introduces relativistic
two-body interactions coming from Q and B (or-
bit-orbit, spin-spin, spin-other-orbit, . . .) within
the complex. The coefficient Ap2 can be obtained
by a first-order calculation of the extracomplex
configuration interaction arising from the nonrel-
ativistic electrostatic interaction. Relativistic
one-electron operators (spin-orbit, Darwin, and
mass-correction terms) are introduced by means
f Aip' for a pure hydrogen type j-j state, Api d-

pends upon the n and j values of the orbitals, but
not upon I.

The expansion (2) is not unique, since the co-
efficients Ap, depend generally upon XZ = Z'n'.
The coefficients Ap, are constant only for the
special case of a single level yJ in the complex
with a given angular momentum J.

The predominant terms of the expansion (2) are
different according to the range of Z studied. For
low Z values, A. p Apy and Ap2 give rise to the
main contributions (Russell-Saunders coupling
with extracomplex configuration interactions). On
the contrary for high Z values, Apy and Ap2 axe
almost negligible, but the relativistic one- and
two-body interactions (A» and A») are predomi-
nant (j-j coupling within a given complex).

B. Relativistic radial wave functions and intermediate coupling

2. Relativistic radial wave functions

To compute the relativistic radial wave func-
tions, we use the relativistic parametric-potential
method described in a previous paper. ' We briefly
indicate the principal points of this method. The
zero-order Hamiltonian for an N-electron atom is
the sum over one-electron Dirac Hamiltonians
corresponding to the central potential U(~). In the
parametric-potential method U(y) is represented
by an analytic function depending upon a set of
parameters, each parameter describing ihe dis-
tribution of charges in a given shell of the atomic
core. For the Mg I isoelectronic sequence three
parameters are introduced: two (8, and 8,) as-
sociated with the K and I. shells of the core, the
third (8,) corresponding to the mean potential pro-
duced by an electron of principal quantum number
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n=3.
The following formula is used'.

U(r} = —(1/r)[I+ 2g (9,r)+ 8g, (8,r) +g,(8,r}],
where

gi(8;r) =
2 & 1 ~ (4L+2)f,(q,r),1

LW

e,.(L+ 1)
1 —0.03L(L+ 1) '

2 $+1

f (y r)=e ~s, " 1 2l+2 I!
For an atom with N electrons and the nuclear
charge Z, I=Z —N+ 1. In this work the optimal
potential minimizes the total first-order energy
of the ground level Ss"S0 of the spectrum, the
first-order Hamiltonian excluding the Breit in-
teraction. The optimal potential being the same
for all orbitals within the spectrum studied, it is
possible to compute the radial wave functions of
excited states by numerically solving systems of
two coupled first-order differential equations.

2. Intermediate coupling

Multiconfiguration wave functions are used for
the ground statg and for the excited states. The
purpose of this work was to study the Z depen-
dence of the f values for the resonance transi-
tions of the Mg I sequence; consequently, only the
interactions within the complex (n=3)' are intro-
duced, since they are predominant at moderate
and high values of Z. In this approximation, the
wave function of an even state (J=0) or the wave
function of an odd state (Z= 1) can be expanded
over five relativistic states. The mixing coeffi-
cients and the energies are obtained by diagonali-
zing either the matrix II'+ Q or the matrix H'+ Q
+B. The transition energies are equal to the dif-
ference between the eigenvalues of the correspond-
ing levels.

We shall show further (Sec. V) that it is possible
to introduce in an approximate way corrections
arising from the Lamb shift and from the finite
size of the nucleus.

III. RELATIVISTIC TREATMENT OF ELECTRIC
DIPOLE TRANSITIONS

A. General formulas

The lowest-order term which appears in the
study of a transition from the state I+~„) to the
state I4'~,„,) through emission or absorption of one
photon of momentum k and polarization e is given
by"

(~~~IF ~ ' e"" "I~~~}=(~zuITv eI+z~) (4}'

where n,. is the Dirac vector of the jth electron
of the atom, and T~ the transition operator ex-
pressed in the velocity formulation. %hen the
retardation is negligible, i.e. , e'"'~ =1, and when
the wave functions are the zero-order functions
4 JM and O'J, M, of a given central potential, asso-
ciated with the energies E'J and EJ„ it is possible
to write.

f„(4~
—4'~, ) =3.0375 ~ 10 ' D', ,

where o (in cm ') is the wave number of the tran-
sition and where- D', the square of the transition
matrix element expressed in atomic units, is de-
fined by

MM'
JM J'M'

%hen central-field wave functions are used, D~
can be expressed by means of radial integrals
such as

G„„.F„,, dr=(nlj ~n' l'j ').
0

(7)

The radial integrals which appear in the expres-
sion 'D„are

r(G„,) G„,, + I"„,q Ii„,, ) Cr = (nII
I
r In l g )

0

(8)

On account of the types of radial integrals (7)
and (8}, it is impossible to separate the relativis-
tic contributions to the transition operator coming
from either the large components G or the small
components E of the radial wave functions.

