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Perturbation approach to the classical one-component plasma*
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The two-particle correlation function for the classical one-component plasma in the high-density fluid phase is
calculated from the correlation function of a short-range reference potential by a perturbation method based
on the hypernetted chain equation {HNC). It is shown that the long-wavelength correlations are correctly
described by this method. A technique for extending g{r) to infinity is shown to be valid and useful. The
results are in excellent agreement with those obtained from the "Ewald image" Monte Carlo method.

INTRODUCTION

Many thermodynamic systems in nature have
long-range Coulomb forces acting between the
constituent particles. The two types of computer
simulation, moiecuiar dynamics (MD) and Monte
Carlo (MC), have filled an important gap between
theory and experiment in the study of such sys-
tems. But both of these methods are limited, at
the present time, to systems of at most several
thousand particles; whereas the actual potential
may extend over millions of particles.

The standard method for simulating such a sys-
tem is to replace the long-range potential with a
finite-range "Ewald image potential. "' The simu-
lation must be performed with periodic boundary
conditions; this is the usual way to make a finite
system ~ave like an infinite homogeneous med-
ium. The Ewald image potential is the interaction
between one particle and alL of the images of anoth-
er particle in the periodically extended space. This
effective interaction between two particles is no
longer spherically symmetric; for computational
purposes it can be approximated by a spherically
symmetric part plus a few cubic harmonics. This
method has been used to find the equilibrium prop-
erties of the classical one-component plasma at
densities where other theoretical techniques do not
work. '2

There are several reasons for developing and
testing an alternative to the Ewald image method.
First, the Ewald method is somewhat awkward
and time consuming computationally because the
evaluation of the potential will take many times
longer than a central potential. Second, the image
potential is not radially symmetric, as is the
actual potential, and this may influence the equilib-
rium state. In particular, the equilibrium correla-
tion function g(r) is not radially symmetric even
when the potential is, because the boundary is a
cube. The addition of the unsymmetric long-range
Ewald potential may enhance the cubic symmetry
in g(r), for example, by favoring lattice-iike con-

figurations. Recently Valleau and Whittington' have
pointed out that the Ewald potential allows inter-
actions which are not present in an infinite homo-
geneous Coulomb system. If there is a fluctuation
in the simulation cube, for example, a dipole mo-
ment is formed, the fluctuation will be replicated
in the image cubes. These fluctuations are allowed
to interact with the Ewald potential. In an infinite
system the polarization of one section of the sys-
tem will produce a spatially varying polarization in
the surrounding region. Also the periodic boundary
conditions allow only density fluctuations with a
discrete set of wave vectors; for a plasma the
long-range correlations involving small wave vec-
tors are very important. Third, the one-compo-
nent plasma is a good system to test some of the
perturbation techniques that calculate the equilib-
rium properties of a long-range system in terms
of a short-range one. The only complication in the
plasma is the presence of the long-range force.
On the other hand, the long-range correlations in
this system are known exactly.

Briefly, the method we describe and test here
consists in calculating the two-particle. correla-
tion function for a suitable short-range potential,
extending it to infinity, and applying a perturbation
method based on the HNC equation to find the
equilibrium properties of the one-component plas-
ma. The excellent agreement we find provides an
important check on the validity of the standard
Ewald method. As far as we know this is the first
independent check of this method.

The one-component plasma

The thermodynamic system studied in this paper
is the classical one-component plasma (OCP) in
the fluid phase at densities near the classical liq-
uid-solid transition. There is a simple Coulomb
potential between particles, and the system is im-
mersed in a uniform background of opposite
charged particles to make the energy of the system
extensive. In this paper the conventional dimen-
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sionless units' are used throughout (the density
p =3/4v, the inverse temperature is P =1/kT =1).
In these units

V(r) = I/r,
where I" is the interaction parameter. A con-
venient reference and lower bound to the total po-
tential energy is the Madelung energy of a bcc
lattice, '

pE„„,, =-1.79186I'. (2)

For very low densities («1) the system is rep-
resented by the Debye-Huckel model and it has
been shown that this model predicts exactly the
long-range correlations for any I'. Let S(k) be the
usual structure factor. Then Stillinger and Lovett4
(SL) have shown that for small values of k the
structure factor will go to the Debye-Huckel value,

S(k) =k'/3I'. (3)

Fourier inversion of this equation gives two im-
portant moment conditions on the two-particle cor-
relation function g(r), '

p d'& g& —1 =-1,

p d3xr2 g r —1 =-2 I'.

