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Existing ultrasonic and light-scattering data on sound propagation are analyzed, both in terms of a relaxing
viscosity as calculated by Kawasaki, and in terms of relaxing heat capacities as calculated by Mistura. The
two theories are examined and found to be quite different, but neither theory is found to be capable of
accounting for the data, although disagreement with Kawasaki's theory is much more pronounced. Although
not in agreement with theory, a frequency-dependent viscosity very similar to that required to account for the
observed ultrasonic dispersion and attenuation is found to yield anomalous Brillouin spectra in excellent
agreement with those observed near the critical point.

I. INTRODUCTION

Considerable theoretical and experimental ef-
fort has been devoted to elucidating the dynamic
behavior of fluids in the vicinity of their gas-
liquid critical points. The decay of spontaneous
entropy fluctuations has been studied extensively
by means of light scattering, and in general both
the mode-mode coupling theory of Kawasaki' and
the decoupled mode theory of Ferrell' have been
found to be in excellent accord with the data after
corrections are made for background effects. '
Measurement of the frequency and temperature
dependence of the speed and attenuation of sound
has also proved an excellent probe, and both ul-
trasonic measurements, ' ' and Brillouin scatter-
ing measurements, ""have been used in studying
xenon.

Mode-mode coupling calculations have been used
by Kawasaki' to compute the real and imaginary
parts of a frequency-dependent viscosity b, (e)
from which both the dispersion and attenuation
may be predicted. Mistura" has obtained similar
results by utilizing a complex frequency-dependent
heat capacity. The physical mechanism responsi-
ble for the very large dispersion and attenuation
observed is apparently much like a structural re-
laxation. The equilibrium long-range correlation
is a function of density and temperature but re-
quires time for its establishment, thus resulting
in higher sound speeds at higher frequencies.

As Garland et al. ' have shown, the expressions
for the frequency-dependent viscosity or heat ca-
pacity may be cast in a particularly appealing form
by the introduction of a dimensionless variable

e* —=upC~)'/2A,

where + is the angular frequency, p the mass
density, C~ the constant-pressure specific heat,

A the thermal conductivity, and $ is the long-
range correlation length. The variable ~* is n

times the ratio of the time required for the decay
of an entropy fluctuation of wave vector (-', to
the period of the sound wave.

In terms of ~* the real and imaginary parts of
the critical contribution to the viscosity, b, (~),
may be written

(u Reb, (&u) = D(T)I(~*),

~ rmb, ((u) = D(T)J(u) *),
(2a)

(2b)

Here k~ is Boltzmann's constant, T the absolute
temperature, C~ the constant-volume specific
heat, P the pressure, and S the entropy. Corn-
parison with the theories is conveniently made
by using the dispersion and attenuation data to
compute Reb, (&u) and Imb, (e) in the case of the
Kawasaki theory, and ReE(~) a,nd Imh(~) in the
ease of the Mistura theory. On the critical iso-
chore (8 $ '/BT) ~ may be replaced' by (8 $ '/s T),.
The term in brackets in Eq. (3) is quite sensitive
to the temperature dependence of $, and the re-
sulting uncertainties in D(T) have made stringent
experimental tests of the theory difficult. In fact,

while the frequency-dependent excess heat capacity
A(v) may be written

(1 —1/y)C', Re[A(v)]/C» = —D(T)J(a*), (2c)

(1 —1/y)C', Im[b, (&u)]/C» = D(T)I(~*). (2d)

Here C, is the zero-f requency sound speed, and
I(sr*) and J(~*) are functions of &u* which may be
calculated if one assumes a form for the density-
density correlation function; y= C~/C», and
D(T) is given by
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D(T) has often been treated as adjustable.
Although the theory of Mistura has generally

