
PH Y SICAL REVIEW A VOLUME 15, NUMBER 2 FEBRUARY 1977

Spin-orbit parameters by the Gelfand-Barter method —a test calculation
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The spin-orbit parameters for the sextet states of the f' configuration are computed using the Young-tableau

techniques developed by Harter. The conceptual and computational advantages over traditional methods are

discussed.

I. INTRODUCTION

The traditional Racah approach to atomic struc-
ture calculations becomes very cumbersome for
systems involving many equivalent electrons. In
particular, the seniority scheme eventually fails
to label uniquely all the states for equivalent f
electrons and beyond. In recent papers" Harter
and co-workers have developed the Young-tableau
representation of atomic states into a complete
computational scheme for the evaluation of any
matrix element such that one need never refer to
the detailed angular and spin structure of the wave
functions. Since the scheme is equivalent to the
unitary group representation of Gelfand and Zet-
lin, ' one is always assured of a complete one-to-
one correspondence between the Young tableaus
and the correctly antisymmetrized Russel-Saun-
ders coupled states

~

's"L) which they represent.
Further improvements were suggested by the
present authors, ' and applications to molecular
orbitals have been made by Paldus. ' The main
advantages of the Young-tableau representation
are that the techniques are easily grasped and
any example, however complicated, is a straight-
forward, unambiguous extension of the simplest
cases.

Despite the power and versatility of Harter's
methods, they have not yet been widely accepted
as a practical scheme for performing calculations.
The purpose of this Comment is to report that the
entire scheme has been programmed for an arbi-
trary configuration of equivalent electrons, and
to give as sample output the spin-orbit parameters
for the sextet states of the f' configuration.

II. THEORY

As described previously, ""'the basis states
are represented by products of orbital and spin
tableaus, which for the f' sextet states have the
form

The orbital part of the wave function is repre-
sented by the column tableau on the left. Each box
represents an f electron and is labeled lexically
by an integer p. = 1,2, . . . , 7 corresponding to the
one-electron orbital magnetic quantum numbers
3, 2, . . . , —3, such that no label appears more than
once. Each such a column tableau corresponds
to an antisymmetrized wave function with definite
total spin & and component of total angular mo-
mentum M~ in the z direction, but is a mixture of
all possible values of I . The value of M~ for a
particular column is

where, for this case, n= 5 is the number of boxes
and l = 3 is the one-electron angular momentum.

The linear combinations of column tableaus
which diagonalize L' can easily be found by the
combination of lowering- and projection-operator
techniques described previously. ' In addition to
its computational efficiency, the lowering-opera-
tor method guarantees the conventional phase re-
lationship among states in the same L family with
different M~'s. The states generated in this way
are 'H, 'E and 'P. The wave functions for the
states of highest M~ are given in Table I.

The symmetrized spin part of the wave function
is represented by the row tableau in (1). The
boxes are labeled lexically by the values of m~
=+ & for the individual electrons such that the
total spin magnetic quantum number M ~ is the
sum of the labels. The labeling can be done in
six distinct ways corresponding to the sextet
structure. The linear combinations of orbital and

spin products of the form (1) then correspond to
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TABLE I. Tableau eigenvectors of I. with largest MI. TABLE II. Reduced spin-orbit matrix elements for
the f5 sextet states.

State
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Qur example is particularly simple since the tab-
leaus are already in single-column form. Since
the matrix element for a single J,M~ state is suf-
ficient to determine the reduced matrix element,
it is simplest to choose the "stretched" state
with J=I + 8, M~ =J. For this case, the only
wave functions needed are those given in Table I.
The results shown in Table II are in complete
agreement with the decimal expansions given by
Karwowski et al.'

III. DISCUSSION

Russel-Saunders coupled states
I
LM~SM z&.

The spin-orbit operator is defined by

where $ is a radial function and the sum is over
the n electrons in the system. For purposes of
calculating the matrix elements of the spin-orbit
operator, it is convenient to transform to states
of definite total angular momentum J= L+ S defined
by

LCM~&= Q (LsMz M~I&M.&ILM.SMs& (3)
s

The results can then be compactly expressed in
terms of reduced matrix elements through the
relation'

g g (L's'zM, I&, ~ sr ILszM

x g(L II z, llL&(s'lls, lls&. (4)

The reduced matrix element can easily be evalu-
ated in general by expressing H„ in terms of Ba-
cah's double tensor operators and using the "as-
sembly" formula given by Harter and Patterson. '

This simple example is intended to demonstrate
the practical computational power of the Young-
tableau techniques and to stimulate further inter-
est in their use. We consider it to be conceptually
and computationally superior to the spin-adapted
antisymmetrized product (SAAP) expansion method
of Salmon and Ruedenberg' extensively used by
Karwowski, Saxena, and Fraga." It is also com-
putationally simpler than the older Racah methods
employing coefficients of fractional parentage
(see Ref. 11 and earlier references therein). The
example chosen does not illustrate all the features
of the tableau method since in general the tableaus
consist of two columns. However, the number of
states is small enough to allow compact presenta-
tion of the results, and experimental data have
been obtained by Nara and Schlesinger" for some
of these states.

Agreement with the results of Karwowski et al. '
has also been obtained for the quartet and doublet
states of the f' configuration. However, here the
situation is more complicated because several
Hussel-Saunders states with the same L,S quan-
tum numbers can occur. The degeneracy is only
partially resolved by transforming to states of
definite seniority. Since our lowering- and projec-
tion-operator technique' already defines a unique
self-consistent set of states with the proper phase
relationships, and since the ultimate aim is to
diagonalize other quantities such as electrostatic
or crystal-field interactions, the transformation
to states of definite seniority is probably not
worthwhile.
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