B, Z dependence of the transition matrix element

In this section we restrict the discussion to the
transitions s -p, which appear in the study of the
resonance lines of the Mg & sequence. For one-
electron wave functions, the matrix elements of
the operator G are given by

This relation leads to the length formulation of
the transition operator T„=Z,. r,

The absorption oscillator strengths in the velo-
city and in the length formulation are defined by

fv(4~-4~, ) =2.7477 x 109
( )

Dv,
1
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4i 2
(sii2II o' ll p3i2) ——

~3 & psi2 I sii2& ~~3 (e~ —c, )&s,

2 ~/ -1 2'"
(s, &,lie'Ilp»2)=i — (&pii2ls», &+3& is, l pii2&) o 3 (&i,, &,

—&»&,)&sis2l~lpii2&

Along an isoelectronic sequence, when hydro-
genlike Dirac wave functions are used, it is pos-
sible to write

n't'j'& = (a/Z)(1+ ao'Z'+ ~ ~ ~ ) (10)

where 8 is related to the contraction of the rel-
ativistic orbitals toward the nucleus, with in-
creasing Z. Consequently for one-electron wave
functions, D„varies approximately as Z '.

The Z dependence of D~ depends simultaneously
upon the variations of ~& = e„„.—&„,, and

&nfjl~l~ I j &.
For ns-n'p transitions (non'), the leading term

of 4q varies as Z', so that D~ is proportional to
Z, as in the nonrelativistic theory.

For the ns, /, —np, /, transition, ~& increases as
Z for high values of Z (spin-orbit interaction) so
that D~ is proportional to Z'. For the nsy/2 npy j2
transition 6& varies as Z (nonrelativistic electro-
static interaction within the complex), conse-
quently D~ remains approximately constant along
the isoelectronic sequence. The different be-
havior of the intracomplex ns», -np, transitions
(j=—,

' or j=-,) is simply due to the relativistic
contributions to the transition frequency.

C. Relativistically allowed decay; length
and velocity formulations

Using the effective operator formalism, "the
transition operator for s -p transitions can be
written in the equivalent form

O"'=R„n '""(s,p)+R„~"'"(s,p),
where the double-tensor operator has been de-
fined by Feneuille. " The Byy coefficient, which
vanishes in the nonrelativistic limit, corresponds
to specific x.elativistic effects; B„is associated
with the relativistically allowed spontaneous decay
of the intercombinatian transitions, "'Py So for
example. In this section we mill show that the
magnitude of the ratio R»/R» depends upon the
formulation chosen (length or velocity).

The velocity formulation has been already used
by one of us" with success, to perform calcula-
tions of the resonance line 'P, -'8, in group-II
elements. These calculations showed that the
transition probabilities were reduced by a factor
of approximately 2, mhen the relativistically al-
lowed decay (direct part) is added to the indirect
part coming from the intermediate coupling.

Recently, Drake" using nonrelativistic wave

functions has shown that both indirect and direct
parts are automatically included, provided that
the transition matrix element is expressed in the
length formulation. This result is approximately
valid when relativistic wave functions and opera-
tors are used, as is shown below.

In the Appendix we show that in the length form-
ulation &,",/R,", is proportional only to the relative
variation oi the radial integrals &s, &, lxlp&& (j=-,
or 2) Icf. Eq. (10)]. This value always remains
small, even for highly ionized spectra. More-
over, for low values of Z (y«1), the relative
order of magnitude of the relativistically allowed
decay, R»/R» is greater in the velocity formu-
lation than in the length formulation, by the quan-
tity y(~/(v 2 he), which varies as Z' for intracom-
plex transitions (y&~ is the fine-structure constant
of the p electron). For high values of Z R»/R„
is almost equal to the hydrogenlike value: R»/R,",
=0 and R,', /R,', = I/W2.

In conclusion, when the length formulation is
used, the relativistically allowed decay remains
almost negligible over the entire range of Z, and
the relativistic corrections are almost exclusively
introduced by taking into account the shift of the
wave functions toward the nucleus. Qn the con-
trary, in the velocity formulation the relativistic
operator sv'"" cannot be neglected: A„ introduces
simultaneously the relativistic contraction of the
orbitals and contributions coming from the spin-
orbit interaction. The length formulation gives
more weight to the part of the wave functions
which extends far from the nucleus, so that the
corresponding matrix element is less sensitive
to relativistic effects than in the velocity formu-
lation. On account of the equivalence of the length
and velocity forms of the transition matrix ele-
ment, relativistic effects either on transition fre-
quencies or on radial matrix element are closely
related„and the distinction betmeen these is some-
what arbitrary.