been considered identical to that of Kawasaki,
the fact that the equations used to link the calcu-
lated heat capacity' to the sound speed and at-
tenuation are different from those used when deal-
ing with the viscosity'~ actually make the two
theories quite different, whenever there is ap-
preciable dispersion. A careful study of the equa-
tions given in Refs. 6 and 14 shows this to be the
case, but no detailed comparison of the two theo-
ries has been made before. In addition, previous
analyses'" have indicated a systematic difference
between the results obtained from Brillouin scat-
tering and those obtained from ultrasonic measure-
ments. In carrying out these analyses Brillouin
splittings and linewidths have been treated as
equivalent to the results of an ultrasonic experi-
ment performed at the Brillouin frequency, which
is not justifiable a priori. In order to show clearly
the large difference between the two theories and
to investigate the effects of a more rigorous treat-
ment of the Brillouin data, we have been led to
reanalyze a portion of the existing data. By using
the experimental data to compute the ratio
Imb, (u)/Reb, (ur), in the case of the viscosity, and
the ratio -Reh(~)/Imb, (~), in the case of the heat
capacity, the theories may be tested without re-
quiring knowledge of D(T). The results of this test
are in clear disagreement with the theory of Ka-
wasaki using either the Qrnstein-Zernike" or
the Fisher-Langer" form of the correlation func-
tion, but are in good agreement with the theory of
Mistura provided the Fisher-Langer form of the
correlation function is used. The fact that the
theory of Mistura does predict values for the ra-
tio -Red(&u)/ImA(&o) which are in agreement with
the ultrasonic results has been shown before in a
rather different manner, because previous inves-
tigations"'" have shown that the choice of D(T)
which gave good agreement between the theory and
the ultrasonic attenuation data also gave good
agreement with the ultrasonic dispersion data.
Qur use of the Fisher-Langer form of the cor-
relation function was motivated by the work of
Tartaglia and Thoen, "who have shown that it
leads to a significant improvement for large ~*,
over the results obtained using the Qrnstein-
Zernike form.

By making a particular choice for D(T), which
will be motivated below, we find that although there
is fairly good agreement between the ultrasonic
and Brillouin scattering data, especially for co*
~ 10, neither theory predicts the reduced disper-
sion and attenuation correctly; i.e. , neither the
values of Red(&u) and Imb, (~) predicted by the
Mistura theory, nor the values of Reb, (~) and

Imb, (~) predicted by the Kawasaki theory, are in
agreement with the data, although as mentioned,
the theory of Mistura does predict the ratio
-Red(&o)/Imh(&u) correctly

The theory of Kawasaki gives results which are
too small by as much as a factor of 10, while the
theory of Mistura gives results which are too
small by about a factor of 2. In the case of the
Mistura theory, our findings are in agreement
with those of Thoen and Garland, ' who found that
the values of f '(8( '/ST)', needed to fit the ultra-
sonic data on the critical isochore, were -1.8
times larger than the values obtained using the
best experimental values for $.

The quantity ( '(9$ '/ST)' is computed usingan ex-
pressionfor g of the form g, t ",where f = (T —T,)/T„
and disagreement has previously been attribu-
ted to inadequate knowledge of $, and v. In
the course of performing our analysis we
considered the effect of possible errors in $0 and
v, such errors being higher correlated, and we
find that there are in fact no reasonable choices
for $, and v which result in values of g '(8$ '/8T)'
sufficiently large to bring either theory into agree-
ment with experiment. In fact, the choice of $,
and v presented below results in essentially the
maximum possible values for $ '(sf '/BT)'. Since
it is very unlikely that errors in other quantities
could result in an error as large as a factor of 2,
we conclude that neither theory is capable of ac-
counting for the data.

In the course of this analysis we have
also discovered that although not in agree-
ment with theory, a frequency-dependent vis-
cosity very similar to that required to account for
the attenuation and dispersion of ultrasound in the
critical region gives rise to a light scattering
spectrum of exactly the form previously observed
experimentally by one of us"; namely, the re-
laxing viscosity contributes significant spectral
power in the frequency region between the Ray-
leigh and Brillouin components of the scattered
light.

