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Starting from a novel exact expression for the dielectric constant of a classical one-component plasma, we

study the important modifications of the plasma oscillation modes which appear when one progressively

increases the plasma expansion parameter X. For small X values the evaluation of the plasma mode requires a
non-Markovian theory. We find good agreement between our results, recent computer findings, and known

theoretical expressions. For instance, the dispersion of the plasma frequency is shown to take on values

slightly above the mean-field prediction. For large X values the plasma mode is shown to be expressible in

terms of hydrodynamical quantities. Here the dispersion of the plasma frequency is shown to be negative,

while the damping of the plasma mode is given by the strong-coupling limit of the longitudinal viscosity from

which the non-Markovian contributions to the bulk viscosity are to be deleted.

I. INTRODUCTION

Since the first observation, half a century ago,
of the high-frequency electrostatic plasma oscil-
lations by Penning' and the subsequent theoretical
work of Tonks and Langmuir, ' the Plasma mode
has attracted a 1ot of interest. In a celebrated
paper Landau indicated that even in the collision-
less limit this mode would be damped, and he
calculated the finite-wavelength corrections to the
plasma frequency, introducing thereby the famous
Landau damping correcting an earlier result of
Vlassov. ' Since then the particular properties of
Coulomb systems have been extensively studied. '
From the kinetic theoretical point of view most
investigations have been concerned with the in-
finite-wavelength zero- frequency weak- coupling
collision operator of Balescu- Guernsey- Lenard'
(BGI.). More recently a, number of finite-fre-
quency and jor finite-wavelength phenomena have
been considered within various approximations, '
especially in connection with the high-frequency
electrical conductivity of an electron- ion plasma. '

In this paper we will consider a classical one-
component plasma (OCP) and study its plasma
mode in the two limiting regions of weak and
strong coupling. In a previous paper, ' hereafter
referred to as I, we have obtained from first prin-
ciples the exact expressions of the five long-wave-
length modes of the OCP which result from the
conservation of particle number, momentum, and
energy. These modes, although not identical to
them, are the exact equivalents of the hydrody-
namical modes of uncharged-particle systems.
Both sets of modes reflect the symmetry proper-
ties, or better restore a broken symmetry, of the
system and are valid at arbitrary coupling or
density. The Coulomb singularity slightly modi-
fies the heat mode while it shifts the sound modes
of the neutral particle system into the high-fre-

quency plasma modes. As shown in I, there are
also important modifications in the hydrodynamic
correlation functions. The most striking result,
however, is the fact that because of the appear-
ance of a finite frequency in this problem, the
plasma frequency ~~, the exact expression of the
plasma modes can not be written in terms of
hydrodynamical concepts. This is quite sur-
prising, in view of the popular derivation of the
plasma mode from the linearized hydrodynamical
equations. " To explore this question we will
derive various limiting results from our exact
expression and compare them with the recent
computer work of Hansen et al." and with some
known theoretical results. Throughout we will
concentrate ourselves on the literature related
to the QCP and note that the extension of our re-
sults to the two-component plasma is not a trivial
matter. "

The physical considerations which emerge from
our microscopic calculations in the subsequent
sections can be summarized as follows: Our
starting point is a novel exact expression of the
dielectric constant c(k, z) which naturally splits
into a, static (frequency independent) and a dynamic
(frequency dependent) contribution. In the dynamic
contribution the result of the conservation laws
can be built in from the start, a very useful prop-
erty in the region of small wave vectors k.

In Sec. II we check the general properties of
&(k, z), while the expression of the small-(
plasma mode derived in I is easily recovered. In
the limit of weak coupling X «1, X = k3D/n being
the plasma parameter of a OCP of density n and
Debye wave vector k~, the dispersion and damping
of the plasma mode are shown to be strong1. y non-
Markovian through their dependence on the plasma
frequency ~~. This can be understood if we argue
in terms of a kinetic equation, for instance, the
exact equation derived in I. This equation is
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easily seen to be controlled by the relative order
of magnitude of the Vlassov mean-field term and
the collision term. The mean-field term of the
OCP is singular for small k and of order
&e~(kD/k), while we estimate the collision term as
roughly of order v, = Xa~, co, being the collision
frequency. For long wavelengths (k «kn) the
weakly coupled OCP (X «1) is controlled by the
Vlassov mean- field term.

The small collisional corrections to the dis-
persion and damping of the plasma mode can be
calculated only with the aid of a non-Markovian
z and k dependent collision operator. This is done
in Sec. III to lowest order in X with the aid of the
finite-z and -k extension of the linearized BGL
operator. Both the dispersion and the damping
of the plasma mode are shown to be shifted above
their mean-field values, in agreement with the
computer results of Ref. 11(a) and with the the-
oretical expression of the damping rate obtained
by Dubois and Gilinsky. " In a number of asides
we also point out the errors involved in calcula-
ting the collisional contribution to the dispersion
with the aid of sum rules or when using Markovian
approximations for the collision operator. The
long-wavelength plasma mode of a weakly coupled
OCP remains thus definitively non-Markovian and
nonhydrodynamical. This will no longer be true
in the opposite limit of strong coupling (A» 1).
Indeed, here we have a possibility for the kinetic
equation to become collision dominated. For the
collision term to dominate the Vlassov term we
should have roughly v~(kD/k) «&, = Xe~ or
kD«Xk, which for long-wavelengths (k«kD) is
seen to imply strong coupling (X» 1).

In contradistinction with neutral-particle sys-
tems, where the kinetic equation is always colli-
sion dominated for small k, hydrodynamics will
eventually emerge as an approximate property of
the OCP which can become exact only in the limit
of infinite coupling. This question is taken up in
Sec. IV. In the strong-coupling limit we will
clearly not be able to write expressions as expli-
cit as those of Sec. III. We exploit, however, the
fact that for strong coupling we can expand our
expressions for small &u~/&u, values, which is
technically equivalent to taking the low-frequency
Markovian limit. We then show that the dispersion
of the plasma frequency is given by the strong-
coupling limit of the expression one would obtain
from a straightforward use of the linearized hy-
drodynamic equations, such as was done in Hefs.
10 and 11(b). Similarly, the damping of the plas-
ma mode is given by the strong-coupling limit of
the hydrodynamic expression from which we have,
moreover, to delete the genuine non-Markovian
contributions to the bulk viscosity. In agreement

with the computer results of Hansen et al."we
find that the dispersion of the plasma mode is
negative in the hydrodynamic region kD«Ak,
whereas our last remark might explain the small
values which have been observed for the bulk
viscosity. A question which is left unanswered,
however, concerns the explicit calculation of the
strong-coupling limiting values involved. Finally,
our conclusions are given in Sec. V.