Perturbation methods

A number of different perturbation methods have
been proposed in the literature to calculate the
properties of a system with long-range forces in
terms of one with short-range forces. ' ' We have
chosen to use a method based on the two-particle
correlation function since this contains the im-
portant properties of the equilibrium bulk system
and is readily comparable to other work. Let
v, (r) be the reference potential and g, (r) its exact
correlation function. Suppose a long-range Cou-
lomb tail &v(r) is added to the reference potential,
so that the sum of the reference potential and the
Coulomb tail is equal to the original full Coulomb
potential, v(r) =v, (r) b,v+(r). If a cluster expansion

For larger values of I', direct simulation of the
system is the only accurate way of computing prop-
erties of the OCP. Brush, Sahlin, and Teller' s'
original Monte Carlo calculations with the Ewald
image potential have recently been. refined and
extended to higher densities by Hansen. ' Pollack
and Hansen' have estimated the liquid-solid phase
transition to be at the density I' =155 +10, by doing
careful computations in the liquid and solid phases
of the energy, and using the usual double-tangent
construction.

in the range of the potentials is made, the change
to lowest order in the correlation function is'

g(r) = E~(r) +&(r),

where

(6)

( )
1,k, ), , n.v (k)S', (k)

p(2)))' I +nv(k)S, (k) '

and S,(k) is the reference-system structure func-
tion,

s (h) =(+p Jd're'"'[g (r) —1], {6)

and av(k) is the Fourier transform of the change of
potential,

b.v(k) =p d're'"'[v(r) —v, (r)].

This will give the same result as before for large
r, and g(r) will be positive for all r, but the SL
conditions will not be satisfied.

A reformulation of the perturbation procedure
by Lado' allows us to have both of these desirable
properties. The following identity may be obtained
by analyzing the graphs obtained in a cluster ex-
pansion of g(r):

g(r) = exp[B(r) —v (r) +g(r) —c(r) —1], (12)

where c(r) is the direct correlation function and
B(r) is the bridge function. (Consult Ref. 11 for a
discussion of the definitions of these functions and
the relationships between them. ) The normal HNC
(hypernetted chain) equation is obtained from Eq.
(12) by setting B(r)=0. In Lado's method the bridge
function is evaluated in the reference system; it is
assumed that a long-range perturbation will not
change it in an important way; then Eq. (12) is used
to calculate the correlation function in the per-

From Eqs. (V)-(9) the perturbed structure function
is simply

S (k) =1/[av (k) +1/S, (k)] .
If the reference system is sufficiently short

range (see Appendix B for the conditions) then the
stl ucture function So will be posltlve fox' all ~.
But since b, V(r) consists of a long-range Coulomb
potential tail then for small k, nv (k) = 31'/k2. Then
from Eq. (10), it is clear that the perturbed S(k)
will have the Stillinger-Lovett form [Eq. (3)] for
sui'ficiently small k. However g(r) in Eq. (6) is not
necessarily positive for small &; this formula is
really only good for large & and this serious defect
must be remedied.

An alternative calculation yields4 for the per-
turbed correlation function
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turbed system. We shall call this method the
reference-HNC method (RHNC}. This method is
the same as solving the pure HNC equation for a
potential v(r) —Bo(r), where B,(x) is the bridge
function in the reference system. The bridge func-
tion is a way of correcting for the inaccuracy of the
pure-HNC equation. The numerical method we used
to carry out this perturbation scheme is that sug-
gested by Lado, ' and is described in Appendix A.

It is not known for which potentials the pure-HNC
equation will have solutions; numerical solutions
have been found for many physical potentials. "
If a physical solution exists to Eq. (12), both g(&)
and S(&) will be non-negative. The solution of this
equation" will satisfy the SL conditions and thus
give the correct behavior for small &—see Appen-
dix B. The following sections discuss our choice
of the reference system potential, the evaluation
by Monte Carlo of the reference-system correla-
tion functions go(&) and S,(&), and the extension of

ga(&} to infinity.