II. THEORY

A. Complex viscosity

This section outlines the modification of the
Navier-Stokes equation which leads to a complex
frequency-dependent viscosity, and reviews the
effects of this modification on both the propagation
of driven sound waves and on the spectrum of
light scattered by the fluid. The use of a complex
frequency-dependent volume viscosity offers a
well-defined phenomenologieal approach to ac-
counting for the effects of chemical reactions,
energy transfer to internal states, and modifica-
tions in local structure, on the propagation of
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acoustic waves. " This approach is equivalent to
introducing an excess pressure which depends on
the past history of the density. This may be seen
by considering the linearized Navier-Stokes equa-
tion

Bv 1
p,—= -VP+ q,V'v+ (—,q, + q„)V(V v), (4)

Qp—+pV' v=0
gt 0 (5)

the effective pressure may be written

where p, is the average density, v the local ve-
locity, and q, and g„are the shear and volume
viscosities, respectively. The term q„V(V ~ v)
may be combined with the pressure term and
P —g„V v regarded as an effective pressure. Using
the linearized continuity equation

ur'/K ~ K = C', + ab(&u)(K ~ K)

—i ur [a+ b(&u) —C',a(K ~ K)/yes ]. (10)

Here C0 is the zero-frequency sound speed, a
= Alp, C„and the complex frequency-dependent
viscosity b(e) is given by

b((O) = [-', 7i, + q„((O)]/p0

the case of driven sound waves, one seeks a solu-
tion to these equations for which the deviations of
the variables p, T, and v from their average val-
ues are of the form e"K' "". The result is a set
of homogeneous algebraic equations in p and T,
after using the continuity equation to eliminate
terms involving v. The equations have nonzero
solutions only if the following dispersion equation
is satisfied":

'g„9pP =P+—"—.eff
p

(6) q„(t')e'"'dt'. (12)

In order to introduce "memory effects" we formal-
ly replace (7i„/p0) Sp/St by

n.(t') p(t t') «'—,
Po 0

where p(t —t') is the time derivative of p at t —t'.
Thus q„(t') plays the role of a memory function,
allowing density disturbances occurring at one
time to contribute to the effective pressure at
some later time, "the effective pressure being

P, ,( t) = P(t) +— q„(t')p( t —t') dt' .
0 0

The modified linearized Navier-Stokes equation
then takes the form

The spectrum of light scattered by such a fluid
may be found by solving an initial-value problem
for the temporal decay of a density disturbance of
a given wave vector k. As shown by Mountain"
this is easily accomplished by taking the Laplace
transform in time and the spatial Fourier trans-
form of the three hydrodynamic equations, Eqs.
(5), (8), and (9). The resulting algebraic equa-
tions may be solved exactly to obtain the spectrum
of the scattered light, the result being

S(k, ~) 00 Re[F(s)/G(s)], ,„,
where s is the Laplace transform variable, and
F and G are given by

ev 1
p0—-—- -VP+ 'g~V v+ 07i0V(V 'v)

q„(t')V v(t —t') dt'. (8)

F(s) = s'+ [a+ b(s)] k's+ ab(s)k'

+ C,'k'(1 —1/y),

G(s) = s'+ [a+ b(s)] k's'

+ [C,'k'+ ab(s)k']s+ aC,'k'/y.

(14a)

(14b)
Such a modification of the hydrodynamic equations
affects both the propagation of driven sound waves
and the spectrum of light scattered by the fluid,
but in quite different ways. The three equations
required to determine either the response to a
sinusoidal driving force or the temporal response
to an initial disturbance of a given wave vector are
the continuity equation, Eq. (5), the modified lin-
earized Navier-Stokes equation, Eq. (8), and the
energy transport equation,

p C " ——AV T=O.0 0 Qt P St (9)

Here p = -(1 p/)(0sp/BT) is the thermal expansion
coefficient, and A is the thermal conductivity. For

Here

b(s) = (1/p. ) [-', n. + n.(s)], (15)

q,(s) = e "
7) (t') dt' (16)

This modification of the hydrodynamic equa-
tions affects sound propagation in a rather
straightforward manner, but its effect on the
spectrum is much more striking since for every
internal process of relaxation time v, q„(s) con-
tains a term proportional to (1+s7) which in-
creases the order of I and G considered as poly-
nomials in s, and this introduces a nonpropagating
mode into the spectrum. " In the case of driven
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sound waves, however, e is real and K=/(p, + jo)
is complex. Here k, -=271/X, n is the amplitude at-
tenuation coefficient, and n is a unit vector in the
direction of propagation. In solving the dispersion
equation for K in terms of co, the algebraic struc-
ture of the equation is unaffected by the frequency
dependence of b(v) and thus no new modes appear.

