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We describe an experiment to measure the specific heat of C02 to an accuracy of 1% along the critical
isochore for 4 X 10 '

&
~

t~ & 3 X 10 ', where t = 1 —TjT„giving details of the method and the analysis.
After applying a correction term for the effect of gravity on the specific heat of the 1-mm-high sample, we
fitted the data with functions of the form C„= A~i~ '+ 8 With .the constraint a = a' the optimum value
of the exponent was a = 0.124 ~ 0.005. When this constraint was relaxed, we obtained a = 0.124 + 0.014 and
a' = 0.124+0.012.These results are in good agreement with predictions based on renormalization-group
analysis and numerical estimates for the three-dimensional Ising lattice. For the ratio A+/A of the
coefficients of the divergent term on each side of T„we obtained the value 0.54, which is within the range of
predictions from scaling and the renormalization-group method, but disagrees with the estimate for the Ising
model. We also present the results of measurements of the thermal relaxation time of the sample.

I. INTRODUCTION

Within the past few years there have been con-
siderable advances" in the theoretical under-
standing of the behavior of systems near the crit-
ical point. In particular renormalization-group
(RG) techniques have been applied and expressions
derived for the critical exponents and coefficients
as functions of the dimensionality d of the system
and the number of degrees of freedom n of the
order parameter. Using a variational technique
within the RG framework, Kadanoff' has recently
derived values for critical exponents of two- and
three-dimensional Ising systems. These and other
predictions may be compared with experimental
results; here we describe a precise determination
of the specific-heat divergence along the critical
isochore which allows such comparisons to be
made.

The sample material was CO„chosen to mini-
mize the gravity effect: under certain assumptions
the temperature interval over which the effect is
important can be shown to be proportional to
(m/T, )' ', where rn is the molecular of the fluid and
T, is its critical temperatur'e. The value of this
parameter is less for CO, than for any other com-
monly studied material. By restricting the height
of the sample to 1 mm, it was possible to use data
obtained for [t~ =

~
T/T, —1( as small as 4X 10 ' in

the curve-fitting analysis. This is almost an order
of magnitude closer to T, than has been reported
previously" for data of similar accuracy, allow-
ing an improved determination of the asymptotic
form of the specific-heat divergence at the critical
point.

We used a continuous-heating method of mea-

surement, based on observing the power required
to change the temperature of the sample at a con-
stant rate. A large amount of precise data was
collected comparatively easily, allow'ing the reli-
able estimation of the curve-fitting parameters
after the application of a small correction for the
effect of gravity. We have fitted our results with
functions of the class

whereA, B, n, and T, are parameters determined
by separately minimizing the squared deviations
of the data on each side of the transition. There
is good agreement between our estimates of a and
at', the predictions of the RG method"and nu-
merical estimates for the three-dimensional Ising
model. ' Our estimate of the ratioA'/A agrees
with the RG prediction' but conflicts with the
Ising-model estimate, ' possibly due to the low ac-
curacy of the series-expansion method below T, .

A preliminary report of this experiment has
appeared, ' and the continuous-heating method has
been described in detail. " In this paper we pre-
sent the details of the experiment and the method
of analysis, and compare the results with the new
theoretical predictions. In Sec. II we describe the
calorimeter, the sample preparation and the
thermometry, and in Sec. III we discuss the mea-
surements of the thermal relaxation time. Section
IV contains a descr iption of the heating-rate depen-
dence of the specific-heat data and a summary of
the residual uncertainties in the data. In Sec. V
we discuss the effect of gravity on the results and
describe a correction term which must be applied.
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Section VI is devoted to the details of the data
analysis and a comparison of the results with the-
oretical predictions.

II. EXPERIMENTAL DETAILS

The continuous-heating method we used to mea-
sure heat capacity can be described briefly as fol-
lows: First the sample is placed in a vacuum-in-
sulated thermal enclosure and its temperature is
controlled to equal that of the enclosure. The en-
closure is then heated at a constant predetermined
rate, and the power required to force the sample
to heat at the same rate is measured. With this
arrangement the power dissipated in the sample is
proportional to its heat capacity, allowing the data
to be recorded directly. The thin-parallel-plate
calorimeter geometry, dictated by the requirement
for small-gravity effects, attenuates the effect of
the constant heating rate on the degree of equilib-
rium within the sample. The residual effects are
observed by measuring the heat capacity over a
wide range of heating rates.