D. Choice of the formulat'ion used

The dipole and velocity formulas give different
numerical values, when approximate wave func-
tions are used, and it is impassible to knom in a
pure theoretical way, which expression is the
more suitable. Pragmatically, cancellation ef-
fects occur in the calculation of the transition
matrix element; the numerical value of the transi-
tion matrix element is more sensitive to small
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changes in the wave functions when the cancella-
tion is important. Consequently the more reliable
results are undoubtedly those for which the can-
cellation effects are the least. Moreover, when
retardation effects cannot be neglected, the ve'lo-

city formulation enables one to introduce them in
a simple way.

In this work we use both formulations to study
the f values of the resonance lines of the Mgl se-
quence. The difference between the results gives
an indication on the magnitude of the contributions
coming from the extracomplex correlation effects,
which are neglected in our treatment.

2.0-

I I t

0.04

IV. RESULTS

The method described above has been used for
computing the f values for all 8= 0-Z' = I transi-
tions within the (n=3)' complex of the Mg I iso-
electronie sequence. %e study in great details
the resonance lines. In our notations, the ground
state is,s„ the lowest Z' = I level is p'„and the
second 8' = 1 level is p,". Neglecting configuration
interactions, the state s, belongs to the 3s' con-
figuration. For the first ions of the sequence,
deviations from I.S coupling are almost negligi-
ble, and the levels p', and py correspond respec-
tively to the 3s3p'P, and 3s3p'P, states. As Z
increases, the coupling gradually changes into the
j-j coupling scheme, for which p', and p," become
identical to the (3s,&,3p», )Z' = I and (3s, &,3p», )J'
=1 states. The transition energies for s,-p', and

s,-p," are denoted by o' and o", and the corre-
sponding f values by f' and f".

In Fig. 1, f' and f" are plotted vs Z; the f val-
ues are obtained to the first-order approximation,
neglecting the Breit interaction and using either
the velocity formula or the length formula. The
curves are very similar to those obtained for the
Be I sequence by Kim and Desclaux' using relati-
vistic Hartree-Fock wave functions. The values
of f' remain always smaller than those of f" (no-
tice the different scales), and for Z&50 both f
values deviate appreciably from the results ex-
trapolated from the lighter ions of the sequence
using the qualitative predictions of the nonrelati-
vistic Z-dependent theory. ' Indeed the f' curve
presents abroad flat maximum, and the f" curve
a significant minimum. These results are not at
all surprising and can be predicted in the relati-
vistic Z-dependent theory (Sec. II and III), as
shown below.

A. Transition energies

In Fig. 2, In 0' and ln o" are plotted vs Z. For
Z greater than 20 (extracomplex correlations
almost negligible) the Z dependences of the ener-

20 40 60 80 100

FIG. i. Z dependence of the f values for the resonance
lines of the Nlgt sequence a' (f„.) and h' (fv) correspond
to the so p& transition (scale on right); a" (f„), h" (fv),
and c" (nonrelativistic, Ref. 2) correspond to the p p~'

transition (scale on left).
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103
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FIG. 2. Z dependence of the transition energies 0 and
of the transition matrix element (D„)2 for the resonance
lines. Prime corresponds to the sp Pf transition and
double prime to the s p

—p f transition.

gies v' and v" are different. Indeed 0' grows
very slowly over the entire range of Z, approxi-
mately as Z", for low values of Z, o" varies as
Z" but increases more rapidly (-Z') for high
values of Z. The Z dependence of the energy can
be obtained from the relation (2); in this expansion
the coefficients A~, are not unique, since Z ap-
pears simultaneously in the powers series (Z '
and )() and in A„, in accordance with the fact that
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correlation and relativistic effects are strongly
connected. Nevertheless for a given range of Z
expression (2) gives the gross feature of the Z
dependence. %e denote by 4A. ~, the difference
between the coefficients A~, obtained in the study
of the energy levels s0 and p', in a screened hy-
drogenlike approximation, and by AA~, the same
for levels s0 and p,".