II. PLASMA MODE

The plasma oscillation mode is set up in a sys-
tem of charged particles as the response to a
small perturbation in the charge density. ' The
properties of this response are fully described
by the frequency- and wave-vector-dependent
dielectric constant e(k, z) or the related electrical
susceptibility y(k, z):

= 1+ Vg y(k, z), Vg= 4n'e'/k', (2 1)

where Vg is the Fourier transform of the Coulomb
potential acting between the particles of charge e
building up our OCP. The susceptibility X can
also be identified with the density-density response
function, which is simply related to the density-
density correlation function of I, G„„, by the
fluctuation-dissipation theorem. If n is the num-
ber density and P the inverse temperature this
theorem reads

y(k, t) =nPB,G„„(k,t), P'= KT, (2.2)

(o~+ 4~(k, z) ' (2.3)

where we have introduced the fundamental quantity

~~, defined by

4~(k, z) =z[z Q(k, z)] —~~2(k), (2.4)

where for simplicity we have switched back the
Laplace transforms to the time domain. In I,
whose notation is largely standard and which we
adopt here, it was shown how the exact kinetic
equation' (I 2.16), obeyed by the two-point corre-
lation function S(1,2; t), say, z S(z) —Z(z)S(z) = S,
(skipping the details' ), can be transformed into
a system of equations (I2.19) for the hydrodynamic
correlation functions G;&, say,
zG, ,(z) —Z, , Q, ,, (z)G, , ,(z) = G', ,. We now solve this
system (I3.2) for the density-density correlation
function G„„(k,z), use Eq. (2.2), and substitute the
result into Eq. (2.1). This then yields a novel
exact expression for the dielectric constant of
Eq. (2.1):

&u~ -& b ~(k, z)
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which naturally splits into a static frequency-in-
dependent term e~(k) and a dynamic frequency-
dependent contribution z[z —Q(kz)]. Indeed,
e~(k) is given in terms of the equilibrium direct
correlation function c(k) related to the static
structure factor through the Ornstein-Zernike
relation (I 2.15). Explicitly we have

&v~2(k) = +~2(k'/k2~) [1—c(k)], (2.5)

where sr~ is the plasma frequency (&u&-4ve'n/m)
and kD the Debye wave vector (@2~= 4me'nP) of a
OCP of particles of charge e, mass m, number
density n, and equilibrium temperature AT = P '.
As shown in I, c(k) is singular for small k in
such a way that ~~(k = 0) [Eq. (2.5)] equals the
plasma frequency ~~. Because of the dynamic

contribution to b~(k, z) we can however not identify
&u~(k) with the finite-k plasma frequency. The
dynamic contribution to 4~ is determined by
Q(k, z), which is defined in terms of the matrix
elements Q, &(k, z), already introduced in I,
through

Q(k, , z) = Q„(k,z) + Q„(k,z)[z —Q„(k,z)] 'Q„{k,z),

(2.6)

where, as in I, / and & denote, respectively, the
longitudinal momentum and energy state. The
Q, q(k, z) matrix elements can be further analyzed
in terms of the collision term of the kinetic equa-
tion of I as follows:

Q)~(k, z) = (i
I
[Z'(")+ Z'(k) + Z'(» z)] I j&+ (f

I
[Z'(k) + Z'(" z)]q&z —q[Zo(k) + Z'(k, z)]Q) 'g [Z'(k) + Z'(k, z) ]

(2.7)

z =+ m~(k)+ &O'D(k, z) .
The solutions of Eq. (2.8), z=z(k), will be given
the following standard form:

(2.8)

z, (k) = + sr~[i+ &k'y~(k)] —2ik'I"~(k) . (2.9)

Comparing Eqs. (2.8) and (2.9) we obtain for the
dispersion coefficient (y~) and damping rate (1~)
of the plasma mode the following general expres-
sions:

y~(k) = [&u~(k) —~~]/~~A'+ Re[D(k, ~p)/~pl ~ (2 10a)

I'~(k) = —ImD(k, ~~), (2.10b)

where we took into account the fact that the gen-
eral symmetry properties of the Q,~(k, z) imply
that ReD(k, a&a~) = a ReD(k, &u~), while ImD(k, + ~~)
=ImD(k, ~~). For later use we also introduce

where the scalar product in momentum space has
been defined precisely in (I2.18), while the ex-
pressions of the free-flow term, Z'(k), the mean-
field term, Z'(k), and the nonlocal and non-
Markovian collision term, Z'(k, z), have been
given in (I2.17) and will not be repeated here.
We also recall that the projection operators Q
appearing in (2.7) prevent Q, &(k, z) from becoming
singular for small k and z values, while the con-
servation laws dictate their small-k behavior.
For instance, momentum conservation implies
that Eq. (2.6) can be rewritten Q(k, z) = k2D(k, z),
where D(k= 0, z) is a finite quantity.

From Eq. (2.3) we see that the dispersion equa-
tion e(k, z) = 0 can be given the equivalent form
6~(k, z) = 0, displaying the physical meaning of

The dispersion equation of the plasma mode,
6~{k,z(k))=0, reduces, according to Eq. (2.4),
for small k to

g(k= O, z) = 1 —&o~/z', (2.11)

quite trivial result which implies, however, the

dimensionless quantities y~, I'~, and D according
to y&

-—kDy&, 1&=k&I'&/a&&, D(k, z) =k~(k, z)/&o&,

and such that (2.9) becomes

z,/e~ = a [1+,'(k'/k'n) y—~]—2'i(k'/k~) I'~ .