The calorimeter was a thin, disk-shaped stain-
less-steel container with lids of thickness 0.015
cm which were internally braced with annular
bulkheads. The internal height was 0.10 cm ex-
cept in the 0.033-cm-diam nickel filling tube which
conta, ined less than 0.05% of the sample. The ra-
dius of the calorimeter was 1.5 cm. To reduce
the effect of the thermal time constant of the cal-
orimeter on the temperature gradients in the
specimen and to increase its reflectivity, the cal-
orimeter was plated with a layer of silver 0.002
cm thick. Measurements of the thermal relaxation
time of the filled calorimeter made far above T,
were consistent with the calculated value of 5 sec.
In this range of temperature the thermal relaxa-
tion time of the CQ, is small, and its heat capacity
relatively low, so the calorimeter responded to a
heat pulse almost as if it were empty. The mea-
sured value of the heat leak between the calori-
meter and its surroundings was 0.8 mW/ C. The
heat capacity of the empty calorimeter was esti-
mated to be about —', that of the contents at the
critical temperature. Two 415-Q four-terminal
heaters were wound on the periphery of the cal-
orimeter, attached with a thin coating of varnish
and covered with a press-fit silver-plated stain-
less-steel band. To minimize the contamination
of the sample, the calorimeter was constructed
entirely of type 25-20 stainless steel and nickel,
except for the brazing alloy which was a nickel-
gold eutectic mixture. Extreme cleanliness was
achieved by joining all the components by fluxless
vacuum brazing at approximately 800 C using a
rf induction furnace. After removal from the furnace
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FIG. 1. Vertical cross section of the calorimeter.

the calorimeter was sealed for final external
machining, and subsequently (for example while
measuring its volume) it was filled only with air
or CQ, of the same purity as the final sample. A
cross section of the calorimeter is shown in
Fig. 1.

The internal volume V; of the calorimeter and
its "compressibility, " (1V, )sV. , /sp, were mea-
sured by a ratio technique. The calorimeter and
a rigid vessel of known volume were connected,
filled with high-purity CO„and allowed to come
into thermal equilibrium. The valves in the con-
necting tube were then closed, and the vessels
separated and weighed. The ratio of the volumes
was then equal to the ratio of the weights of the
gas filling the two systems. Care was taken to
close the valves only when the fluid was in the
one-phase region. The volume of the calorimeter
at the critical pressure and room temperature
was 0.6961+0.0002 cm' and its compressibility
was 1.6&&10 '/atm. After the initial filling of the
calorimeter with the high-pressure gas, there
was no evidence of irreversible volume changes
on cycling from 1 to 85 atm. From the above com-
pressibility and the thermal-expansion coefficient
of the calorimeter material it can easily be shown
that the small deviation of the thermodynamic path
followed by the CO, sample from the critical iso-
chore has a negligible effect on the values obtained
for C„.

After its volume had been determined the calori-
meter was filled with research-grade CQ, of nom-
inal purity 99.996/0. The major impurities were
stated" to be 30 ppm H, O, and 5 ppm N, . The
filling system was constructed of metal except for
two PTFE valve seats, and contained a small bomb
for storing pressurized CO, . After the calori-
meter was attached to the filling system and evac-
uated, the bomb was cooled with liquid nitrogen,
and CO, condensed in from the storage bottle. The
bomb was then opened to a diffusion pump and
slowly warmed until an appreciable sublimation
rate was achieved. This was gradually increased
until the pump throughput saturated. The evacu-
ated calorimeter was then opened to the bomb and
the pump valved off. The calorimeter was then
cooled until it filled with CO, to a density greater
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than the critical value, when it was sealed off and
warmed to room temperature. To reduce the
mean density to the critical density, a very slow
leak of small internal volume was attached to the
all-metal valve on the filling capillary of the cal-
orimeter. By opening the valve for measured
time intervals it was possible to adjust the a-
mount of gas inside with a precision of a fraction
of a milligram. After the density of the sample
has been adjusted, the capillary was clamped shut
near the body of the calorimeter, and the unwanted
portion cut off. A close-fitting wire was then
placed in the open section of the tube, and the hole
was welded shut, trapping a very small pocket of
gas inside. The increase in the gaseous impurity
level in the sample when the clamp was removed
was estimated to be well below 1 ppm of the CO„
while the change in the mean density of the sample
was estima. ted to be less than 0.01%. The mean
density at 7.; and the mass of the gas in the calori-
meter were 0.466, + 0.0006 g/cm' and 0.3244
a 0.0005 g, respectively.

For the specific-heat measurements, we re-
quired thermometers with low heat capacity, high
resolution, and high stability. Miniature thermis-
tor beads seemed ideal, but little information was
available concerning their stability. We therefore
monitored the resistance of a number of beads
when they mere located in water triple point cells
cooled to 0.01 'C. The equilibrium temperature of
these cells is reported" to be stable and repro-
ducible to an accuracy of about 10 4 'C over long
periods of time. We found that for periods of at
least 24 h the beads in the cells were stable to the
limit of detectibility, which was a drift rate of
about 10 4l C/day. Provided that the beads were
adequately protected from any shunting resis-
tances (e.g. , moisture) the output signal from the
bridge was well behaved„with a noise level of the
expected value. Over the course of three weeks
testing during which the beads were repeatedly
cycled up to room temperature, the triple-point
resistance drifted by an amount equivalent to a
few millidegrees. These results indicated that the
stability of the thermistors significantly exceeded
our requirements.