Short-range system

The perturbation method requires that we eval-
uate the two-particle correlation function in a
short-range system. For the method to be accur-
ate the short-range potential must be similar to the
Coulomb potential. The potentials should clearly
have the same behavior for small & (except for a
constant shift in energy), but since we want to use
the "cutoff convention" ' in the simulation, the
potential must vanish for interparticle separations
greater than 2 the simulation box edge. Another
criterion that has been suggested' is that the
Fourier transform of the change of potential b,v(k)
should go quickly to zero for large &. From the
definition of H(x) [Eq. (7)], if n, V(k)S,(k) & -1,
H(k) will have a, singularity, and it is unlikely any
perturbative series would converge. A sufficient
condition to ensure that H(k) remains finite is
b V(&) ~ 0. This criterion precludes merely trun-
cating the Coulomb potential at the box edge for the
range of I' being considered.

The reference potential that we have used in the
Coulomb potential times a complementary error
function is denoted

vo(r) =I'erfc(r/a)/r,

where o' is an adjustable range parameter. This
potential is like a Coulomb potential for r/cr «1,
but for large & it goes to zero very quickly,

In addition, vo possesses a positive, quickly con-
vergent Fourier transform,

v (k) = (4@I'/JP)p(1 —e '"'"~') (15)

Finally, it is the same as the lowest-order (with
the usual convergence function) spherically sym-
metric part' of the Ewald image potential with
u =Lcm. We expect the short-range correlations
of the two potentials to be the same, since they
are so similar for small &.

Monte Carlo simulation

With this choice of reference potential we have
evaluated go(r) and S,(k) using the standard, well
tested, Metropolis algorithm'4 for simulating a
classical fluid, where

N(N 1)fd—r, fdr» exp[-Q«, . v, (r,.~)]
p'f dr ~ J dr„ex p[-2,(,v, (r. ,,)]

(16)

and

8 (k)= —fe'"'&, k= n
N )-, ' L (17)

and N is the number of particles and p =N/L'.
Brush et al.' describe the Monte Carlo algorithm
methods for testing the convergence of the Markov
chain, and a method of recording go(&}. Usually
the number of particles in the box was 128, with
occasional calculations with more particles; each
particle was moved about 10' times, and periodic
boundary conditions were used. The results for the
reference system are shown in Table I. The quan-
tities E„P„and So are the classical potential
energy, the excess pressure (i.e., not including
the thermal pressure) and the value of S,(&) at
& =0, respectively.

Figure 3 shows go(&) for three different values
of o at I' =75. The results have been smoothed and
extended by the technique described in the following
section. In the next section we show, with a g'
test, that the smoothed g, (&) is statistically consis-
tent with the original data. Figure 1 shows go(r)
for I' =120 and a =1.5 with 128 and 256 particles.
The curves are again due to the extension tech-
nique. While the differences for the two different
particle numbers are not large, they are signifi-
cant and are probably the major source of error in
this calculation. This difference is an example of
a bias in g, (r) because the Monte Carlo simulation
is of a finite system.

v (y)- (I"g/~x)s-(rla)2/y2 y')) g (14) EXTENDING THE TWO-PARTICLE
CORRELATION FUNCTIONTo satisfy the cutoff convention 0 must be chosen

so that v, (L/2) «1. This potential converges much
more quickly than a Yukawa potential for large &.

For input into our perturbation equations we need
the two-particle correlation function and the struc-
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TABLE I. Results for the reference potential and perturbation-method RHNC with interaction
parameters I' and o' [see Eq. (13)]; N is the number of particles in the Monte Carlo simulation,
Nm is the number of moves per particle in the Markov chain; Eo, Pp, and So are, respectively,
the classical potential energy per particle, the excess pressure per particle, and the structure
factor at k =0 in the reference system; g~ is the maximum value of g(r) for the OCP with the
RHNC equation; ~ is the energy per particle relative to the Madelung energy as calculated by
the RHNC equation. The entries marked ~(H) or ~(BST) are from Refs. 1 and 2.