The energy o', which corresponds to a transi-
tion &n= &j=0, vanishes if the correlation effects
are negligible (hydrogenlike approximation). If
only the configuration interactions within the com-
plex (n=3)' are introduced b, A,', =AX'„=AX,', =0,
so that it is possible to write

0' = ~A', Z+ ~A' Z'n01

In Fig. 3, o'/Z is plotted vs Z' (c' is obtained
by the relativistic parametric-potential method).
This curve shows that for intermediate values of
Z, the departure from the hydrogenlike behavior
is negligible. For high values of Z, o /Z increases
more rapidly than Z', because the term AA,', Z'n'
arising from the one-electron relativistic opera-
tors cannot be neglected. Furthermore, the cen-
traJ. potential introduces partially extracomplex
correlation effects; the leading term, which does
not depend upon Z, can explain the deviation from
the straight line for low values of Z.

The Z dependence of a" is more cojInplicated,
and can be written as

' gll ~ gruff Z+ gQ// Z4~2+ gaff Z3~2+ ~ ~ ~
01 10 11

For low values of Z, the term SAg, Z (intracom-
plex interactions) is predominant; on the contrary
for high values of Z, o" increases approximately
asZ.

1. Intermediate coupling

Examples of the configuration-mixing coefficients
for the levels s„P,', and p," are given in Table I.
For low values of Z, configuration interactions be-
tween the LS terms '$ of the configurations Ss',
3p', and 3d' are not negligible. As Z increases,
the weight of the (3p, &,)' state falls rapidly, but
the weight of the (3p, &,)' state decreases very
slowly, inasmuch as the difference between the
energies of the 3s, /, and 3p, /, orbitals remains
small. For the p,' and p," levels, the coupling in
the low-Z region is close to the LS coupling limit
within a sp configuration, and for p," configura-
tion interac .ions are not negligible. As Z increases,
configuration mixing decreases and the coupling
shifts towards the j-j coupling limit. For Z greater
than 60, inter'mediate coupling and configuration
interactions are almost negligible.

2. Radial integrals

The Z dependence of the radial integrals occurr-
ing in the length and velocity formulas is plotted
vs Z in Fig. 4. In the length formulation the in-
tegrals (3s, &, ~

x~3p,.) ( j = —,
' or —,) are nearly equal.

For example, for U"' the numerical values are
0.1378 and 0.1290 for j= 2 and j=-,', respectively.

In the nonrelativistic limit the moduli of the
three integrals which occur in the velocity formu-
lation [see Eq. (9)] are equal. The moduli of the
two integrals, which appear in the study of the
Ss1 /2 3p1 /2 transition, remain equal to one another

TABLE I. Configuration mixing coefficients for the

sp Pi and Pi' levels of the Mg r isoelectronic sequence.

B. Transition matrix elements

Two phenomena occur simultaneously in the
evaluation of the transition matrix elements:
first, the intermediate coupling and the configu-
ration mixing, and second the effects coming from
the radial integrals.

sp (3s i/2)
(3p )2

(3ps/»'
(3ds /2)
(3d5/2)'

Z=18

0.9818
0.1097
0.1521

-0.0184
—0.0227

Te+4P

52

0.9936
0.0866
0.0704

-0.0111
-0.0142

U+Sp

92

0.9971
0.0737
0.0190

-0.0051
-0.0063

—2,104

N
1 .10

pi si/23Pi/2
3S1 /23ps /2

3ds/23P i/2
3ds/23Ps/2
3ds/23ps/2

0.8249
0.5606

-O.0318
-0.0538

0.0371

0.9813
0.1851

-0.0412
—0.0323
—0.0097

0.9993
0.0310

-0.0198
0.0100

—0.0057

0
0 4,10'

z
I

8x10

FIG. 3. Z dependence of the transition energy 0' of the
8 p pi transition. O'Z is plotted vs Z . The dashed
curve points out that, in first approximation, cr'Z varies
linearly with Z'.

Pi ' 3si/23Pi/2
3S i/23Ps/2

3ds /23P i/2
3ds/23ps/2
3d5/23Ps /2

-0.5500
0.8104
0.1167
0.0509
0.1567

-0.1805
0.9781
O. 0646
0.0119
0.0805

-0.0298
0.9980
0.0500
0.0026
0.0263

Coefficients of 3si/23pi/2 and 3si/23ps/2 in the LS
coupling limit: 0.816, 0.577.
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0.03—

I

)
I I I I I I I I values of Z, (D„')' and (D„")' become of the same

order of magnitude.

C. f values

1. Results
A

[w 0 02- 1.0
L

C4

T
th

0.5

along the isoelectronic sequence (the relative
variation is smaller than 10 ') and are nearly in-
dependent on Z. On the contrary, for the 3s, /,

3p 3 / 2 transit ion the radia l inte gra 1 grow s as Z
increases and varies as Z' for high values of Z.
These results are in agreement with the argu-
ments of Sec. IIIB.