W'e therefore used thermistor beads of 0.04 cm
diam and 100 kQ nominal resistance at 25 C for
all high-resolution temperature measurements.
Two thermistors were located on the calorimeter,
and others were placed in the thermal enclosure.
All were attached with thin films of varnish and
covered with aluminum-foil radiation shields. The
leads to the thermistors were thermally anchored
both to the surface on which they were mounted
and to all surrounding thermally controlled sur-
faces. The resistance A of the thermistors could

be measured with either of two seven-decade
transformer-ratio arm bridges, the output signals
of,which were monitored by a Princeton model
HR-8 lock-in amplifier and a Brookdeal model
FL355 lock-in. With a 1-sec integration time a
temperature change of 10 ' 'C could easily be de-
tected mhen dissipating 4&& 10 ' % in a thermistor.
During the specific-heat measurements the re-
sistances of five thermistors were often measured
when they were in thermal equilibrium with a
platinum resistance thermometer (PRT) located
in the thermal environment. This thermometer
was previously calibrated to within +2 m C by
the CSIRO National Standards Laboratory. Of
these thermistors, four gave readings consistent
to within a fraction of a millidegree while the
fifth drifted slowly. During a two month period
the total drift of the first four, determined by the
displacement of the peak of the specific heat of
the sample, was found to be approximately 0.3
m C. Comparison with the PRT over a six month
period shomed no drift to within the accuracy of
the measurement, which was z2 m C. We cali-
brated the thermistors against the PRT over an
18 'C temperature interval spanning 7'., and fitted
a three-parameter function to the set of (R, T)
points. Values of dT/dR derived from the best-fit
function appeared to be accurate to within +0.2%%uo

over the whole range. We expect the variations
of any error in dT/dR to be considerably less than
0.1/o over the 6 C interval spanning T, which was
of most interest to us.

III. THERMAL RELAXATION TIME

Along the critical isochore in the two-phase re-
gion the thermal relaxation time z of a fluid di-
verges like ~t~ '. Dahl and Moldover" obtain y
=0.97+ 0.02 for 'He, but Brown and Meyer' find
y= 0.67 which gives better agreement with our
data' for xenon. The effect of this singularity in
7. on the accuracy of specific-heat measurements
depends on the details of the technique used to ob-
tain the data. With our method of measuring C„,
departures from the equilibrium value of C„of the
order of T a 7/s T and (Tv/C„) s C„/s T are to be ex-
pected at a heating rate T. With good calorimeter
design, 7 can be made quite small, but ultimately
it becomes necessary to reduce T as ~t~ becomes
very small. In order to predict the region in
which these distortions of C„become important we
measured the value of 7 as a function of tempera-
ture. The results of these measurements are
shomn in Fig. 2. The data were obtained by apply-
ing small pulses of heat to the calorimeter and
observing the response of a thermometer on its
surface. The solution" of the solid-body heat-
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could cause relatively large inaccuracies in the
specific-heat data. In similar regions extremely
long settling times for density gradients have been
reported, "which could conceivably affect thermal
measurements. However, it is just in this region
that we reject data on other grounds: here the
corrections applied for the effect of gravity on C„
become uncertain to a degree that would affect our
results. We therefore feel confident that the re-
sults of the curve-fitting analysis are not signif-
icantly affected by long-term relaxation effects.
This conclusion is further supported by the results
of a previous experiment' in which close agree-
ment was found between specific-heat data ob-
tained with the continuous-heating method and with
the more conventional heat-pulse method. In that
experiment relaxation times 50%%uo higher were en-
countered, and heating rates ten times higher were
used.
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diffusion equation for this situation predicts that
even far from T, the initial temperature decay
should be quite nonexponential, as was observed.
However, after a period equal to about one-third
the asymptotic relaxation time, a measurement
of the interval over which the signal decays by a
factor e is predicted to be within 30% of the as-
ymptotic value, z. With a rough initial estimate
of 7, we were able to use this criterion to obtain
the asymptotic value from the decay curves by
iteration. The accuracy of the measurements was
estimated to be +30%%uo, limited primarily by the
uncertainty in the final temperature of the calori-
meter.

The data in Fig. 2 shows that outside the r-nge
30.75-30.'19 'C, e ~/s T is less than 100 sec/ C, so
for T & 10 ' 'C/sec the error introduced into C„
will be less than 1%. On the other hand, the cor-
rection term proportional to 8 C„/s T can approach
10%%uo in the same temperature interval. For this
reason, as T, is approached, we must progres-
sively reduce T in order to maintain accuracy in
our measurements of C„.

Very close to T„where both ~ and s7/s T rise
sharply, it might be argued that nonlinear effects

FIG. 2. Temperature dependence of the thermal re-
laxation time of the sample of CO2.. (a) data obtained
over a wide range of temperature; (b) data obtained close
to &~ . Heating pulse lengths: ~, 3 m'C; V, 6 m 'C;
0, 20 m'C.