The expression we have obtained for the dielectric
constant [Eqs. (2.3) and (2.4)] is exact. Its supe-
riority over the standard Kubo relation stems
from the fact that s(k, z) has been expressed here
entirely in terms of the familiar one- or two-
body concepts of kinetic theory instead of the N-
body operators entering the Kubo formula. Hence
a lot of information on the symmetry properties
and conservation laws of the system has been
built in into our expression of z(k, z). Moreover,
the only matrix el.ement 0,, which depends on the
singular mean field, namely, Q,„(k,z) [see (2.7)
and (I 2.20)], has been separated completely from
the dynamic contribution Q(k, z) and lumped to-
gether into the single static quantity ~~(k), which
is finite as k-0 and determined completely by
the equilibrium binary correlations as seen from
(2.4) and (2.5). Finally, the plasma mode defined
through Eqs. (2.9) and (2.10) becomes identical
for small k to the result of I [see (I3.17)].

Before closing this section let us, for the sake
of completeness, check in Eq. (2.3) the two limit-
ing values of c(k, z) which establish the existence
of the plasma frequency and of the screening
length. From Eq. (2.4) we see immediately that
4~(k= 0, z) = z' —v~, and hence we obtain from
{2.3) the well-known infinite-wavelength value of
c(k, z):
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existence of two plasma-oscillation modes with
frequencies z =su&~, in agreement with (2.9).
Moreover, as the collision term Z'(k, z) vanishes
as z ' for large z [see below, Eq. (3.5)], we de-
duce from Eqs. (2.3) and (2.4) that (2.11) yields
also the first term of the high-frequency expan-
sion of z(k, z) at finite k:

»m e (kz) = 1 —&u'/z'+ 0 (z ') . (2.12)

Finally, since the A, &(k, z) are finite at z = 0, the
static dielectric constant z(k, 0) is immediately
obtained from Eqs. (2.3) and (2.4) as

z(k, z = 0) = 1+~,'/[~,'(k) —~,']. (2.13)

For small k we can use the expansion (I3.7b) in
Eq. (2.5):

&u&(k) = to&[1+ k'/k, '+ 8(k )],
and hence for (2.13) we obtain

(2.14)

z (k, z = 0) = 1+k',/[k'+ 8 (k ) ) = 1+k',/k', (2.15)

identifying k, as the inverse screening length. %e
can also write k', = k~yr/d'or, where yr is the iso-
thermal compressibility of the OCP while yr = p/n
is its ideal-gas value. Equation (2.15) is then
often referred to as the compressibility sum rule. '
In recent numerical calculations"" it was found
that the inverse compressibility y~ becomes
negative when the plasma parameter A. exceeds a
critical value X&X, =36m. Here, X=k~/n denotes
the inverse of the number of particles in a Debye
cube. Related, often used plasma parameters are
z = X/4z (as in Ref. 14) and I'= 3 '~'(X/4w)'~' (as in
Ref. 11). Equation (2.15) indicates then that when
X& X, the effective potential Vf/e(k, 0), as well as
the pair correlations, changes sign for
k &k, = kn~ yr/d'or'~', while a pair of poles appear
on the real axis at k = +k, (here k', = —k,' for X& X„
while k', = k,' for X & X,). We can thus expect spatial
oscillations to occur" with the characteristic
wave vector k, instead of the spatial screening
occurring for X&X,. Moreover, thermodynamic
stability requires that 1 —c(k) ~ 0 for all k, be-
cause the static density fluctuations' [1-c(k)] '
have to remain positive. Hence for X& X, the OCP
will become thermodynamically unstable against
local density fluctuations with k&k„because, as
shown in (I 3.7b), 1 —c(k) = k2~/k2+ yo/yr+ 8(k2).

This is a necessary but not a sufficient condition
for a phase transition to a system with short-
range order to appear. The real crystallization
has been shown in Ref. 11 to occur only at
X = X,» X„with X,/4n = 3.245.

The properties of the "critical point" X, and its
relation to the special features of the OCP model
(inert neutralizing background) still have to be

analyzed further. " Now that we have checked
e(k, z) of Eq. (2.3) for its general properties, we
will concentrate on the study of the plasma mode
defined by Eqs. (2.9) and (2.10).

III. WEAK-COUPLING LIMIT

A. Zero coupling

For completeness we first consider the extreme
case of zero coupling by simply dropping Z' from
A(k, z). It is fair to say that in this limit our ex-
pressions (2.6) and (2.7) are unnecessarily com-
plicated because they are "irreducible" with re-
spect to the conserved states, which play no parti-
cular role in the collisionless limit. Using Eq.
(2.2) we can, however, easily transform Eq. (2.3)
back to its "reducible" form, with the well-known
res ult

k. v
lim e(k, z) -=z'(k, z) =1 —g dp - q(p),

(3.1)

where y(p) is the Maxwellian normalized to unity.
To obtain (3.1) we have used the known result'
lim~. ,c(k) =c'(k) =- kn/k'. Equation (3.1), which
is usually called the random-phase or Vlassov
mean-field approximation, can also be rewritten
e (k, z) = 1 —Vpy (k, z), where yo(k, z) is the free-
particle susceptibi1. ity. Comparing this expres-
sion with (2.1) shows that if we would have con-
sidered the charge e' small, instead of A. , we
would have obtained instead of (3.1) e(k, z)
= [1+Vfyo(k, z)] '. In the long-wavelength limit the
weakly damped zeros of e'(k, z) define a pair of
plasma oscillations whose celebrated expression
was first obtained by Landau. ' Using the general

Let us start by considering the more familiar
limit of small plasma parameters, X«1. Since
X=ksD/n depends on the charge, density, and tem-
perature of the OCP according to
X= (4v)'~'e'n'~'(zT) '~', whereas X'~' appears as
a dimensionless coupling constant (-e'), we will
briefly characterize the plasmas satisfying the
condition X «1 as weakly coupled. The dependence
of z(k, z) on X is twofold, through the equilibrium
properties entering the static term &v~2(k) and
through the collision term Z'(k, z) appearing in
the dynamic contribution Q(k, z). For small A. the
equilibrium properties can be taken from the
literature, while Q(k, z) can be expanded with
respect to Z'(k, z). Indeed, from the general ex-
pression (I2.17c) it is apparent (see also Sec. IV)
that we have Z'(k, z) = ~,Z'(k, z; X), where
&,= Xco& is a collision frequency, so that for small
X we can consider the collision term Z' itself as
small.
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form (2.9) we can rewrite this result, using
dimensionless variables, as

lim limy~(k) = 3,

=0.