As pointed out previously" for the case of driven
sound waves, the dispersion equation may be
solved exactly for both the real and imaginary
parts of b(~) in terms of the sound speed C(ro)
and the amplitude attenuation per wavelength
o X(&u). Thus measurements of C(~) and o.X(&u)

yield b(~) directly. The exact expression for b(+)
is complicated and not very instructive, but the
approximate solutions

&u Reb(e) = 2a CI((u) (17a)

1+ Imb(&u) = C'(&u)(,), —C,',1+& (17b)

where n = nX/2m, proved a.ccurate to a few percent
when applied to SF, near its critical point, even
when nX was as large as unity. '~ Equations (17)
give the real and imaginary parts of the total
viscosity, while the theory gives only the critical
contributions. The contributions of the shear vis-
cosity and the nonrelaxing part of the volume vis-
cosity, if any, are to be subtracted directly from
the experimental values for Reb(&u) before com-
parison with theory. These contributions are neg-
ligible for the ultrasonic data.

Kawasaki has used a mode-mode coupling ap-
proach to calculate the frequency dependence of
both the real and imaginary parts of the viscosity,
and Garland et al. ' have shown that his result may
be written very elegantly by using the reduced
frequency +* discussed in the Introduction. The
results have been given in Eqs. (2a) and (2b),
where the integrals I(or*) and J(&u*) are given by

x' co*Z(x)
(I+x')' (o*'+K'(x) ' (18a)

CO

(1+x')' (o~'+IP(x) '

In these expressions K(x) is —,'[1+x'+ (x' —x ') tan 'x],
and the Ornstein- Zernike correlation function
has been used in obtaining the expressions for
I(&u*) and Z(or*).

The common prefactor of I(co*) and J(u")
in Egs. (2) which we denote by D(T) is
rather sensitive to the density and temperature
dependence of $, and this has made accurate com-
parison of the theory and data very difficult.
Since, however, ur Reb(ur) and urlmb(w) can be

computed fairly accurately from measurements
of C(ur) and o.X(ur) using Eqs. (17), one can re-
move all consideration of the prefactor D(T) by

computing the ratio

It = Imb, ((o)/Reb, ((u) (19)

B. Complex heat capacity

Mistura" and Garland et a/. ' have developed an
expression for a complex frequency-dependent
excess specific heat, A(&u), which is very similar
to Kawasaki's expression for the viscosity. These
results may also be written in terms of ~~ as
given by Eqs. (2c) and (2d). The dispersion equa-
tion used to relate the excess heat capacity to the
sound speed and critical attenuation' can be writ-
ten

(d2
2 1+6/C~I.K '1+A/C„'

I

which is based on the assumption that the excess
heat capacity contributes equally to C~ and C„. It
should also be noted that this approach assumes
that the critical dispersion and attenuation may be
described without allowing for both classical and
critical effects simultaneously in a full hydrody-
namic theory as was done in the case of the vis-
cosity. The critical attenuation is computed by
subtracting the classical contributions from the
Brillouin linewidths, and is set equal to the total
observed attenuation for the ultrasonic results.
As in the case of the viscosity one may solve
exactly for the real and imaginary parts of a(~)
in terms of C(u&) and „ow hreen, = [o.X(ur)], /2v

(20)

from the data as a function of co* and comparing
it to the values computed from the expressions
for I(&u*) and J(~*) using various forms of the
correlation function. Obviously this test of the
theory is less complete than could be obtained with

accurate knowledge of D(T) but given realistic
constraints on the accuracy with which D(T) may
be computed this method does provide a clear-cut
test. In order to compute or*, one does need val-
ues for $ and A/pC~; however, the results of this
test are nearly independent of the values assumed,
for any reasonable choices. The values presented
in the section on data analysis result in the quanti-
ty 2A/pC~P being given by the expression 3.52
x 10"t' ", which is intermediate to the expressions
used in Refs. 6 and 9. The ratio g as a function
of co* for two different choices of the correlation
function is shown in Fig. 4 in the data analysis
section. It is rather remarkable that the Orn-
stein- Zernike correlation function results in the
very simple expression A= 1.0~*'"' in the range
1.0& &*&10', but it is not obvious why this should
be so.
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is the "critical attenuation per wavelength" di-
vided by 2m. For y W 1 and a. ', «1, the exact solu-
tions are very well approximated by the following
expressions'.