The different behavior of the 3s», -3p,. transi-
tions can be explained by the shifts of the wave
functions towards the nucleus. In a previous pa-
per, "it has been shown that even for nonhydro-
genlike spectra, the shift depends approximately
on j, and not on I; consequently the (3s, /, ~3p, /, ),
(3p, /, ~3S, /, ), and ( 3,8/~r~ 3p, /) radial matrix
elements for the 3s, &,

- 3p, &, transition are nearly
independent of the relativistic effects, since both
orbitals contract by roughly the same ratio. On

the contrary, the cancellation effects which occur
in the calculation of the radial matrix element
corresponding to the 3s, &, -3p, &, transition disap-
pear at high values of Z, andthe integral increases.
This contraction is a purely relativistic effect"
which cannot be reproduced in a nonrelativistic
approach, except if relativistic and correlation
effects (extracomplex and core polarization ef-
fects) are simultaneously introduced.

3. Transition matrix elements D,

In Fig. 2 we report the va, riations of lnD'„vs Z,
for the s,-p,' and s,-p," transitions. (D„")' decreases
approximately as Z "over the entire range of Z.
For low values of Z, (D'„)' increases as Z', this
result arises from the spin-orbit mixing of the
'P, and 'P, states. For high values of Z, (D„')' de-
creases as Z ", this va, riation corresponds to the
Z ' variation of (~ ~~), increased by the relativistic
contraction of the relativistic orbitals. For high

0 I I I I I I I I I I 0
0 20 40 60 80 100

FIG. 4. Z dependence of the transition radial integrals.
a corresponds to

~ (Bs,/t ~
r

~ Sp/) [ with j = a or a (scale on

right), b corresponds to )(Bps/t ( 3s&/2) )
(left axis), and

«o»esponds to I &3p&/~ I »i/z& I
=

I &»~/213p&/z& I
(left

axis).

In the length formulation, the f value is pro-
portional to the product o x O'„ IEq. (5)]. From
Fig. 2 it is apparent that f" decreases for low
values of Z; for high values of Z, the contribution
of the spin-orbit interaction of the 3p electron
(~ Z'), which occurs in o", is predominant so that
f" increases with Z.

For low values of Z, f' increases since c' and
(D'„)' increase simultaneously, respectively on ac-
count of the intracomplex configuration interac-
tions and of the intermediate coupling effects. For
high values of Z, the contraction of the orbitals
toward the nucleus is the more important pheno-
menon, so that f' decreases slowly.

For high values of Z, though both transitions are
allowed in j-j coupling, f remains smaller than
f". Indeed v' is always smaller than o", and (D„')'
smaller than (D'„')'. For example for U"', the
ratio f"/f' is equal to 17.

Z. Length and velocity formulations

For the sp py transition, the calculated values
until Z equals roughly 50 are in rather good agree-
ment with ea,rlier published results, ' although ex-
tracomplex correlation effects are neglected in

our treatment. The deviation between the numeri-
cal values obtained in the length or velocity form-
ulations does not exceed 10/o. For example for
Ar" the f value increases by a factor 8.8%, when

the length formulation is used; for U"', the cor-
responding change is equal to 0.5/p.

The energy of the sp-p,' transition does not van-
ish, only because of correlation and relativistic
effects, whereas the levels sp and p," are nond6-
generate in the relativistic hydrogenlike approxi-
mation. Consequently, large cancellations occur
in the calculation of the energy difference 0',
which is very sensitive to the correlation effects.
For example for U"', o"/a'= 5.5. Therefore the
discrepancy between f„and fv is greater for f'
than for f" Moreover fo.r large values of Z,
when the velocity formulation is used, very large
cancellations appear in the evaluation of the radial
part of the transition matrix element —for example,
in the j-j coupling limit for V'", (D'v/D'v)2 = 79.
Lastly, for high values of Z, the velocity formu-
lation is more sensitive to small changes in the
intermediate coupling than the length formulation.
For example for U"', with the intermediate cou-
pling, (D$/Dv)'= 125; this value is to be compared
with the value obtained in j-j coupling. For U"
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the discrepancy between f„' and f'v is equaL to
26%, but for all the reasons given above, the re-
sults obtained with the length formulation seem to
be more reliable, since the cancellations are
weaker in this case.

For low values of Z the discrepancy between

f „' and f 'v is large (+ 4'7% for Ar"), but in this
case the f'v results seem to be more relevant.
Indeed the f„' results are more sensitive to a
small change in the intermediate coupling and
very large cancellation effects occur in the eval-
uation of the relativistically allowed decay of a
pure 'P, state, when the length formulation is
used.