(3.2a)

(3.2b)

ture factor S(k, z) =nG„„(k,z) instead of Q(k, z).
We now proceed to recover their result.

1. High-frequency analysis

From (I2.17c) the high-frequency expansion of
Z'(k, z) is obtained as

E'(k, z; p, p')nW(p')
These values will be often referred to as the
mean-field values of the plasma mode. Note that
for the Landau damping (3.2b) the order of the
limits has some importance. Indeed, keeping
X 40 the conservation laws force the damping rate
to be analytic in k at lea, st to order k' and hence
lim~ Olim~„oÃ~(k) is strictly zero. If we first let
X-O, we introduce a singularity in the propagator
lz —q[Z'(k) + Z'(kz)]q] ' appearing in (2.7) and ob-
tain the small Landau damping of (3.2b). In view
of this nonuniformity in (k, X) space it makes
little sense to superpose, as is often done in the
literature, the Landau damping to the collisional
da,mping.

B. Small but finite coupling

= Q z "Z„(k;p,p')ny(p')
n-"1

D=— dry r VVh r (3.7a)

where only the first frequency moment Z, (k) will
be needed here:

~,(k;p, P')nv(p') = s'D' s'6(p - P')nv(P')

+ 9 A(k) 8'y(p)np(p') . (3.6)

In Eq. (3.6) we have put

From now on we consider A. WO, in which case
the plasma. modes are analytic in k, at least to
order k', and their general expression (2.10) can
be rewritten in dimensionless form

2

A(k)= Dz)z)z(z())z —, P'

d r(e '"'~- 1)k(r) & V V(r),
P

(3.7b)

y~(k = 0) = k~/k', + HeD(k = 0, z~ ),
I'&(k = 0) = —ImD(k = 0, (u~),

(3.3a)

(3.3b)

where we have taken (2.14) into account. ~e are
now ready to evaluate (3.3) for small but finite
coupling (0(X«1). Considering Z'(k, z) as small
in (2.6) and (2.7) we obtain for (2.6) after a num-
ber of compensations

ZZ(k, z) =
(
—+——,~z () i)l'()z, z) ~))

D

&I la'(k)z (k, z) lf& &Ilz (k, z)z'(k) lf&

&I
I
~ (k) E (» z)E (k)

I
I& 8+ 82

(3.4)
where we have retained only those terms contri-
buting to fj.rst order jn both 2 and k . It is in-
teresting to observe that. (3.4) also contains the
high-frequency expansion of B(k, z) exact up to
terms of order z '. Indeed, the expansion param-
eter Z'/z is small both for weak coupling and for
high frequencies. This then opens the possibility
of evaluating (3.4) and hence the plasma mode
with the aid of a high-frequency sum-rule analysis.
This possibility was explored in a recent paper by
Ichimaru et al."starting from the dynamic struc- y~(k = 0) = 3+,—', E, , (3.10a)

with V(r) = e'/r the Coulomb potential, while k(r)
is the inverse Fourier transform of the pair cor-
relation function k(k) related to c(k) by the
Ornstein- Zernike relation 1+k(k) = [1—c(k) ] '.
The other symbols a,re quite standard
(V = 8/Br, 9 = s/sp, etc.). The difference between
(3.6) and (3.7) and the results published in the
literature" a,re entirely due to the Coulomb singu-
larity. Note, however, that momentum conserva-
tion for Z, implies that A(k)+ D vanishes with k,
a property shared by (3.7) but not by another pub-
lished result. " For weak coupling we have from
Eqs. (3.4) and (3.5)

„(k z) L~„«l"-'()I &„6(,~,4) (, ,)z z

where the z ' contributions vanish for symmetry
reasons. For small k we can evaluate (3.8) from
(3.6) and (3.7), with the result

Q(k, z) =2 2
—z+—2~ 1--~~+ ' +6(z ', k~),

y2 ~2 y2 (d2 y2

k2D z ka z k, 15

(3.9)

where E,= zk~ fo" drrk(r) is the correlation ener-
gy divided by the kinetic energy density nP . Sub-
stitution of (3.9) into (3.3) yields
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1,(k=o)=0, (3.10b)

which is identical to the result obtained to this
order in Ref. 16 by a different method. For weak
coupling we obtain" from (3.10a)

y~(k=o) = 3-X/30m, (3.11)

a, result which contra. diets the value of y~ (to be
calculated in Sec. IIIB4) and the computer results
of Ref. 11, both of which indicate a positive value
for y~- 3 for small A.. It has been shown in Ref.
16 that when the next-higher-order frequency
moment is taken into account the sign of y~ —3 is
reversed and is thus in agreement with the com-
puter results. This, however, involves the in-
troduction of terms of higher order in X, whereas
we show in Sec. IIIB4 that y~- 3 has the correct
sign already to first order in X when the collisions
are treated properly.

The difficulty with the high-frequency expansion
(3.5) can be understood as follows: Such an ex-
pansion is clearly designed to yield good results
for very large z values, a fact which explains the
absence of dissipation and hence (3.10b). Here

we have however a problem with a large frequency
v~ built into it. If we write the high-frequency ex-
pansion as Z„a„(v&/z)", then it is obvious that
this series will remain meaningful, at least as-
ymptotically, for ~z

~

» &o~. Here we are, accord-
ing to (3.3), evaluating this series at z = ~~ and
hence we have to care about Q„a„ itself. One
easily convinces oneself, however, that many
frequency moments, Z„, contribute to Z„a„ to
a given order in X, because the expansion (3.5)
is with respect to the full I,iouville operator L
and not just its potential part. Truncation of the
high-frequency series with respect to the moments
involved or with respect to X may thus give quite
different results.