Imh(01) 2a.,C',C'(&0)(1 —1/y)C„[C'(~) C,'/y]'

Rem(10) O', —C2(111)

C„C'(~) c,'/y '

(21a)

(21b)

These equations become identical to those given
by Eden et a/. 6 when C2(&0)/C02-1 (far from T,),
or when y "-0 (near T,).

We have not attempted to derive an expression
for the spectrum of light scattered by a fluid with
such an excess heat capacity, nor have we at-
tempted to include the effects of viscous dissipa-
tion and heat conduction in a complete hydrodynam-
ic theory as was done for the viscosity. Vfhen
more accurate data for the correlation range make
stringent comparison of this theory with the data
possible, it will be necessary to carry out both of
these calculations. Obviously the same ratio test
may be applied to this theory; Imb, (&0)/C„and
Reh(&0)/C„can be obtained from the data using
Eqs. (21), and from Eqs. (2c) and (2d) the ratio
—Red(u&)/Imb, (&u) may be compared directly to
J(100)/I( 10*).

III. DATA ANALYSIS

This section presents an analysis of a fraction
of the available ultrasonic data' on sound speed and
attenuation, and also presents an analysis of the
results of detailed measurements" of the Brillouin
spectrum. All data considered were taken on the
critical isochore (p= p„T&T,). The zero-fre-
quency sound speed was taken from the 1-kHz
measurements of Garland and Williams. ' The
analysis was carried out for the case of a relaxing
viscosity and for the case of relaxing heat capa-
cities. The analysis in the case of the viscosity
is complete in the sense that the effects of thermal
conduction and classical viscous dissipation are
handled in a rigorous manner, and the Brillouin
data are also handled rigorously and not treated
as though equivalent to the results of an ultra-
sonic experiment at the Brillouin frequency.

Although the clearest test of the theories is
carried out using the ratio test described in the
previous section, it is also of some interest to
choose a best estimate for the behavior of the
long-range correlation length and use this to cal-
culate D(T), so that the dispersion data and the
attenuation data may be compared separately to
the theoretical predictions. As mentioned pre-
viously, these comparisons are rather sensitive
to the magnitude and temperature dependence of

Table I summarizes the thermodynamic data
used to calculate both D(T) and 10*, and was taken
from Swinney and Henry' s' compilation of various
experimental results. Other than g, these quanti-
ties are rather accurately known for T —T, ~ 5 K.
Since only four of the light scattering data points
and none of the ultrasonic data correspond to
T —T, &5 K, additional uncertainties far from T,
should not affect our conclusions. The evidence
with regard to $ may be summarized as follows.
It has been very accurately measured on the cri-
tical isochore for CO, and SF, by one of us"'"
and the two results are given by

56 0(T T ) 0,633%0,01
CQ2

44(T T )-0,62150.01
6 C

Both Giglio and Benedek" and Smith, Giglio, and
Benedek" have measured g for xenon using essen-
tially the same apparatus for both experiments and
found the result

60 4(T T )-0.5550,05 A

but the expression V l(T —T,) '" is also in excel-
lent agreement' with their data, and is much more
in accord with the results for the other fluids.
In fact, if one excludes from. the analysis their
point obtained at T —T, = 22 mK which was probably
influenced by multiple scattering" and also ex-
cludes the four points taken for T —T,& 0.47 K
because of the large uncertainties, the remaining
11 data points yield the least-mean-square fit

$„,=75.6(T —T,) '"A,

when weighted equally, which is in close accord
with the results for SF, and CO, . For these rea-
sons we have used the expression given in Table
I in computing g.

The ultrasonic and light scattering data used

TABLE I. Thermodynamic data used to calculate D(T)
and re*.

= 1.194x 10 + 5.54x10 (T —T ) '
~

~
~

BT y
C

—1.76x f03(T —T~)" dyn/cm K

~ =7i(T T,)-'" A

C„=[4.725(T —T,) ' 1.525] xf0 erg/gK

C& ——4.4f x10 (T —T,) ' erg/gK

A = 1.01 xf0 (T-T~) ' cm /sec
pC&

q, =549+0.756(T —T ) —16.35 ln(T —T ) pP

These data, obtained by various authors, appear in
H. L. Swinney and D. L. Henry Phys. Rev. A 8, 2586
{1973).
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TABLE II. Brillouin scattering and 1-kHz ultrasonic
data used in the analysis.