IV. SPECIFIC-HEAT DATA

During the course of the experiment over 300
hours of heat capacity records were obtained.
This data was manually averaged over intervals
of 900 sec, and then computer corrected as de-
scribed in Ref. 10. The resulting set of some 1100
data points consisted of measurements made at
heating rates in the range 10 '-3&&10 ' 'C/sec.
The dependence of the observed specific heat on
heating rates in the range 10 '-10 ' C/sec is
shown as a function of temperature in Fig. 3. Be-
low T, for small departures from the undistorted
curve the fractional deviations are of the order
(T7/C„)laC„/s T as expected, but very close to T,
larger departures are observed possibly due to the
correction term T 87/s T or higher order terms.
Above 1'„ the deviations from the undistorted
curve are very nonlinear and are better charac-
terized by a settling time, almost independent of
the heating rate, with which the sample recovers
from the passage through the singularity. This
settling time was of the order of 500 sec. In
order to check the degree of equilibrium attained
within the sample near T, when heating at 10 '
C/sec, data wa. s also collected while cooling at

the same rate. These sets of data are compared
in Fig. 4. lt can be seen that for ~tl 2 3.5&&10 '
the two sets of data agree to within approximately
1%%uq. Since in many cases the nonequilibrium ef-
fects were not linearly related to the heating rate,
we decided to reject the affected data rather than
correct it. This reduced our data set to about 800
points" for use in the analysis.

There are a number of sources of uncertainty in
our data. For the determination of the specific-
heat exponents, the most important are in the
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shape of the specific-heat curve rather than in the
absolute values. With our apparatus, the major
source of systematic error in the measurements
was from the thermistor calibration. To obtain
accurate values for o. and +' it is necessary that
the temperature, T*, calculated from resistance
of a thermistor on the calorimeter, be linearly
related to the absolute temperature with sufficient
precision. It can be shown from Eq (I) that i.f
d T*/dT differs from unity by a constant amount,
the values obtained for the exponents are unaf-
fected, as long as T, is assigned correctly. The
thermistor calibration described in Sec. II showed
that the variation of the ratio dT*/dT was less
than 0.1% over the curve-fitting region. We esti-
mate that this would perturb the apparent exponent
values by less than 3%. An independent check on
the thermistor calibration and on other aspects of
the heat-capacity measurements was made pos-
sible by a special feature of the apparatus: we
automatically measured the heat capacity of a cop-

TEMPERATURE, G

FIG. 3. Dependence of the specific heat of the sample
on the heating rate. Points show data used in the analy-
sis, except for the region between 30.763 and 30.787'C,
where data obtained at 10 6 C/sec are shown. Solid
lines represent discarded data.

per component in the thermal environment during
every experimental run. Comparison of this data
with tabulated values showed that the total tem-
perature-dependent errors due to the measuring
technique were less than +0.03 J/mole O'. This
is significantly less than the uncertainty in the
temperature dependence of the empty calorimeter
heat capac ity, whic h was es timated to be equiva-
lent to +0.1 J/mole O'. The uncertainty in the
calorimeter heat capacity at T, gives rise to a
possible constant error of +10 J/mole C. Far
from T, our results can be compared with those
of Michels and Strijland": our data appear to be
lower by 6+ 3 J/mole C. From run to run the
measurements were reproducible to within the
noise, which was heating rate dependent. At
10 ' 'C/sec the data was contained within a range
of about a2 J/mole C, and this decreased to
+0.3 J/mole C at 10 ' C/sec.

V. EFFECT OF GRAVITY ON Cv

The effect of gravity on C„can be split into two
contributions: the first due to the explicit de-
pendence of the free energy on the density gradi-
ent in the gravitational field and other terms of a
nonlocal character; and the second due to the
variation of density with height itself, the free-
energy density being the same function of the local
density and temperature as in the absence of grav-
ity. We term this latter contribution the imPlicit
effect. To our knowledge, no calculation of the



SPECIFIC HEAT OF CO2 NEAR THE CRITICAL POINT 783

explicit effect of gravity on C„has yet been made.
However, it can be argued" that the explicit effect
is negligible whenr, «A, &, where r, is the cor-
relation length and A, z is a characteristic length

For CO, r, /A&&10 ' for ~t~
~ 3x10 ', implying

that we can neglect the explicit effect for the pres-
ent experiment.

On the other hand, the implicit effect of gravity
noticeably distorts the singularity in the tempera-
ture interval covered by our measurements. A

correction term for this effect is derived in the
Appendix. The magnitude of the term was calcu-
lated from compressibility and coexistence curve
data"'" near T, . In the analysis described below,
this correction term was always applied to the
data before curve fitting was attempted. Close to
T, the numerical values of the gravity correction
are unreliable and it was necessary to reject
specific-heat data from the analysis. We chose
~t~ =4x 10 ' as the lower limit for which reliable
corrections could be made. Results obtained with
the limit set at ~t I

=6.6x10 did not differ signif-
icantly.