2. Finite-frequency analysis

To turn around the above difficulty we will have
to take into account properly the finite-frequency
effects (z = (()~) which appear in the definition of
the plasma mode (3.3). To this end we introduce
to the collision term the approximation
2'(k, z) =Z~(k, z), with ZD defined by

(pk, t; pp) = —1 6, f pddp V,"',. it(, [6((t— t(; p„p) (6t(; p, „p) 'V; „"([i!) ~ iT,

-S(k —»t;P, P )S(»t'P P. )l' I s ][&%(p )] (3.12)

where S(k, f; p, p') is the exact one-particle prop-
agator, or phase-space correlation function, in-
troduced in (I2.7). Equation (3.12) consists of all
disconnected contributions to Z'. The approxima-
tion Z'=ED thus neglects the connected contribu-
tions to Z', these being important whenever close
collision processes are involved. We will come
back elsewhere to the properties of ZD [Eq. (3.12)]
which was also at the basis of our study of the
long-time behavior of the nonlocal shear viscosity
of the OCP." The main interest of ZD stems
from the fa.ct that the use of the local (k-0)
Markovian (z 0) limit of the Laplace transform
of (3.12), say, Z~(k=o, z=o), would become
equivalent in the limit of weak coupling (X«1) to
the linearized BGL theory. "This can be shown
explicitly by approximating the one-particle prop-
agators S(k, f;p, p') appearing in (3.12) by their
lowest-order Vlassov approximation. Here, how-
ever, we are interested in keeping z and k finite.
We then compute (3.4) with the aid of (3.12) and
obtain after some algebra the following expression
for D(|t,z), Q(k, z) = (k'/k2~)&o~D(k, z):

G(m, x) = 6-d- !' , (1 (x)t—xl, (x) t-()t,(x)),

(3.13)

where the inverse Laplace (;ransforms I,(I).
(j= 1, 2, 3) of the I,(z) appearing in (3.13) are
given by

Ct! 6

1,(t)=d J ~ 6G'„„(x,t)+G„„(x,t)x G„„(xt))—, ,

(3.14a)

I,(t) = (o —G„„(x,t)[G„,(-x, f)+ G,„(—x, t)),
0 X

(3.14b)

1 (t) = 6!x!f dx[G„,(x, t)G,„(—x, t)
0

+G„„(x,f)(G„( x, f)~ —,'G, ( x, t)]],
(3.14c)

where the G,&(x, f) are the correlation functions of
(I 2.19) written in terms of the dimensionless
wave vector x=k/k~, G, ,(x, t) —= G,.~(k, t), and where
the transverse momentum correlation function

G, of (I3.1) has been denoted G, =—G, in (3.14c) in
order to avoid confusion with the time variable.
To proceed with the evaluation of the plasma
mode (3.3) we need an explicit expression for the
correlation functions G, ~ appearing in (3.14).
Within the weak coupling approximation (3.4) we
can clearly compute the G, , from the zeroth-order
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Vlassov approximation to obtain D of (3.13) cor-
rect to first order in X. We then disregard Z' in
(I2.16) and obtain the following zeroth-order ex-
pression for the G,.&

lim G„.(k, z) —= G',.&(k, z)
X~p

= [G,,(k, z)/e'(k, z)]

Im I,(&d) = 4 I&a(4—,
' ——',a' ——,

' a —16(II/a') I ~ '

+ (16 —16a'+ 4a'+ —,'a') [c/&(a')/Wa]],

(3.17c)

where a denotes a reduced frequency a= &d/2&d&,

while P(a') is an auxiliary function defined in
terms of the error function

2
erfx= ~ dte "

where the G, , are the free-particle correlation
functions

(3.16)

3. Approximation

In order to evaluate (3.14) by simple means we
will use (3.15) with static screening e'(k, z)
= e'(k, 0). This popular approximation does prob-
ably yield good results for the I&(z) in the region
of interest for the plasma mode (z = u&&). It is
probably a less good approximation in the region
z = 2&@~, where according to (3.14) a resonance
should occur due to the coupling of two Vlassov
plasma modes. This approximation then will
allow us to proceed analytically. After a lot of
simple algebra, 20 which we will omit, we obtain
for the real and imaginary parts of the Laplace
transforms of (3.14) evaluated for real
8 8 = QJ+20)

ImII(&d) = 4IIa[-,—,+ Ma —3a +,'2a'+,—'a~/(a')],

(3.17a)

Im I, (&d) = 4 II[- —,
' ——,'a'+ a' —a'p(a') ], (3.17b)

V, ,(R, z) = 2 (2
~
[z —Z'(k) ] '

~
j),

&'(k, z) being the Vlassov approximation to the
dielectric constant (2.1) as obtained in (3.1),
while k'(k) = lim1„0 k(k) is the Debye-Huckei re-
sult II'(k) = —ka/(k'+ k~) for the binary correla-
tions. With the aid of (3.15) and (3.16) we can
evaluate (3.13) exactly to first order in X. A dif-
ficulty might appear with the large wave-vector
integration limit of some of the expressions of
(3.14), because the weak-coupling approximation
(X«1) does not treat correctly some of the un-
avoidable close-collision contributions. As we
will show this is the case for the damping rate
[Eq. (3.3b)] but not for the dispersion coefficient
[Eq. (3.3a)]. As usual, we cut off the divergent
integrals at the Landau wave vector k~ = (e'P) ',
which will introduce a logarithmic indeterminacy.
A more precise evaluation would require the use
of improved equilibrium correlations k(k). To
proceed analytically we will use a further approx-
imation to (3.14) and (3.15).