&m
(x10 3) Po Sp

50

75

100

120

140

1.5
M(BST)
0.8
1.0
1.5
~(BST)
1.2
~(H)
1.1
1.5
1.5

(H)
1.4

(H)

128

128
128
128

128
128
256

128

0.5

1

0.3

17.853

1.34
4.21

26.17

13.27

10.11
40.86
41.01

36.10

3.55
9.57

41.85

0.059
0.040
0.010

26.21 0.016

21.98
66.29

0.018
0.004
0.006

62.36 0.007

28.06 0.015 1.67
1.655
1.70
1.74
1.87
1.920
2.00
2.06
2.07
2.26
2.17
2.19

2.32

1.73
1.70 + 0.02
2.28
2.17
1.97
1.94+ 0.03
2.19
2.12+ 0.04
2.40
2.18
2.25
2.23 + 0.07
2.36
2.34 + 0.1

The errors quoted in this column we obtained from comments made in Hansen's papers
(Ref. 2).

ture function in the reference system. The equa-
tions are quite sensitive to these functions, and if
one is to have reliable results, g, (&) and S,(k)
must both be made smooth, continuous, non-nega-
tive functions, and mutually consistent. The Monte
Carlo simulation only finds go(&) for & less than
half the box length but the correlations will extend
much further than that. In addition, there is both

2.50-

a random error in the estimates of go and S (be-
cause the Markov chain has a finite length) and a
systematic bias (because the Monte Carlo box is
finite). Before we present the method we have
used for doing this extension and smoothing, we
will discuss three other methods.

The simplest method" is to assume some form
for g, (r) outside the box. Let gs(&, ) and Ss(k, ) be
the actual Monte Carlo estimates of go(&) and S,(&).
Now assume a trial value for gp,

(i 8)

l.50-

G(R)

I.OO-

0,50-

0
0 I.OO 2.00 3.00 4.00 5.00

FIG 1. gp(w) versus r (in reduced units) for the error-
function potential at I'=120 and 0=1.5. The squares
are the MC data for 256 particles, the triangles for 128
particles. Through each set of data is fitted a curve of
the form of Eq. (19) with J=3. The smaller system
seems to have more structure.

Then Fourier transform this assumed form [Eq.
(8)] to get So. Typically this function will become
negative for small & and not agree with S~. Cor-
rect the Sp in the small-& region by some method
to agree with S~ and again transform to get gp.
Correct the g, in the interior region to get agree-
ment with g~ and continue iterating until consis-
tency is reached. The g, resulting froxn this pro-
cedure will be smooth and consistent with the
Monte Carlo estimates; however, this procedure
is clearly not unique (M independent values of Ss
can determine at most the value of g, at M differ-
ent values of x in the exterior region) and, in par-
ticular, will not necessarily give the correct
asymptotic form to go(&). For the OCP one could
require that the extended g(&) satisfy the two SL
moment conditions. However, we are only inter-
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ested in extending the radial distribution function
for the short-range system and the values of its
moments are not known.

A method that has worked well for hard-core
liquids" is to assume that for & greater than some
extension point &~ the Percus-Yevick equation is
satisfied, and for r& xz, Z, (&) equals the Monte
Carlo estimate gz(&). This is enough to determine
a unique go in the exterior region. " However,
when this procedure was tried with the soft-core
fluid, a sizable discontinuity appeared at the ex-
tension point &~ in go, regardless of where the ex-
tension point was. The same discontinuity appears
when the HNC equation is used instead of the PY
equation. The problem is that neither of these
equations is very good even for large &, for this
fluid. The bridge function (Fig. 6) is nonzero for
& inside the box and it cannot be neglected.

Usually the Monte Carlo system is chosen to be
a cube with periodic boundary conditions. %e have
experimented with boxes that are much longer in
one direction, with the intent of increasing the
range of gz(&}. However, it appears that the g, (r)
for this narrow box has much more directional
dependence than the g, (&) for a cube. In particular,
the average number of long-wavelength density
fluctuations [i.e., S,(&)] in the short dimensions
was much less than in a cube, while the number in

the long direction was more for the same wave-
vector. The correlation function go(&), for large
&, was of course primarily averaged across the
long direction and contained this bias. Also, for
a finite system, g, does not tend toward unity for
large separations, but towa. rd 1-1/N, and this
effect could be seen for a long narrow box. A long
thin box is not as good a representation of bulk

matter as is a cubic box with the same number of
particles. In summary, we have found that each of
the extension methods we have just described leads
to a go(&) different from that of infinite bulk matter
in some significant way.