7. -Z, (K) Cp (m/sec) C (m/sec)

0.10
0.20
0.30
0.40
0.50
0.70
i.03
2.24
3.00
5.00
7.50

10.00
15.00
20.00

85.0
90.0
93.7
96.6
99.0

102.6
106.8
117.4
121.8
130.0
136.8
142.6
152.0
159.7

123.7
124.3
127.3
124.5
126.8
124.3
126.8
128.9
132.7
134.3
140.5
146.7
152.4
162.4

0.100
0.099
0.097
0.099
0.094
0.095
0.091
0.080
0.073
0.062
0.051
0.040
0.032
0.027

D. S. Cannell and G. B. Benedek, Phys. Rev. Lett.
25, 1157 (1970).

b C. W. Garland and R. D. Williams, Phys. Rev. A 10,
1328 (1974).

in the analysis are presented in Tables II and III.
In carrying out the analysis in terms of the vis-
cosity, the nonrelaxing part of the volume vis-
cosity, q~, was set equal to q„and the contri-
butions due to q, and g„, were subtracted from
the computed values of Reb(~). The values of
&u Reb, (&u)/D(T) and e Imb, (v)/D(t) as functions of
&* are presented in Figs. 1 and 2, together with
the theoretical expressions for l(e~) and J(&u~)

computed using both the Ornstein-Zernike and
the Fisher-I, anger form of the correlation func-
tion. " The symbols corresponding to the Brillouin
data are the results obtained treating it as ultra-
sonic data. Since treating the Brillouin scattering
results in this fashion is not justified, a smooth
curve was fitted through the results obtained from

the Brillouin data for &u Imb, (&u)/D(T) and
~ Reb, (&u)/D(T), and used to compute b,(z) at any
desired temperature in order to generate the ex-
pected spectra using Eqs. (13) and (14). The re-
sulting spectra were not equal to those observed
to within experimental accuracy, so the curves
used to compute b, (&u) were corrected and this
procedure was repeated until the resulting spectra
reproduced the observed splittings and linewidths
to within experimental accuracy for all tempera-
tures.

The final curves obtained in this way are shown
as dashed lines in Figs. 1 and 2, and actually rep-
resent the correct determination of &u Reb, (&u)/

D(T), and + Imb, (e)/D(T) corresponding to the
Brillouin data. It is seen that the observed split-
tings may be used to compute &u 1mb, (v)/D(T) to
within experimental accuracy, but that the ob-
served linewidths when treated as equivalent to
ultrasonic results yield values for +Reb, (&u)/

D(T) which are as much as 20% too large. The
linewidths and splittings used in this analysis
were obtained by solving the dispersion equation
G(s) =0 corresponding to the spectra after de-
convolution from the instrumental response. ""
The imaginary parts of the complex roots are
+Ck, and the real parts are the negative of the
Brillouin linewidths.

One very interesting result of this analysis is
that the spectra generated in this manner repro-
duced not only the observed Brillouin splittings
and linewidths but also duplicated rather accurate-
ly the spectral power present in the frequency re-
gion between the H,ayleigh and Brillouin compo-
nents. This is shown in Fig. 3, which presents
both the experimentally observed spectrum, after
deconvolution from the instrumental response, "and

the one generated using the frequency- dependent vis-

TABLE III. Ultrasonic ~ and 1-kHz ultrasonic data used in the analysis.

z"-v', (K) Cp (m/sec)
1 MHz

C (m/sec)
3 MHz

C (m/sec)

0.050
0.062
0.075
0.082
0.183
0.283
0.383
0.482
0.582
0.682
0.782

81.0
82.2
83.4
83.9
89.2
93.1
96.1
98.7

100.7
102.3
103.8

96.22
96.30
96.12
96.37
98.21
99.84

101.25
102.51
103.96
105.14
106.28

0.063
0.062
0.061
0.056
0.045
0.036
0.030
0.026
0.021
0.019
0.016

101.81
103.10
103.10
103.09
100.37
100.71
103.52
104.62
105.20
105.95
107.66

0.068
0.066
0.075
0.058
0.056
0.048
0.043
0.037
0.033
0.031
0.026

P. E. Mueller, D. Eden, C. W. Garland, and R. C. Williamson, Phys. Rev. A 6, 2272 (1972).
"C. W. Garland and R. D. Williams, Phys. Rev. A 10, 1328 (1974).
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was carried out using Eqs. (21) to compute the
real and imaginary part of the excess heat capaci-
ty h(&d). According to the theory of Mistura" and
Garland et al. ,