4. Weak-coupling result

We now return to the plasma mode (3.3) and
obtain from (3.17) and (3.18), for «r = &d& (or a = ~)
and using the tabulated values" of erfx and E,(x),
the result

lim y&(k = 5) = k~/k, + 2+ 1.63K/15m,
0

(3.19a)

11111r, (k = 5) = (X/15II'~') [E,(1/4x', „)—1.55] .
A, -o

(3.19b)

In (3.19a) we still have to expand k~/k', =y'r/yr
for weak coupling. This is easily obtained by
computing the isothermal compressibility y~

through Q(a') = v'IIa'e" (1 —erma~). For the real
parts of I, («I) we obtain

ReI, (&u) = —,'v II —', [2 —4a'+ +a ——,a e"E,(a')], (3~ 18a)

ReI, (&o) = , v I&a[1—a'+a'e' E,(a')), (3.18b)

ReI, (&d) =-,'-v II[ '
—,'+'—,'a'- —,'a'

+ (- 4+ 4a'- '
—,'a'+ 3a') e' E,(a')

+ 4E, (a'/x', „)), (3.18c)

where E, (x) = f&"dt e "'/f is the exponential inte-
gral. In this way we obtain from (3.13), (3.17),
and (3.18) an analytic expression for the long-
wavelength dielectric constant of the weakly
coupled OCP. As a result of the weak-coupling
approximation, which does not treat the close
collisions exactly, there appears a divergent
term in (3.18c). As usual we will cut off the
divergence by using a maximum wave vector
x,„=k,„/kD= X I(k,„/k~), where kz ——(e'p) ' is
the Landau wave vector corresponding to the
thermal average of the inverse distance of closest
approach. A more refined treatment is necessary
to determine the precise value of k,„/kz. Note,
however, that all remaining contributions to
(3.17) (3.19) are divergence-free. This is the
case, for instance, with (3.17) and hence for y~
of (3.3a). Note further that the previously used
general properties for real «I, ReD(0, + &d)

=+Re(0, u&) and imD(0, +e) =ImD(0, &d) are easily
checked on Eqs. (3.13), (3.17), and (3.18).
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from the Debye-HGckel equation of state, while
recalling that d'or= I8/n. If, moreover, we take
k ~ = k~ in (3.19b) and keep only the dominant
terms with respect to X (X «1) we obtain, finally,

but again we would have obtained the wrong sign
for ImI, (0) and hence for y~ —3.

IV. STRONG-COUPLING LIMIT

—= 3+ 0.35—,
4m

' (3.20a)

lim 1"~(k=0)= (2X/15@'~')[1n(2X 'e "~') —0.77]

=-,—', (X/m'~')(in' ' —0.37), (3.20b)

where y= 0.57. . . is Euler's constant. " From
(3.20a) we see that the static contribution to y~,
arising from the compressibility g~, tends to
lower y~ below its mean-field value (3.2a), just
as in (3.11), but is finally dominated by the colli-
sional correction to yp, so as to yield a value of

yp slightly above its mean-field value, in agree-
ment with the numerical finding of Hansen et
al."'" For large values of X we will show in
Sec. IV that yp actually becomes negative, thus
reversing completely the present small-X tenden-
cy. With respect to the collisional damping I'p

there exists a vast literature concerned with the
electron ion plasma. For the QCP, however, the
only microscopic calculation of 1 p comparable to
the present one is the expression obtained by
Dubois and Gilinsky, "who also consider some of
the earlier results. To dominant order their re-
sult" is identical to (3.20b). The numerical fac-
tor in' ' —0.37 of (3.20b) is slightly different
from theirs; for k,„=10k~, as considered by
them, w'e obtain a value of 1.93, whereas they
obtained 2.95 including dynamic screening and
treating the short-distance cutoff quantum mechan-
ically.

As an aside, it is interesting to point out the
errors involved in some often-used approxima, —

tions for the collision term Z'(k, z). The quantity
of interest here is I(&u) =I,(~~) + (&u~/&u)I, (&u)

+ ((o&/m')I (w), which according to (3.13) deter
mines D(, v) and hence the plasma mode (3.3).
If we had used an infinite-wavelength collision
operator Z'(k, z) =Z'(5, z), we would have ob-
tained, by invoking momentum conservation,
I(a)) =' (~~/uP)I, (~). This then would yield a 10% er-
ror for I(&o&). If we had used a zero-frequency or
Markovian collision operator, Z'(k, z) = Z'(k, 0),
we would have obtained I(&u) =I,(0)+ (u&~/to)I, (0)
+ (sr~2/aP)I, (0), and from (3.17) and (3.18) we ob-
tain ImI, (0) = ImI, (0) = ReI,(0}= 0. Finally, if we
had taken the full Markovian approximation,
Z'(k, z) = Z'(5, 0), as would have been the case if
we had used the BGL operator, we would have
obtained the dominant term of I'~ to within 50/o,

Now that we have seen what the transition from
zero coupling (X = 0) to weak coupling (X «1) looks
like, one might wonder whether we can say some-
thing about the general expressions of the dielec-
tric constant (2.3) and the plasma, mode (3.3) in
the opposite case of strong coupling (X» 1). It is
easily shown that in this limit we will not be able
to write expressions as explicit as those of Sec.
III. Enough can be said, however, to demonstrate
the important modifications which occur and to
show that they are at least in qualitative agree-
ment with the computer results of Hansen et al."

In a nutshell, our reasoning would run as fol-
lows: Once we have used the conservation laws
to extract the relevant factors, the plasma mode,
defined by Eq. (2.10) or (3.3), should depend for
s~all k only on the dimensionless variable
~,/&u~, where &o, is a collision frequency
Qp Xvp For weak coupling we would expand our
expressions for small a&,/&u~ values. This is then
equivalent to a large (dp expansion. In the opposite
limit of strong coupling it is &~/&u, which becomes
small and we then can expect a low-frequency
analysis to become valid. In the low-frequency
region we then can expect to establish contact with
hydrodynamical concepts and with the popular
hydrodynamic derivation of the plasma mode. '
The remarkable difference with neutral-particle
systems then stems from the fact that this con-
nection with hydrodynamics will occur here only
for large enough coupling (X» 1). Within this
context the connection with the traditional
Chapman- Enskog expansion can then be under-
stood as follows: Let us estimate the collision
term of a given kinetic equation, for instance,
(12.16), by the collision frequency (u, . The
Vlassov mean-field term is singular for charged
particles and of order &u~(k~/k), while the re-
maining streaming terms are of order k or z. It
then follows that for the collision term to domi-
nate the kinetic equation, and hence the Chapman-
Enskog expansion to become valid, we need to
satisfy the condition &o~(k~/0) «tu, =X&o~ or
k~«Xk. Hence the smaller we take k the larger
the coupling will have to be, and since we always
need to take k &k~ this implies strong coupling,
X&1. Note that no such relation between k and X

exists for a neutral-particle system, because
there the mean-field term is regular and of order
k. To proceed, let us see whether these expecta-
tions are confirmed by a closer analysis of the
microscopic expressions of Sec. II.