0.20-

O.l 0-

D. Comparison with other works

Figure 5 shows the results obtained for the
transitions Sp23P, -SsSP 'P, [or (Sp, i,)'8= 0
-(Ss,&,3p, &,)J' =1 using the j-j coupling nota-
tions]. In this case the f value always decreases
with Z.

Figure 6 presents the Z dependence of the f val-
ue for the transition SP''$, -3sSp'P, [(Sp,i,)'J=O
-(Ss,i,Sp, i,)J' = 1]. The curve is very similar to
that obtained for f".

In both cases we compare our results with the f
values deduced from the multiplet f values pub-
lished by Smith and Wiese. ' The agreement is
satisfactory until Z = 50.

The reliability of our results can be tested by
comparing them with previous experimental and
theoretical data. No experimental data are avail-
able for ions heavier than Ar". Except the f val-
ues obtained by Crossley and Dalgarno" using the

0.20-

O.lo-

C

0
20 40 60 80 100

FIG. 6. Z dependence of the f values for the 3s3P'Pf,
3p Sp transition: a (f„), b (fz), and e (nonrelativistic,

Ref. 2}.

V. DISCUSSION

Z-expansion method, all the theoretical studies
concern elements lighter than Fe"'. For the f
value f' of the spin-forbidden transition, data are
only available for Mg I ' and Fe+ ~. ' &n Table
II we give some results concerning MgI, Ar", and
Fe"'; our theoretical values are obtained by taking
into account the Gaunt interaction (Sec. VA) and by
using the length and velocity formulations. For
MgI the value fv agrees well with the experimen-
tal one, when taking into account the discrepancy
of the experimental results. For low values of Z,
our results are in good agreement with previous
data, specially those compiled by Smith and %iese, '
showing that extracomplex correlation effects are
almost negligible. For high values of Z, except
for the 3s3P 'I', -3P I'p transition, the values dif-
fer greatly from the results extrapolated from the
low stages of ionization using the nonrelativistic
Z-dependent theory, showing that relativistic ef-
fects on energies and the relativistic contraction
of the orbitals toward the nucleus cannot be ne-
glected.

0-
0 10020 40 60 80

FIG. 5. Z dependence of the f values for the 3s3P3P&
3p P p transition: a (f„), b (fz), and c (nonrelativistic,

Ref. 2).

In the previous section, the computed f values
are obtained in the velocity or in the length formu-
lation neglecting retardation effects on the transi-
tion oyerator. As Z increases, these retardation
effects become more important, since the wave-
length of the transition becomes of the same order
of magnitude as the mean radius of the electronic
orbitals. The corresponding contribution is easily
evaluated by using the expression ne'" ' for the
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TABLE II. Comparison of f& and f„between present and previous results.

Mgi

Transitions X (A)
Present work

fv fr Expt.

Ss $0 SsSp P) 4571 0.17 x 10 0.26x 10 (0.21 +0.02) x 10
(0.39 ~ p. p4) x10-'

Previous theory

0.4xip ~~

3s 80 3sSP P( 2852 2.02
Ss3p P( 3p Po 0.229

1.64
0.187

1.81'
P 204c

Ar' Ss $0 3s3p P& 586 1.07
Ss3p P& Sp Po 641 0 122

1.17
0.133

0.86 + 0.05
0.10 +0.01

1 21c
0.14'

Ss So Ss3p 'P) 284 0 ~ 69 0.79

SsSp Pi Sp Pp 318 0.076 0.088

Fe+' Ss~ $p 3$'Sp Pg 417 p, f9x fp p.29x fp-' 0.228 x 10 ~'
0.35 x 10"
0.81 8

0.75'

0.087
0.10'

~Reference 19.
"Reference 20.
cReference 23.
Reference 24.

'Reference 21.
Reference 22.

g Reference 25.

transition operator. Nevertheless we have veri-
fied that these effects remain negligible even for
large values of Z; for example, in the case of U~p

the corresponding contributions to f' and f" are
respectively equal to + 0.03 and —0.24%.

Hitherto we have neglected all the radiative cor-
rections to the energy levels; to the lowest order
in e. the corresponding effects occur in the Breit
interaction and in the Lamb shift. Moreover we
have assumed that the nucleus is a motionless
point charge. In this section we evaluate the im-
portance of these neglected contributions, in order
to study the limit of validity of our treatment.

A. Correction for nuclear motion and structure

The corrections for the interaction of the nu-
clear moment with the electrons are negligible
even in the case of the f value f' of the inter-
combination line of Mg I." The nuclear motion
gives rise to a correction to the energy levels
which is approximately equal to —10 'Z ' com-
pared to the App Z term consequently this phe-
nomenon is negligible compared to the correlation
effects.