The way we have chosen to extend the two-parti-
cle correlation function is to assume that for &

greater than the position of the first peak, g~(&)
will be equal to a sum of damped oseillations and
find those parameter s which best fit the Monte
Carlo data. For & in the interval t~ & r & L, /2,
where &z is the value of & at the maximum of g, (&},

g, (&) is assumed to be of the form

has been shown to be consistent with the correla-
tion function of a classical Lennard-Jones liquid. ~

It has also been show'n that the solution of both the
HNC and PY equations for large & behave this
way. " This type of g(&) results from the structure
function having simple poles at & =+is~ and being
analytic as a function of & at the origin. '

To check the assumption about the form of g(&)
we have performed a statistical X' test. For a
given value of &~ and ~, X is minimized with re-
spect to the parameters A.

&
and z, , where

X
[gz(&;) —g.(&;)]'

V~.

[S,(k, ) —S.(&,)] '
V

(20)

and V&,. and V~, are the variances of the Monte Carlo
estimate of g(&;) and S(&,). [Only the k values in-
side the first peak of S(k) are included in the sum
as the others are not statistically significant. ]
If the fit is valid X' should be equal to the number
of degrees of freedom (number of independent &,
and &; points minus 4&). There is, of course,
some correlation between the quantities in the sum.
The variance of the estimate of g(&;) has been
calculated for this algorithm:

V, =Cg (&,)/N pdV, . (21)

N is the number of moves used to estimate g(&;),
dV; is the volume of the interval, and C is a con-
stant (independent of &) and dependent on details
of the algorithm (such as the acceptance ratio)
but usually between 2 and 3.

The results of the p' fit verify our assumption
about the behavior of g(&). The y.

' test ls quite
severe since where there were often as many as
100 degrees of freedom, the accuracy for many of
the points was as small as 0.5%%uo and go(r) was fol-
lowed through 1& oseillations. The inclusion of
the terms in S(k) in Eq. (20) requires that the
asymptotic behavior of the go(&} be correct. The
results of our fit indicate that the series in Eq.
(19}is quickly convergent for values of & greater
than one interparticle spacing. For smaller dis-
tances this form is clearly inappropriate. We find
that for I"&100 two terms are sufficient for a good
fit, otherwise three terms are enough. The wave
vector of the main oscillation is chiefly determined
by the density. %'e find that roughly

g, (r) =1 +Q—Re [A,.e'~"j,
0 y

(19) I„(z,) =4.25 (4'/3)'i' (22)

where A,. and z,. are complex parameters and
J=1, 2, 3. This form was suggested by Kirkwood"
on the basis of a simple argument with a hard-
sphere fluid. An asymptotic form like Eq. (19)

for all values of o and I'. The other wave numbers
are roughly multiples of this value.

Shown in Fig. 1 are the Monte Carlo results (gz)
for 128- and 256-particle systems, in triangles
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I covered in this paper —at low densities any com-
putational method should do well; in the solid phase
the Ewald technique should work very well. How-
ever, in the one-component plasma, the polariza-
tion of the simulation cube is zero if the center of
mass is fixed (only one type of charges is free to
move). For this reason the OCP may not be a good
system to test the validity of the Ewald method.
In systems with two components free to move,
Valleau and Whittington's argument' concerning
polar ization correlations may be relevant. Our
treatment (RHNC) is not subject to the same ob-
jections as is the Ewald method. The simulation
takes place among short-range particles and put-
ting in the Coulomb potential is done for an infini e
system in an electrostatically valid manner. Ne
believe that this result establishes the validity of
both the RHN| method and the Ew'aid image method
applied to the OCP.

The results of the simpler perturbation formula
given in Eq. (11) are shown in Table II, for I' = 75
and three values of o'. Figure 5 shows the corre-
sponding g(&)'s. The energies and the first and
second moments of g(&) are in all cases much less
accurate than those given by RHNC. The results
do seem to be converging to the correct values but
it is clear that the perturbing potential must be
qui euite small for this method to work.

The bridge function BD(&, 1,v) for I'= 75 and
several values of 0 is shown in Fig. 6. Since
B,(&) is negative, the effective HNC potential
&0 &0 ls more repuls ive than the refe rene e pote n-
tial v, . The bridge function is an order of magni-
tude smaller than the reference potential, but ap-
pears to have roughly the same range.e It must
be noted that the calculation of this function is
quite sensitive to fluctuations in, and the extension
of, the Monte Carlo data.