A. Strong-coupling expansion

From the general expressions (2.3) and (2.4)
we see that the X dependence of the dielectric
constant e(k, z) is concentrated into the static and
the dynamic quantities zd~(k) and Q(k, z), defined,
respectively, by Eqs. (2.5) and (2.6). Let us con-
sider the more difficult dynamic quantity Q(k, z).
This quantity is seen from (2.6) and (2.7) to de-
pend on X only through the collision term Z'(k, z),
as shown explicitly in Eq. (2.7). From (12.17c)
we recall the general expression of the collision
term

Z'(k 'p p') =('f (" p) ILQ(z - QLQ) 'QL
I
6f(k p'))

x[n P(p') ] ',
where 5f(k, p) denotes the fluctuation of the phase-
space density f evolving according to the Liouville
operator L while Q projects out the one-particle
states as more fully explained in I. The depen-
dence of Z' on X ean have two origins. First,
each interaction will introduce a factor X, for
instance 5L-X, where 5L denotes the potential
part of the Liouville operator L = Lp+ 5L. Second,
each particle summation will introduce a factor

In these estimates we are using e' and n ' as
discreteness parameters, ' a procedure originally
given by Rostoker and Rosenbluth" and which can
be made rigorous by going over to dimensionless
variables~ with ka and Kp as flnlte space-time
units, so as to preserve the plasma character-
istics. "" We then have (6fiLQ-X, because, as
shown in I, only the potential part of L contributes
here, (5fiLQ=—(5fi5LQ Because .of the presence
of Q, however, there will be necessarily a sum-
mation over a second particle, and hence
(6fiL, Q-XX '. Taking into account the (nQ)

' factor
in Z' we arrive at the general form Z'= XZ(X),
where the remaining X dependence of Z(A) stems
from the intermediate propagator (z —QI.Q) '.
Quite generally we can write QI.Q =A. + XB, where
A stems from the contributions of the free motion
Lp and also from tho se potential contributions
which are compensated by particle summations.
In the weak-coupling limit we neglect B and our
analysis stops. In the limit of strong coupling it
is, however, precisely the AB term which will
become important, as it will eventually dominate
the z -A term. Naively we could write
(z —QLQ) ' -

(—XB) ' as X-~; however, in order
to take no unnecessary risks with the complicated
operator character of these expressions we will
assume only that as A. - we can neglect the finite
constant z (-&d~) in front of QLQ. More precisely
we will assume that

where we have multiplied Z' with A.
' to extract

the overall X factor Z'(X) = XZ(X). The advantage
of (4.1) is that Z' is a well-defined two-body
quantity. Equation (4.1) then states that the large-
A behavior of Z'(k, z) is, to dominant order in a ',
the same as the large-A. behavior of its Markovian
limit F'(k, 0), a quantity which is generally as-
sumed to exist. As yet we are not able to evalu-
ate the limiting value involved in (4.1), but al-
ready, as such, Eq. (4.1) will allow us to draw a
number of interesting conclusions.

The above considerations do not constitute a
proof. They instead indicate the plausibility of
our arguments. These arguments could have been
given (or hidden) in a diagrammatical language or
some other formal device, but we think we have
summarized their essence. Taking for granted
the large-A. analysis of Z' contained in Eq. (4.1),
we now proceed with the X analysis of Q(k, z).
From Eqs. (2.6) and (2.7) we see that Z' enters
the second term in the right-hand side of Eq. (2.7)
through the propagator Q[z —QZ(k, z)Q] Q. To
second order in 0 we, in fact, need consider its
value only for vanishing k, Q[z —QZ'(5, z)Q) 'Q.
For large X we assume Z' itself becomes large
and hence we can replace this propagator by
-Q[QZ'(5, z)Q] 'Q, an operator which is known to
control the transport coefficients'" and which
exists at z =0 whenever those coefficients exist.
This result, together with (4.1), aHows us to
write Q, ,(k, z) =Q, ,(k, 0) for large X. We also re-
call from I that momentum conservation implies
Qzz(k, z) =-i)z'Dz(k, z), Q„(k,z) =kD„(k, z), and
Q„(k,z) =kD„(k, z), while because of energy con-
servation we have Q„(k,z) = —z&'D, (k, z)+zB, (k, z).
Finally, we can thus write Q(k, z) of Eq. (2.6) for
small k and large X as

lim Q(k, z) = limf ik2Dz(5, 0)-

+ f 'D„(|Z,O)D„(0,0)/z[1 B,(5, 0)]

+ e(u')f. (4.2)

This is our basic strong-coupling result. It ean
be further simplified, but in order to establish
easy contact with known quantities we keep (4.2)
as such.

B. Relation to hydrodynamics

The connection between (4.2) and the hydrody-
namical concepts can be established as follows:
From (13.11) we obtain for the second term on the
right-hand side of (4.2)

D, (5, 0)D, (5, 0)/[1 —B,(5, 0)]=c —c

limk 'Z'(k, z) = lim A. 'Z'(k, 0), (4.1) =c'(c~/cv —1), (4.3)
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where c and c denote, respectively, the isother-
mal and isentropic sound speeds, whereas c~/c~
is the specific heat ratio. The first term on the
right-hand side of (4.2) can be identified as fol-
lows: From (I3.15) we obtain the longitudinal
viscosity P, consisting of a shear contribution
(q) and a bulk viscosity (g), P = ', q+-f, as

=D,(5, 0)

d D,(5, z)A„(5, z) +i D„(5,z) D„(5, z)

dz 1-B,(f,z)

(4.4)

As well known, "the bulk viscosity can be split
into a Markovian (gz) and a non-Markovian ((»)
contribution, the latter being called the nonsta-
tionarity contribution in Ref. 24. The second
term of Eq. (4.4) corresponds clearly to the non-
Markovian corrections to the kinetic equation and
hence determines g„u/nm. The first term of
(4.2) is thus determined as