30.772
I

'
I

Figure 5 shows projections of the four-dimen-
sional constant X' contour defined by Eq. (2) onto
the (a, T,) plane for three different temperature
ranges:

(a) 4x10-'&
gati

&2.5x10-',

(b) 4x10 '&~t~ &5x10 ',

(c) 4x10 &
I tI &10 2.

The branches of the data on either side of T, were
treated entirely independently. The variation in
the extent of overlapping of the contours with data
range gives a quantitative idea of the sensitivity
of the final results for ~ and ~' to the outer cut-
off point which is the arbitrarily chosen limit of
applicability of the function in (1). Since the con-
tour for range (b) falls completely within that for
range (a), it is reasonable to consider data for
which ~t~ & 5x10 ' as representing the asymptotic
form to within the accuracy of the measurements.

VI. ANALYSIS AND DISCUSSION

2 2

[F....(P, ~ -P)j,
Xp

(2)

In order to obtain information on the asymptotic
form of the specific heat as T, is approached, we
fitted our data with functions of the class in Eq. (1).
The range of acceptable values for the parameters
was determined by computing X', the sum of the
weighted squared deviations of the data from the
function, and comparing it with the minimum ob-
tainable value, Xp. We accepted only those param-
eter sets for which
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where P parameters are determined by fitting the
function to n data points, and F, „is the 5%%ua F
distribution parameter"; that is, there is a 95%%uo

probability that the true values of the parameters
are within the region of parameter space defined
by (2). The parameter F», has the limiting values
Fo 05(4, m) =2.37, F»5(6, m) =2.10, and Fo 5(8, ~)
=1.94. For n~ 180, our minimum data set, Ep ps
is within 3%%uo of these limiting values. The weight-
ing function 8"; used in calculating X' was de-
termined by estimating the standard deviation of
the data as a function of heating rate. We obtained

Wi = 8.16(1+5/T;) 2, T& T,

=12.76(1+5/T;) 2, T&T,

where T, is the heating rate measured in p'C/sec.

30.774—

30.778
0.08

I

O. IO

I )

O.I2 O.I4
I

0.16 0.18

FIG. 5. Projections onto the (&, T, ) plane of the
constant y contours which have 95% probability of in-
cluding the true values of the parameters. Each branch
of the data was treated independently. The three con-
tours in each set correspond to the three fitting regions
(a), (b)„and (c) described in the text.
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%e then obtain the results 0.115& ~ & 0.157 and 0.1.15
& ~' & 0.154 with a 95% confidence level and when no
constraints are applied to any of the parameters.

In order to carry the analysis further it is nec-
essary to restrict the class of fitted functions to a
subset of those described by Eq. (1). A simple
constraint is to require T,' = T, which is consistent
with the results shown in Fig. 5 and is to be ex-
pected if the density of the sample equals the
critical value. For other values of the density,
T,' & T, , due to the step discontinuity in the specific
heat at the coexistence curve. The degree of over-
lap of the apparent critical temperatures can be
estimated from the specific-heat data for 'He ob-
tained by Moldover over a wide range of densities.
From this data it is clear that T, is very close to
the true value of T, even for densities differing
from p, by up to 10% or 20%. On the other hand,

T,' falls rapidly as the density deviates from p, .
From Moldover's data we obtain the approximate
relation

T, —T,'= (2.5~1)(T, —T), (3)

where T is the temperature at which the coexis-
tence curve is intersected. Using Eq. (3) and co-
existence curve data"'" for CO, we find that the
difference T, —T,' is less than 10 ' 'C even for
densities differing from p, by as much as 1%.
Since this difference is much less than the ranges
of T, or T, allowed in Fig. 5, and the mean den-
sity of our sample is likely to be within 0.5% of
p„" it seems quite conservative to accept the con-
straint T,' = T, in further analysis of our data.
Figure 6 shows the result of applying this con-

O. I 6

O. I 4-

straint and projecting the 95% confidence contours
of y' into the (o., a') plane for each of the three
data regions (a), (b), and (c). For region (b) we
obtain ~ =0.124+ 0.014 and +' = 0.124+ 0.012. The
values obtained for all the parameters are listed
in Table I. Of the currently available theoretical
predictions for the exponents only the Ising-model
numerical estimates do not assume a priori that

In three dimensions these estimates' are
e =0.123+0.003 and 0(e' &8 which agree very
mell with our results. Since other theoretical re-
sults assume that + =n', and this is consistent
with our observations, we applied this equality as
a constraint before making further comparisons.
We obtained o =0.124+ 0.005 with a 95% confidence
level. Recent predictions" obtained by the RG
method using an expansion in the parameter c =4
-d lie in the range 0.08 & ~ (0.18. However, for
e =1 convergence is slow at best and the series
may only be asymptotic. " This problem is
avoided in the approach of Kadanoff'which relies
instead on generating upper and lower bounds for
the recursion relation in the RG method. The re-
sulting estimates of the exponents for two- and
three-dimensional Ising models are close to the
values obtained by other methods. For d =3,
Kadanoff's result a =0.113 is encouragingly close
to the value we observe.