A recent paper" has solved the HNC equation
assuming the following form for the QCP bridge
function:

2.00—

I.50-

G(R)

1.00—

/

/i
/I

0
0

Ii
l,'

/(

I.oo 2.00 3.00 4.00 5.00

FIG. 5. g{r) versus r for the OCP at I'=75. The
triangles are again from Ref. 1 and the Ewald image
method. The three curves are the result of using the
lowest-order perturbation equation (8) (applied to the
gp s shown in Fig. 3). The reference system had I'
=75 and g =0.8, 1.0, 1.5. The higher values of g
correspond to higher magnitudes at the maximum of
g(r). Comparison of this with Fig. 4 shows that the
approximate equation doesn't do nearly so well for the
lower two values of g.

B~(r) = —0.6 erf(0.0241')I'/&. (23)

-I.oo-

-2.00-

Qn Fig. 4 the resulting g(r) is marked with x's. It
seems to have the correct behavior. But because
B ~&r~& oes as ~ ' at large & the resulting structure
function will have the wrong behavior for small

S„(k)=k'/31'[1 +0.6erf(0.0241')]. (24)

In order for the Sl conditions to be satisfied the

TABLE II. Results for the OCP at l =75 using per-
turbation equation (11). g is the potential cutoff param-
eter in Eq. (13); ~ is the potential energy relative to
the Madelung energy; Sp is the value of the structure
factor at k =0; Sp is the coefficient proportional to K
[see Eq. (3)]. All quantities are dimensionless. The
entry ~(H) is from Ref. 2.

B(R)

-300-

!
l

/

I

l

t

I

Sp

S(2)
0

(xfP )
-6.00

0 1.00 2.00 3.00 4.00 5.00

0.8
1.0
1.5
~(H)

11.576
2.659
2.452
1.94 +0.03

+ 0.092
-0.102
+ 0.011

0.0

-83.83
—11.52
-1.83

4,44

FIG. 6. Bridge function B(r, I', g) versus r for
I'=75 and three values of g (0.8, 1.0, 1.5). The higher
values of g. correspond to larger magnitudes of B. The
gp r aree shown in Fig. 3. This function is assumed to
be constant with respect to g in the RHNC method.
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correct B(r) for the OCP must go to zero at large
& faster than & '. See Appendix B for the proof.
The agreement between the g(r)'s suggests strongly
that g(r) is not too sensitive to the large-& behavior
of the effective HNC potential.

A surprising feature of the RHNC method is that
Bo(r, I', v) depends somewhat sensitively on o', yet
the perturbed g(r), and also the reference g, (r),
converges to the OCP g(r). The reason for this
convergence is that the short-range potential gives
us just the right short-range correlations in g(r)
and all the perturbation equation needs to do is
handle the long-range correlations due to the
Coulomb potential —which it does exactly. If one
regards the SL conditions as specifying the zero
and second moments [see Eqs. (4) and (5)] of the
OCP g(r), the potential energy is proportional to
the -1 moment. So with a g(r) at all reasonable,
it is likely the energy will be fairly accurate. This
argument helps to explain why the energies pre-
dicted by the pure-HNC equation are fairly ac-
curate'o for large 1.""

APPENDIX A: NUMERICAL METHOD OF SOLVING THE
PERTURBATION EQUATIONS

To use the RHNC perturbation method a pair of
coupled nonlinear equations for the two-particle
correlation function g(r) and the direct correlation
function c(r) must be solved. The mathematical
problem is the same as the problem of solving the
pure-HNC equation with an effective potential of
v(r) —B,(r). A function without a subscript de-
scribes the perturbed system (g) and a zero sub-
script indicates the reference system (g,).

In the reference or short-range system the two-
particle correlation function g, (r), its Fourier
transform, the structure function S,(k) [Eq. (8)],
and the direct correlation function c,(k),

c,(k) =1 —1/S, (k), (A1)

are known. The bridge function Bo(r) is defined in
the reference system by Eq. (12) with v(r) =v, (r).
We assume B(r) is the same for the Coulomb sys-
tem.

Following a procedure very similar to that sug-
gested by Lado' we make the following change of
variables. Eliminate the functions g, S, &, 0, and
c and write the perturbation equations in terms of
the following functions:

H(r) = ln[g(r)/g, (r)],
b, c(r) = c(r) —c,(r),
av(r) = v(r) —v, (r).