D, (5, 0) = y„/nm =-(-,'~+ ~„)/nm, (4.5)

$z being the Markovian part of the longitudinal
viscosity Q. From (4.2), (4.3), and (3.3a) we
obtain

iim y~(k=0) = iim —,+—,——i)
k~ c cp

~ -~s vo cv
(4.6)

If we also remember that k~/k', —= c'/vo =Xor/yr we
can simplify (4.6) and write our final result as

lim y&(k = 0) = lim[(c~/cv) d'or/X r], (4.7a)

k'
lim I'&(k = 0) =—lim ' ~ +

CO& g ~ tlBZ SSZ
(4.7b)

whereas for the dielectric constant we would ob-
tain from (2.3), (2.4), and (4.2)-(4.5) the simple
result

«k, z =1-z' —k'c'+zik Q„/nm'

k«kD, 1«X. (4.8)

As already stated we are not able to compute
explicitly the limiting values (X» 1) involved in
Eqs. (4.7) and (4.8). As such these results are,
however, of interest and at least in qualitative
agreement with the computer results. " Indeed,
it was shown in Ref. 11 that for large X, c~/cv
tends to unity while d'or/yr becomes negative for
X&X,=36m, so that the limiting value appearing
in Eq. (4.7a) is actually negative, in agreement
with the observed negative dispersion"'" of the
plasma mode for large X. Moreover, Eq. (4.7b)
also offers a hint to the understanding of the com-

puter finding indicating a small bulk viscosity con-
tribution to the longitudinal viscosity @ compared
to the shear viscosity contribution —,'g. Indeed,
the longitudinal viscosity P was calculated in Ref.
11(b) from the longitudinal correlation function
G „(k,z) through "generalized hydrodynamics. "
In I we have shown that as 0- 0 the longitudinal
correlation function G»(k, z) is dominated by the
plasma mode, while Eq. (4.7b) indicates that in
the hydrodynamic region A. — only the Markovian
part of the bulk viscosity g„, instead of the com-
plete bulk viscosity $ = gz+ $„„, contributes to the
damping of the plasma mode. This result, added
to the observed " increase of g for large g,
might well explain the smallness of the observed
bulk viscosity contribution to P.

There are two remarkable differences between
our results (4.7) and (4.8) and the hydrodynamic
expression one obtains from the linearized hydro-
dynamic equations with the mean electric field
added. " Indeed, one obtains Eq. (4.7) but with the
full bulk viscosity in (4.7b) instea. d of $~ and
without the restriction to large X values (X» 1).
As a consequence many authors have extrapolated
the result (4.7) back to the weak-coupling region,
in which case (4.7a) would yield, for example,
y&= —,', a result which differs both from the weak-
coupling result (3.20a) and from the "hydrody-
namic" or strong-coupling result (4.7a) predicting
a negative value for y~. These discrepancies can,
however, easily be understood within the present
theory. In fact, adding the Vlassov term to the
standard (neutral fluid) linearized hydrodynamical
equations amounts to first assuming the hydrody-
namical equations to be valid and then adding the
term which precisely prevents them from being
generally valid. Indeed, starting from first prin-
ciples we have shown in I how the mean electric
field, because of its Coulomb singularity, shifts
some of the static (z = 0) transport coefficients to
their finite-frequency value (z = &o~). This Coulomb
singularity also prevents the collision term from
dominating automatically the kinetic equation for
small k values and hence prevents the Chapman-
Enskog expansion from being generally valid.
Said differently, the hydrodynamic description of
the QCP does not automatically become valid as
k-0, in contradistinction to systems with a regu-
lar interaction potential [V(k= 0) &~]. This will
happen only when the coupling is strong enough

for the collision term to dominate the Vlassov
singularity. This, then presumably implies
X&k~/k. The hydrodynamic results (4.7) and

(4.8) appear, then, as the first or dominant terms
of a strong-coupling expansion of the exact results
of Sec. II. Indeed, in the strong- coupling limit the
finite- frequency or non- Markovian transport co-
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efficients should, according to (4.1), be well ap-
proximated by their low- frequency or Markovian
approximation, showing the internal consistency
of our arguments.

V. CONCLUSIONS

Starting from first principles we have derived
an exact expression (2.3) for the dielectric con-
stant e(k, z) of a classical one-component plasma
with pure Coulomb interactions. The advantage
of this expression is to naturally incorporate the
symmetry properties and conservation laws of
the system while nicely separating the static from
the dynamic contributions. The two oppositely
propagating plasma modes we obtain from e(k, z)
reduce for long wavelengths to those found in I,
where we also obtained the exact expressions of
the heat and shear modes of the OCP. These five
long-wavelength modes taken together are very
general properties of the OCP, equivalent to the
five hydrodynamical modes of uncharged-particle
systems. They merely reflect the conservation
of particle number, momentum, and energy. In
contradistinction with the sound modes of neutral-
particle systems, the plasma modes of the OCP
cannot be readily expressed in terms of the hydro-
dynamical transport coefficients and hence they
cannot be properly termed hydrodynamical modes.
This discrepancy can, as shown in I, entirely be
ascribed to the introduction by the singular
Coulomb potential of the finite frequency ~~.

Using the present theory we have followed the
plasma mode as one varies the coupling constant
X = k~/n, the only parameter still at our disposal.
We have found qualitative agreement with the com-
puter results of Hansen et al."over the entire
range of X values covered. For strong coupling
(A» 1) we recover a hydrodynamical expression
for the plasma mode which differs significantly,
however, from the widely used expression ob-
tained from the linearized hydrodynamical equa-
tions. That for strong coupling hydrodynamics
can again come into play seems reasonable in
view of the fact that in this limit the kinetic equa-
tion can again become collision dominated if the
collision term is large enough to dominate, for
given k, the singular Vlassov term. The region
of validity of the hydrodynamic treatment should
be, roughly speaking, restricted to those values
of X and k satisfying the condition 1«kD/k «X.

The extension of the present results to a real
two-component plasma, instead of the OCP con-
sidered here, will allow one to inquire also for
experimental, instead of computer, evidence.
However, such an extension is not completely
trivial, and is planned for the future. '
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