On the contrary, the corrections arising from
the finite nuclear size can become significant for
high values of Z, since the mean radius of the or-
bitals decreases as Z ' while the nuclear radius
grows as A' ' (A is the atomic-mass number}.
These corrections are more significant for sy/g

and p», electrons, whose wave functions do not
vanish at the origin, and they increase as Z~Q

We have evaluated the effects due to the finite
size of the nucleus by assuming that the nucleus
is spherically symmetrical and that the electric
charge is uniformly distributed through the nu-
clear volume. The corresponding contributions to
o, D2v, and fv are given on Table III for the reso-
nance lines of the isotopes '"Te, '"Hf, and "'U.
The corrections are greater for f' than for f",
and are significant for high values of Z.

B. Radiative corrections

The radiative corrections arise from the in-
teraction of the electrons with their own virtual
radiation field and can be evaluated by perturba-
tion in the framework of quantum electrodynam-
ics." The Breit interaction corresponds to the
exchange of a virtual photon between two elec-
trons, and the Lamb shift involves the emission
and the absorption of the virtual photon by the
same electron.

1. Breit interaction

In this work we simplify the calculations by
considering the leading term —i.e. , the Gaunt
operator" —corresponding to the unretarded in-
teraction between two Dirac currents. The ma-
trix elements of the Gaunt interaction are evalua-
ted within the complex (n= 3)', and the resulting
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TABLE III. Relative magnitude of the correction coming from the finite nuclear size and

from the Gaunt interaction (%).

Finite nuclear size
fv

Gaunt

Dv2

Finite nuclear size
+ Gaunt

Dv fv

so p1 Te —0.15
8 Hf —0.93

238U -5.4

—0.36
—2.4

—13

—0.21
—1.4
—8.0

1.5
2.8
4.3

—2.7
—f.8
—1.7

—4.2
—4.7
—5.9

1.4
1.9

—0.92

—3.1
—4.2

-15
—6.2

—14

pII 130Te

"'Hf
238U

—0.08
—0.30
—i.f

—0.62
—2.1

—0.32
f.o

-0.17 -0.09 0.23
0.15
O. of

0.09
0.06
0.06

—0.14
—0.09

0.07

0.15
0.14

—1.0

—0.08
—0.56
—2.0

-0.23
-0.42
—0.94

matrix is diagonalized in order to obtain the in-
termediate coupling and the shifts of the energies.
Examples of the corresponding contributions to cr,

D2v, and fv are reported on Table III. For f", the
corrections are almost negligible (&0.2%); the
contributions on o' and (Dv)' are of opposite sign,
so that f' decreases by a 5% factor when the Gaunt
interaction is introduced.

Table III gives the total contributions on ct, Dv,
and fv coming from the finite nuclear-size effects
arid from the Gaunt interaction. These correc-
tions to the transition frequencies cancel partially,
but they are additive in the case of f'.

2. I.umb shift

For heavy atoms, where Ze is not negligible,
the Lamb shift cannot yet be accurately calcula-
ted. The contributions of the Lamb shift are
especially important for s electrons, and they in-
crease in a first approximation as Z4n'. The or-
der of magnitude of the lowest-order Lamb shift
for the 3s, &, 3p»„and 3p, &, orbitals can be ob-
tained from the hydrogenlike approximation' using
the screening factor s = 11. For the 3s, &, orbital
the second-order Lamb shift is of the order of
Z'o. ',"and cancels nearly half of the first-order
contribution. The relative contributions of the
first- and second-order Lamb shift on the transi-
tion energies o' and o" are reported on Table IV.
The corrections are almost negligible for cJ", but
they are significant for a'.

All the corrections discussed above are only
significant for the resonance transition corre-
sponding to the lowest excited state of highly
ionized atoms, since in this ease large cancella-
tion effects occur. Nevertheless these correc-
tions are always smaller than the discrepancy
between the values obtained by the length or velo-
city formulation, and they do not modify the shape
of the curves giving the dependence on the value
of Z of the oscillator strengths.

VI. CONCLUSION

The oscillator strengths for the resonance
transitions of the Mg sequence obtained from the
parametric-potential method exhibit a behavior
similar to that obtained for the Be sequence using
relativistic Hartree-Foek wave functions. For
higher stages of ionization (Z &50), the qualitative
predictions of the nonrelativistic Z-expansion
theory are not valid. Indeed the f value for the
first resonance transition decreases owing to the
relativistic contraction of the orbital toward the
nucleus; for the second resonance line the fre-
quency increases as Z4 for high values of Z, since
the spin-orbit interaction is predominant, and
consequently the f value increases.