' the real and imaginary parts of
a(&d) are related to I(&u*) and J(&u*) by Eqs. (2c)
and (2d). The values of —(1 —1/y)C', Red(ld)/
C+(T) and (1 —1/y)C', Imh{ld)/C$7(T) computed
from the data are shown in Figs. 5 and 6, re-
spectively, where they may be compared to the
theoretical curves obtained using the Ornstein-
Zernike and the Fisher-i, anger correlation func-
tions. When one considers the possibility of er-
rors in D(T), the results of both light scattering
and ultrasonic measurements may be considered
to be in fairly good agreement with each other.
Of course some change presumably would occur in
the results for Imh(ld) obtained from the Brillouin
scattering measurements if one were to generate
spectra using a frequency-dependent heat capacity,
and adjust Red(~) and Imh(w) to obtain accurate
spectra, but judging from the results found in the
viscosity analysis the changes will not be too
large, and it does not seem worthwhile to do this
until accurate values for $ are known.

The results of computing the ratio —Re[6(&d) [/
Im[h(&li)] from the data are shown in Fig. 7, and
are seen to be in excellent agreement with the
ratio Z(ill*)/I(&u*) computed using the Fisher-
Langer correlation function. As shown in Figs.
5 and 6, however, neither the real nor the imagi-
nary part of n(&d) is in agreement with theory,
for the choice of D{T) used here. Since most of
the uncertainty in D(T) arises from lack of pre-
cise knowledge of g, we attempted to improve the
agreement between the data and theory by adjusting
the values of f, and v in the expression f
= $,(T —T,) ". We find that there are no choices
for $, and v which bring the da, ta and theory into
agreement and are even marginally consistent with
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FIG. 6. (1 —1/y)G() I~(a)/C„D(T) vs co* for xenon
near its critical point. The solid lines are the theoret. -
ical results.

the data. for g. In fact, the expression for $ pre-
sented in Table I results in essentially the maxi-
mum possible values for D(T). Thus we conclude
that although the theory involving relaxation of the
heat capacity does correctly predict the ratio of
reduced dispersion to reduced attenuation, it does
not correctly predict either the reduced dispersion
or the reduced attenuation, being too small in both
cases by approximately a factor" of 2 for the
larger values of {d*. This conclusion differs from
that of Eden and Swinney" because they only con-
sidered data for values of z* & 2 where the dis-
crepancies are not observable.

IV. CONCLUSIONS

%'e have shown by means of detailed comparison,
that the mode-mode coupling theory of Kawasaki
utilizing a frequency-dependent viscosity and the
theory of Mistura involving a relaxation of the heat
capacities are actually quite different, a fact which
we do not feel has been widely appreciated. We
also find that neither theory is capable of adequate-
ly accounting for the dispersion and attenuation of
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FIG. 5. —{1—1/y) Co Re~(co)/C„D {T)vs co* for xenon
near its critical point. The solid curves give the
theoretical results from the relaxing heat capacity theory
of Mistura.

FIG. 7. The ratio -ReE(~}/I~(~) vs co* for xenon
near its critical point. The solid curves are the ratios
of the solid curves in Figs. 5 and 6.
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sound observed near the critical point of xenon,
but unlike previous workers we find that this can-
not be attributed to uncertainty in the experimental
results for the long-range correlation length. We
do find, however, that the theory of Mistura is
capable of accounting for the ratio of reduced dis-
persion to reduced attenuation for both light scat-
tering and ultrasonic data provided the Fisher-
Langer form of the correlation function is em-
ployed. This conclusion agrees with those of
previous workers for the ultrasonic case. We also
find that a frequency-dependent viscosity very

similar to that required to account for the dis-
persion and attenuation observed at ultrasonic
frequencies results in Brillouin spectra of the
anomalous form observed near the critical point.
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