Subtract the logarithm of the HNC equation (12)
in the reference system from that in the perturbed

system. The bridge function drops out and using
definitions (A2) we get the following equation:

Ac(r) =g, (r)(e"(") —1)—H(r) —bv (r) . (AS)

J d'k e'"' [S(k) —S,(k)] (A4)

Apply the relation (AS) between S(k) and c(k) and
rewrite this equation in terms of S, and 4c:

( )( H( ) 1) d3k ik' o ( )
(2v)'p 1 —Spc(k)

(A5)

The advantage of this form of the equations is
that H(r) will be constant for small r, not change
over many orders of magnitude, while Bo(r) will
not even be defined for small r because there go(r)
(from Monte Carlo) is identically zero. In doing
the Fourier transform to get 4c(k), the term in-
volving hv(r) should be done analytically, other-
wise with the Coulomb potential the result will
depend on the upper limit of the integral.

We solve the perturbation equation iteratively.
Initially assume H(r) is zero and with Eq. (AS)
find b, c(r). Define

( )
l,k, ], , S', (k)b.c(k)

(2m)'p 1-S (k)ac(k)

—g.(r)(e"'"' —1) . (A6)

Use Eq. (A6) to find E(r). If E(r) were zero then
both equations (AS) and (A5) would be satisfied.
Note that if we let

H„„(r)=H„(r) iF„(r), (A7)

the result for g(r) after one iteration will be the
same as Eq. (11). If one uses Eq. (A7) and iter-
ates, after a few interactions the process is un-
stable; the successive H(r)'s become increasingly
large. The usual method of preventing this in-
stability by mixing the old and new H's also works
here:

H„,,(r) = H„(r) + c(E„(r). (AS)

For stability o. must be quite small at these den-
sities (n & 0.1).

The criteria that we chose for convergence was
that ~E„(r)~&10 ' and the zeroth and second mo-
ments [Eqs. (4) and (5)] should be accurate to a
relative error of 10 '. The above mixing method
took several hundred to one thousand iterations to
reach this accuracy.

The other coupled equation can be found by noting
that the difference in the two-particle correlation
function is simply

&g(r) =g.(e"'"' —1)
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One ean speed up the convergence by an order
of magnitude by assuming the operator F(H(r))
is linear in the region near the solution II . Then
if our current function II„ is close to the solution
H„and we have iterated long enough so that only
those eigenvectors with large eigenvalues remain,
one ean write

F(H„) =&(H„-H ). (A9)

Suppose at iteration n we have saved the results
of two previous iterations,

H„, =H„, + c(F(H„,),
H„=H„, + c(F(H„,) .

(Alo)

y(r) =F(H„,)/F(H„, ). (A11)

If the function does indeed turn out to be constant
we do not use equation (A8) to find the next H but
we try to subtract out the remaining eigenvector,

H„=H„,+F(H„,}/~, (A13)

Then if Eq. (A9) is valid the following ratio should
be constant:

IimS(&) =a&"
k~p

(B2)

we must require that ~ & 3.
In this appendix we will show that a solution to

the perturbation. -method RHNC will have the cor-
rect behavior for small & and for the OCP it will
obey the SL conditions [Eqs. (3)-(5)]. Let us make
the following assumptions about the reference-
system potential v, (r) and the Coulomb potential
v, (r):

(i) vo is short range, infinitely repulsive at the
origin, and a lower bound exists for the potential
energy,

lim r 'vo(r) =0,
~ oo

limvo(r) =+™,
r~p

(B4)

where and go to unity for large & and &, respective-
ly. Clearly Eq. (B1) also implies that g(r) is non-
negative everywhere. If c(k) is to be finite every-
where (except at k =0) then from Eq. (Al), S(k)
must be positive everywhere except at 0 =0. If
c(r) is to be finite and if

where the eigenvalue ~ is estimated from

~ = {[r(r)—Il/~&. (A13) Q vo(r, &)
& BN (B6)

This scheme makes the convergence very quick in
the latter stages.