The ratio A'/A of the coefficients of the di-
vergent term in the specific heat is expected to be a
universal parameter. ' In the present analysis we
observed thatA'/A =0.538 to within approxi-
mately 3% for all sets of parameters which gave
acceptable fits to the data. Predictions for the
ratio are available from scaling, RG expansions
and numerical calculations. Schofield" has pro-
posed a linearized model for the equation of state
in the critical region which is consistent with
scaling. For this model the ratio is given" by

O. I 2- where P and y are the exponents defining the asym-
ptotic behavior of the coexistence curve and the

O. I 0-

0.08
0.08 O. I 0

l

O. I 2
I

0. I 4 O. I6

TABLE I. Optimum values of the parameters obtained
with the function Cgit =Aiti I+B and applying the con-
straint Tc = Tc ~

Q'
FIG. 6. 95% confidence contours of constant g pro-

jected onto the (&,n') plane for the three fitting regions
(a), (b), and (c) described in the text. The function
fitted to the data was C„=Aiti +8, with the constraint

C C

0.124a 0.012
10.6 + 2.0
-0.1 +2.7

0.124+ 0.014
5.7 +1.3

-3.6 + 1.2
30.7748 + 0.003 C
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compressibility. This formula is sensitive to the
values used for P and y. Using the experimental
values" for CO, : P =0.350; y =1.260, we obtain
A'/A. =0.77, while the numerical estimates P
=0.312; y=1.250 for the three-dimensional Ising
model yieldA'/A =0.51. On the other hand, di-
rect estimates' of the ratio from the Ising lattice
specific heat give values close to 0.75, varying a
few percent from lattice to lattice. It is possible
that this last estimate is too high, due to the poor
convergence of the low-temperature series ex-
pansion of the specific heat. Recently Brezin
et al. ' have developed the RG expansion in the
parameter c for the ratio. They obtain

A'/A =2" '(I+a)n+O(e').

With e =g = 1, substitution of either Kadanoff's
value for o, or ours gives A'/A =0.54 to first
order in e, in very good agreement with our re-
sult.

Fisher" has pointed out that the Ising-model
specific heat has no adjustable parameters, so a
direct comparison with experiment is possible.
The quantity C*(T) to be compared with the Ising-
model values is given by

where C~ is the ideal gas specific heat and p is
the liquid density extrapolated to zero temperature.
In Fig. 7 we plot C*(T) and the Ising-model values
on a semilogarithmic scale. Good agreement ex-
ists above T„but below T, the Ising-model values
are too low by about 50%%uo. Nevertheless, the gen-

1111IIIII ' I I (1 I IIII I I I I I 1 III I

60

eral features of the data are well represented.
In Fig. 8 we show the deviations of the total data

set from the best-fit function with ~ = a' =0.12 and
T+ = T, = 30.775 'C, using fitting region b. It can
be seen that the function is a very satisfactory
representation of the data over a wide range of
temperature. Outside the fitting region, however,
systematic deviations occur, which is to be ex-
pected with an asymptotic representation of C„as
T, is approached. In an attempt to extend the tem-
perature range over which the selected function
describes the data and to explore the sensitivity
of the values of z and a' to the choice of function
we considered functions of the form

(4)

where the parameter D can also take on different
values for the two branches of the data. The pro-
jections onto the (a, n') plane of the 95% confidence
contours of X' obtained with this function are
shown in Fig. 9 for the data regions (b) arid (c) de-
fined above, and a region (d) defined by 4& 10 '
&ltl &1.66&&10 '. In this analysis the constraint
T,' = T, was applied. Comparison with the results
in Fig. 6 using the original function shows that for
the region (b) the 95% confidence contours almost
completely overlap, indicating that these results
are not sensitive to the presence of additional
nonasymptotic terms. It can also be seen that the
additional undetermined parameter significantly
reduces the resolution of the exponents, even when
the fitting region is extended as in (d). On the
other hand, consistency of the exponent values is
obtained for all regions, which without the linear
term was obtained only for regions (a) and (b). At
present we cannot attach much significance to the
optimum values of the exponents obtained with the
function in (4), since it is possible that other forms
of the correction term are more important than
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FIG. 7. Comparison of the specific-heat values calcu-
lated for the three-dimensional Ising model (solid lines)
with the scaled data for CO2.