Retardation effects on the transition operator
are negligible over the entire range of Z. Correc-
tions arising from the finite nuclear size and from
the Lamb shift do not affect significantly the f
value for the second resonance line, but their
contributions are significant (-15%) for the first
resonance line.

The relativistic contributions to the energies or
to the transition matrix elements cannot be sepa-
rated, since they depend upon the formulation
chosen —length or velocity. In the length formu-
lation, relativistic contributions to the transition
matrix element are not very important and arise

SO p1
B B

Te+40
U'80

No"

0.19
—3.03
-4.76

0.33
—1.40
-2.43

0.047
—0.63

0.74

0.177
—0.35
-0.43

TABLE IV. Relative contributions of the Lamb shift
to the transition energies (%). Transition energies cal-
culated by taking into account the corrections due to the
Lamb shift: (A) Z u term; (8) the Z c term is included
in the energy of the 3s&f 2 orbital.
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from the relativistic shift of the wave functions
toward the nucleus. In the velocity formulation,
additional relativistic contributions proceed from
the relativistic corrections to the transition oper-
ator; consequently, the relativistically allowed
decay is almost negligible when the length formu-
lation is used, but cannot be neglected in the vel-
ocity formulation.

If we introduce to first order in y, the relativis-
tic corrections on the energies and on the radial
matrix elements, we can write

&s, /, I
rl p;) = &r&N, + x«r&,

ep =op +X&p+ —,a/X)p, a»2= —2, a3/2=+, (14)NR R 1

APPENDIX; SPECIFIC RELATIVISTIC EFFECTS IN THE
EQUIVALENT OPERATOR FORMALISM FOR s ~p

ELECTRIC DIPOLE TRANSITIONS

Using the equivalent operator formalism" and
central-field relativistic wave functions, it is
possible to obtain the following result [see E1I.
(11)]:

Length formulation:

where &""are the nonrelativistic energies, Xe
the contributions of the mass and Darwin terms,
and X)p the fine-structure constant of the p elec-
tron; &r&NR is the nonrelativistic integral, and
&n, r& is related to the relativistic contraction to-
ward the nucleus. With these notations, we ob-
tain.

2 ~(&'1/2 lr
I
p1/2&+ 2&'1/2 Ir

I p3/2&) .
velocity formulation:

R„=(- 22~~/») [{~«, —&.,/, )&N1/2 I
r

I pl /2)

- (~, —~. )&sl/2 lr I p3/2&1 ~P3/2 Sl /2 {12)
Ro1 {2/812){3) [{~p ~3 )&sl/2 I rip. /2&

+2(~ —~. )&sl/2lrlp. /. &]

R,",=+ v8 X(«r&, /, —&«&,/, )

(15)
R01 = —9 ~~[8&r&NR+ X(&«),/. + 2(«&,/, )].

For transitions such that the zero-order ener-
gies &~R and e,""are different, the relativistic
corrections to the equivalent transition operator
in the velocity form are given, , to the first order
in', by

R,', =(- »~8/8a)Xf{~","-~.""){&«&,.—(«). .) —-' &,&r&

R01 = (21 6 /8o') f8(~p
—~.")(r)NR+ X [8(~p

—~,")&r&N R+ (~~p" —«,"")(&+r&1/2+ 2(«)3/2)] f ~

(16)

In the length formulation, only the relativistic
contraction of the orbitals occurs. On the con-
trary, in the velocity formulation both the relati-
vistic effects on energies and on wave functions
appear simultaneously.

The relative contribution of the specific relati-
vistic effects is given by

In the hydrogenlike approximation, it is. possi
ble to show that for the 3s -3p transitions, the
ratio Rv, /Rv, can be expressed as

R„1 1 —3 x 6&&r&/&r&NR

1--:x5(~ )/( )..
R,", W2 5&&r)
Ro. 8 &r&NR

'
x 5&«&

~2 8 &r&NR V2
'

(18)

where

5«r& = «r&, /, —«r&, /,2,

11 — 11 + X 4
Rv Rr ~2 &NR

Ol 01 p s

{17)

It is obvious that in the velocity formulation, the
spin-orbit interaction of the p electron increases
the value of the ratio R»/R».

Using the relativistic parametric-potential
method, we have obtained for Ar" the following
numerical values. Rv, /R„=1.10x 10 ', R,",/R,",
=6.85 x 10 ~, and X)p/(V 2 &e) = 1.04x10 'whichare
in good agreement with the relations (17). For
U"', the numerical values are Rv, /Rv, = 0.55 and
R,",/R,",=0.031, which can be compared with the
hydrogenlike values for U"'. Rv, /Rv, = 0.71 and
R,",/R3", = 0.028.
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