Fast Fourier transforms were used to speed up
iterations of the equations. It was found that the
use of any integration formula other than the trape-
zoidal rule amplified the noise in go(r) and S (k)
and the solutions were less accurate. The grid
in both & and & must be quite small for accurate
solutions. In. dimensionless units one must have
dx & 0.01 for the zeroth moment of g(r) to be ac-
curate and dk& 0.06 for the second moment of g(r)
and for the energy to be accurate.

for any set of coordinates fr,.f, i =1, . . . , N.
(ii) v, is Coulombic,

limr'[v, (r) —1/r] =0
i OO

for some I".
(iii) v, and v, have a similar core,

lim r '[v, (r) —vo(r)] =0.
r~p

(B6)

(av)

First let us show that under assumptions (B3)-
(B5) the reference-system bridge function is finite
everywhere. It can be shown" that g, (r) must go
like e 'p'r' for sma, ll &:

APPENDIX 8: PROPERTIES OF SOLUTIONS OF
THE RHNC METHOD 0 & lim [lng, (r}+v, (r)]&+~ . (B8)

The perturbation method used in this paper
(RHNC) is based on the generalized HNC equation
[Eq. (»}]:

g(r) = exp[g(r) —c (r) —1 - v (r) —B(r)], (B1)

where c(r} is the direct correlation function defined
in terms of g(r) [Eq. (A1)] and V —B acts as a re-
scaled HNC potential. Although numerical solu-
tions to the HNC equation have been found for a
variety of potentials, the conditions for a unique
physical solution are not known. We will assume
that for any rescaled HNC potential, one can always
find a solution to Eq. (B1) satisfying the following
physical conditions: both g(r) and the correspond-
ing S(k) should both be finite and continuous every-

Also for a short-range repulsive potential iso-
thermal compressibility is positive':

X l)m0 (0)=l+0 fd'r[g (r) —l] 0.
k~p

But by definition

(lr)'0 0,(0)}'

(ao)

(alo)

B(r) =lngo+ vo+Co(r) +1 —g, (r) . {B11)

Then Co(r) must be finite everywhere since the in-
tegrand is finite everywhere and S,(k) goes to unity
at large &.

Rewrite Eq. (B1) as
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All of the terms on the right-hand side are finite
everywhere; hence B(r) is.

Now we wish to show that for small & the per-
turbed g(r) will behave like e "~'"'. But this is
clear from the equivalent of Eq. (811) in the Cou-
lomb system,

lng+ v, =B(r)—c(r) —1+g(r) . (812)

Since we have just shown that B(r) is finite for all
r, and we can show the same to be true for c(r),
it follows from this equation that g(r) has the cor-
rect behavior.

Now let us show that the small-k behavior of S(k)
is that given by the Stillinger-Lovett conditions.
Eliminate &c(r) from the perturbation equations
(AS) and (A5) for S(k). After some manipulation
we get the relation

S(k)' —S(k)[&v(k) yS, (k)+1/So(k)+H(k)]+1 =0,

(812)

where H(r) and Av(r) are defined in Eq. (A2). Com-

pare this relation to the simpler equation (10). For
k =0, H(k) is finite since for large r, H(r) goes to
zero like g(r) —g, (r) and for small r, H(r) behaves
like &v (r) +const, and from condition (87), v, and

v(r) have the same core. The other term, S,(k)

+1/S, (r), also remains finite at small k [Eq. (89)].

Hence the low-k behavior of S(k) is determined by
&v (k), and by condition (86) its small-k behavior is

b,v (k) =3I'/k'. (814)

limv (r, g) = v, (r). (815)

Then one would expect the perturbation method
(RHNC) tobe arbitrarily good for large o. With
this assumption the above result is a rederivation
of the Stillinger-Lovett result.

Finally, it is clear that the bridge function
&(r, &) for the OCP must go to zero faster than
1/r at large r Oth.erwise the 1/r coefficient of
the rescaled HNC potential v(r) —B(r) would not be
equal to & and the second moment of g(r) would not
be given by Eq. (5).

then for small k, S (k) will go to the Debye-Huckel
value [Eq. (2)].

A solution of the pure-HNC equation will also
obey the SL conditions since the pure-HNC equation
is recovered by choosing the reference system to
be an ideal gas. This low-& behavior for a solution
of the HNC equation in the case of the one-compo-
nent plasma has been noted before in the litera-
ture. "'" Suppose one constructs a family of short-
range potentials v, (r, o) which converge to the
Coulomb potential,
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