FIG. 8. Deviation of the specific-heat data from the
best-fit function having o.= 0.124 and &, = 30.7748 C. The
function is defined as follows: For T & T, , C„=96.19
xI T —T~I "—29.88 J/mole 'C; for T& T„Cv= 178.79
x

I T~ —TI "+0.44 J/mole C.
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0.14

0, 12-

0.10-

0.08-

0.06
0.08 0.10 0.12 0.16

FIG. 9. 95% confidence contours of constant X pro-
jected onto the (&,&') plane for the three fitting regions
(b), (c), and (d) described in the text. The function
fitted to the data was C„=A~ t~ "+8+Den t~, with the con-
straint T,'= T, .

the linear term. For example, thermodynamic
and RG arguments" have led to a correction
term to the scaling laws of the form D~t];, where
z - 0.5, but the magnitude of the coefficient is not

yet predicted.
By adding a linear function of 1f1 to the data we

were able to gauge the effect that a possible linear
term in the calorimeter heat capacity would have
on our estimates of the critical exponents. When
a term equal to our maximum estimate of +0.1 J/
mole 'C' for this uncertainty was added, the ex-
ponent values shifted by less than +0.004 when no
constraints were applied to T, or ~. With the
constraint T,' =T, the shift fell to less than ~0.002
and if we also required + =n', the effect became
insignificant.

The critical temperature of our sample was
30.775~ 0.003 'C, which is 0.202+ 0.005 C lower
than the most recent value obtained" from meni. s-
cus observations. It is well known" that the grav-
itational distortion of C„near T, gives a maximum
in C„somewhat below T„but in our case correc-
tions for the effect of gravity were applied before
T, was determined, and in any case this shift
would be less than 0.010 C. Another possibility
is that the density of the sample differs from p, .
If this were the explanation the density error
would have to be about 15%. Equation (3) shows
that we should then obtain T, —T,'=0.5+0.2 'C
when curve fitting is attempted. Clearly this is
strongly contradicted by the results in Fig. 5.
Similar results obtained without applying the cor-

rections for the effect of gravity do not alter this
conclusion. Furthermore, the value of T, should
still be very close to the true T„which is not ob-
served.

To check our temperature scale, which was de-
rived from a CSIRO calibrated thermometer as
described in Sec. II, we independently calibrated a
new pair of platinum resistance thermometers to
an accuracy of +0.020 C. Comparison of the two
temperature scales revealed no significant error.
As a further check on this point, and on the purity
of the gas in our main storage tank, a small quan-
tity of this CO, was placed in an insulated cell
which allowed visual observation of the meniscus.
The maximum temperature of meniscus disappear-
ance was found to be 31.06 'C on the new temper-
ature scale, which confirms that the temperature
scale is not low and that the CO, was pure origin-
ally.

A remaining explanation of the shift of T, is
impurities introduced when the calorimeter was
filled. If the sample contains a fixed concentra-
tion of impurities, the singularity in C„would have
the form of a cusp, with a renormalized exponent
defined" by ot =-o/(1 —u), where o, is the ex-
ponent in the absence of impurities. For small
concentrations x of impurities and far from T„
the apparent exponent z* obtained by curve fitting
to a limited range of data is expected to be close
to o. , while as T, is approached e~ crosses over"
to the value o.~. This behavior has been observed
by Fisher and Scesney" who numerically analyzed
a three-dimensional Ising model exhibiting impur-
ity effects. Their results lead us to expect that

for specific heat data in the range 10 '&1f1 &10 '.
This indicates that for impurity concentrations of
up to a few percent, the results for z and n' will
be negligibly perturbed.

The possibility that the apparent exponent value
changes sign as T, is approached can be checked
directly by varying the inner limit of 1t~ at which
data is rejected. We performed some analysis
with two different values of the inner cut-off point
for the data: ~t~ =4&&10 ' and [t~ =1.3&&10 '. For
the latter case the precision of the determination
of ~ was somewhat degraded due to the loss of
data, , but the 95%%up confidence limits for n and n'
were found to completely span those for the former
case.

In conclusion we wish to emphasize two points.
Firstly, the thermal relaxation measurements in
Fig. 2 together with the heating and cooling data in
Fig. 4 show that our results represent the equilibrium
specific heat for 1T —T, ~

&0.010 C. Close to T„
then, the limit set on our ability to determine the
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exponents is due to the implicit effect of gravity.
Some improvement can be gained by further re-
ducing the height of the sample, but the gain is
slow, and any significant reduction would require
careful consideration of both the explicit gravity
effect and finite size effects. Secondly, in the
region far from T, the precision of our determin-
ation of the exponents is restricted by the limited
range of applicability of the asymptotic function
fitted to the data. The existence of nonasymptotic
terms in the expansion of C„and T, introduces
error or bias into the value obtained for the ex-
ponent. In order to keep the bias less than the
statistical uncertainty in the result, the extent of
the fitting region must be reduced as the accuracy
of the data is improved. This reduction results in
an increase in the uncertainty of the determination
of the exponents which to a large extent cancels
the improvement due to the better data. The full
range of the data can be retained if a nonasymp-
totic term is added to the function fitted to the
data, but it is clear from a comparison of Figs. 6
and 9 that this also severely degrades the resolu-
tion, due to the additional parameters. It there-
fore appears that a solution of at least one of
these fundamental difficulties is needed to advance
our knowledge of the specific-heat singularity at
the critical point of fluids.

of atoms in a system with cylindrical geometry
the distribution of atoms as a function of pressure
is a constant, independent of pressure and tem-
perature, regardless of the complexity of their
distribution as a function of height. Thus if P(0)
is the pressure at the top of the container and n
is the number of atoms above a given atom, the
pressure at which the latter finds itself P(n) is an
amount mgn/A greater than P(0), where A. is the
cross-sectional area. . There are just (A/rnid)dP
atoms with pressure between P and P +dP, if
P(0) &P&P(N), and none outside this range. De-
fining the mean pressure P* as the pressure at
the level at which as many atoms are above as be-
low, we introduce m as the pressure difference
from this mean. P* is a singular function of tem-
perature at T = T, when p = p„and is the pressure
that would exist throughout the system in zero
gravity. In the case of cylindrical geometry the
atoms are distributed uniformly in w over the

ange -~h + ~ + wt„where

2v„=Nmg/A =Pgh .

The entropy in a, gravity field is very simply ex-
pressible in terms of the function of state m: We
have
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APPENDIX: IMPLICIT EFFECT OF GRAVITY ON Cv

Here we calculate the implicit effect of gravity
on C„ for the case in which the cross section of
the calorimeter is independent of the height h and
when the pressure P is an antisymmetric function
of volume V, about the critical isochore for fixed
T. The derivation is based on thermodynamics,
and the magnitude of the effect is found by expand-
ing in powers of the pressure difference from the
mean and evaluating coefficients from equation of
state data.

Consider a system of N particles of massa' in a
rigid container with p=N/V=p„and when the
temperature is close to T, . We wish to calculate
the temperature derivative of S~(T) —S,(T), where
S~(T) is the value of the entropy of the system in a
gravitational field g and S,(T) is its value in the
absence of gravity. Neglecting the explicit effect
of gravity, S~(T) is just the sum of the contribu-
tions from the volume elements, each of which
contributes as it would in zero gravity, but at the
local density. It is useful to take advantage of the
following simple property: for a fixed number N

1 s'~+ "I,
dP S(T, P).

+If, I' +- m~

(Al)

(A2)

By using the relation

BT ~ BT ~ dT BP

and expanding (sV/s T), , the integration in (A2)
can be performed and we obtain

m~ dV &I', B'V
S~(T) -So(T) = —— ——— +

2 dT „„6BPBT

(A3)

the first term vanishing above T, .

The temperature derivative of this entropy gives
the heat capacity at constant volume and height.
The specific heat is not, as has sometimes been
assumed, "a, certain average of C„, the specific
heat at constant density, We see that it arises
from elements following a thermodynamic path
not at constant density, but at constant m. By ex-
panding S(T,v) away from T, and performing sim-
ple substitutions (Al) can be rewritten in the form



788 J. A. I. IPA, C. KDWAB, DS, AND M. J. BUCKINGHAM

Substituting the asymptotic forms of the coexis-
tence curve and the isothermal compressibility,
it is easy to show from (A3) that for T & T,

C (T) -C„,(T)=A'~.lfl' '+B'
llew l

' '+ ~ &-0,
where A' and B' are constants, while for T& T,

C~(T) —C„o(T) =B"v~qltl ~ '+ ~ t- 0

To calculate the magnitude of the correction terms
these equations were written in the forms

C ( ) —C (T)=~~ 18@ Pl. P
4T pL +pg

compressibility at a temperature below T, was
about one-tenth the value at an equal temperature
interval above T, . The precise value of this ratio
is not important, as the effect of the total gravity
correction on the value of z is not large.

To apply the corrections for the effect of gravity
to our data we represented them by the smooth
function

C~ —C„,=9.4x10 '(T —T, ) '" J/mole C,

T&T, +12 m C

=-2.04x10-'(T, —T) '"
+9.4x10 '(T, —T) '" J/mole 'C,

T&T, —12 m C.

C„(T) C„,(T)—

r(r +1)(Pg @)'

24T, oP

where p~ and p& are the liquid and gas densities.
We evaluated these expressions using the iso-

thermal compressibility and coexistence curve
data of Michels et al. and Schmidt, "and
Lorentzen. " We also made use of the summary
of the compressibility data complied by Belier."
We found little data for the isothermal compres-
sibility below T, . From the available data it
seemed reasonable to suppose that the isothermal

We estimate that the uncertainty in the corrections
is about +2(P/q below T, and +50'fo above T„ for 4
x10 '&ltl &4x10 '.

It should be noted that the above analysis can be
shown to be approximately valid even in the ab-
sence of P-V antisymmetry and also when pc p, .
Moreover, if as appears likely" the isotherms
iL = p, (p), where p. is the chemical potential, are
more nearly antisymmetric about p, than the cor-
responding P =P(V) isotherms, then the first-
order gravity corrections can be shown to be the
same as those derived above, while the second-
order terms are not significantly different.
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